JPS62298804A - Automatic adjusting method for control constant of pid controller - Google Patents

Automatic adjusting method for control constant of pid controller

Info

Publication number
JPS62298804A
JPS62298804A JP14334586A JP14334586A JPS62298804A JP S62298804 A JPS62298804 A JP S62298804A JP 14334586 A JP14334586 A JP 14334586A JP 14334586 A JP14334586 A JP 14334586A JP S62298804 A JPS62298804 A JP S62298804A
Authority
JP
Japan
Prior art keywords
pid controller
proportional gain
constant
control
deviation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14334586A
Other languages
Japanese (ja)
Inventor
Koji Ebisu
戎 晃司
Shiro Hozumi
穂積 史郎
Hozumi Yamada
山田 穂積
Masataka Iwasaki
昌隆 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Ecology Systems Co Ltd
Panasonic Holdings Corp
Original Assignee
Matsushita Seiko Co Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Seiko Co Ltd, Matsushita Electric Industrial Co Ltd filed Critical Matsushita Seiko Co Ltd
Priority to JP14334586A priority Critical patent/JPS62298804A/en
Publication of JPS62298804A publication Critical patent/JPS62298804A/en
Pending legal-status Critical Current

Links

Landscapes

  • Feedback Control In General (AREA)

Abstract

PURPOSE:To improve the controllability of a control system by increasing a proportional gain when a vibration period P is more than a constant rate longer than the integration time of a PID controller. CONSTITUTION:A manipulated variable (u) outputted by the PID controller 1 is inputted to a controlled system 2, whose output (y) is inputted to the PID controller 1 as deviation (e) which is a difference from a target value (r), thus constituting a feedback control loop. Further, the deviation (e) is inputted to an automatic constant adjustment part 3, which determines the proportional gain Kp to automatically adjust the control constant of the PID controller 1. At this time, when the period P of vibrations due to transient deviation is more than the constant rate longer than the integration time Ti set in the PID controller, the proportional gain Kp is increased by a constant rate. Consequently, the automatic adjustment is performed without causing any oscillation state, so deterioration in controllability due to the adjustment is precluded.

Description

【発明の詳細な説明】 3、発明の詳細な説明 産業上の利用分野 本発明は、比例、積分、微分(PID)調節器を用いた
フィー′ドパツク制御系において、制御対象の特性変化
に追従して、PID調節器の制御定数を自動的に最適値
に調整するPID調節器の制御定数自動調整方法に関す
るものである。
Detailed Description of the Invention 3. Detailed Description of the Invention Industrial Field of Application The present invention tracks changes in the characteristics of a controlled object in a feed pack control system using a proportional, integral, differential (PID) controller. The present invention relates to a method for automatically adjusting control constants of a PID adjuster, which automatically adjusts control constants of a PID adjuster to optimal values.

従来の技術 従来のPID調節器の制御定数自動調整方法では、Pよ
り調節器の積分時間Tiを無限大、微分時間Tdを零と
して比例制御とし、比例ゲインKp−2・\−7 を徐々に大きクシ、発振状態を発生させ、この発振状態
における比例ゲインKpo1及び周期Puより、最適の
比例ゲインKpい積分時間T、い微分時間Tdtを Kpt−0,6×Kpo・・・・・・(1)Tit=0
.6×へ・・・・(2) Tdt−0,125X Pu−(3) として求めていた[Ziegjl!er −N1cho
I!、s(ジ−グラ−ニコルス)の限界感度法〕。
Prior Art In the conventional automatic control constant adjustment method for a PID controller, proportional control is performed by setting the integral time Ti of the regulator to infinity and the differential time Td to zero from P, and gradually increasing the proportional gain Kp-2.\-7. A large comb generates an oscillation state, and from the proportional gain Kpo1 and period Pu in this oscillation state, the optimal proportional gain Kp, integral time T, and differential time Tdt are determined as Kpt-0,6×Kpo... 1) Tit=0
.. To 6×...(2) Tdt-0,125X Pu-(3) [Ziegjl! er-N1cho
I! , s (Ziegler-Nichols) limit sensitivity method].

発明が解決しようとする問題点 しかし、このような制御定数の自動調整方法では、調整
の為に制御系を発振状態にする必要があり、その為に制
御性が悪くなるという問題点があった。
Problems to be Solved by the Invention However, in this automatic adjustment method of control constants, it is necessary to bring the control system into an oscillation state for adjustment, which has the problem of poor controllability. .

本発明は、かかる点に鑑みてなされたもので、制御系を
発振状態にするとと々く、制御定数を自動調整する事を
目的としている。 。
The present invention has been made in view of this point, and an object of the present invention is to automatically adjust the control constants as soon as the control system is brought into an oscillation state. .

問題点を解決するだめの手段 本発明は、上記問題点を解決する為、過渡的偏差が生じ
た事により発生する振動の周期が、PID調節器に設定
されている積分時間の一定比率以上長い場合、比例ゲイ
ンを一定比率増加させ、制御性を宇土させるものである
Means to Solve the Problem In order to solve the above problem, the present invention provides a method in which the period of vibration generated due to the occurrence of a transient deviation is longer than a certain ratio of the integration time set in the PID controller. In this case, the proportional gain is increased by a certain ratio to improve controllability.

作  用 本発明では、上記の方法によって制御定数を決定する事
により、発振状態を生じさせる事なく自動調整ができ、
調整の為の制御性の悪化がない。
Function: In the present invention, by determining the control constant using the method described above, automatic adjustment can be performed without causing an oscillation state.
There is no deterioration in controllability due to adjustment.

実施例 第1図は、本発明のPID調節器の制御定数自動調整方
法を用いた制御系の一実施例を示すブロック図である。
Embodiment FIG. 1 is a block diagram showing an embodiment of a control system using the method for automatically adjusting control constants of a PID controller according to the present invention.

第1図において、1はPID調節器、2は制御対象、3
は制御定数自動調整部であって、PID調節器1より出
力される操作量Uは、制御対象2に入力され、制御対象
2の出力yは、目標値rとの差である偏差eとしてPI
D調節器1に入力され、−フィードバック制御ループが
構成されている。
In FIG. 1, 1 is a PID controller, 2 is a controlled object, and 3 is a PID controller.
is a control constant automatic adjustment section, in which the manipulated variable U output from the PID controller 1 is input to the controlled object 2, and the output y of the controlled object 2 is expressed as the deviation e which is the difference from the target value r.
It is input to the D regulator 1, and a -feedback control loop is configured.

更に、偏差eは、制御定数自動調整部3に入力され制御
定数自動調整部3において、比例ゲインK が決定され
、PID調節器1の制御定数が自動調整される。
Furthermore, the deviation e is input to the control constant automatic adjustment section 3, where the proportional gain K is determined, and the control constant of the PID regulator 1 is automatically adjusted.

次に、制御定数自動調整部3の調整方法について説明す
る。
Next, a method of adjusting the control constant automatic adjustment section 3 will be explained.

第1図において目標値rが変化、あるいは外乱により出
力yが変化すると、過渡的々偏差eが生じ、制御対象2
の特性に対し、PID調節器1の制御定数が不適正な場
合には偏差eが速やかに整定せず、振動が発生する。こ
の振動は −σt e  =A  @ exp      @5IN(0)
t+ ψ)      −(4)として表わされる。
In Fig. 1, when the target value r changes or the output y changes due to disturbance, a transient deviation e occurs, and the controlled object 2
With respect to the characteristics, if the control constant of the PID regulator 1 is inappropriate, the deviation e will not settle quickly and vibration will occur. This vibration is -σt e =A @exp @5IN(0)
t+ψ) −(4).

ここで、 e:偏差 A:振幅 σ:減衰定数 t:時間 ω:角周波数 ψ:位相角 である。here, e: deviation A: amplitude σ: Attenuation constant t: time ω: Angular frequency ψ: phase angle It is.

この減衰定数σ、及び角周波数ωと、制御定数との関係
を求めるために、目標値rを変化させて振動発生の数値
実験を行なった。
In order to find the relationship between the damping constant σ and the angular frequency ω and the control constant, a numerical experiment was conducted on vibration generation while changing the target value r.

ただし、PID調節器1の積分時間T0、及び微分時間
Tdは固定、制御対象2の特性をむだ時間+1次おくれ
系とし、プロセスゲインに1時定数T1むだ時間りの値
は下表のようにした。
However, the integral time T0 and differential time Td of the PID controller 1 are fixed, the characteristics of the controlled object 2 are dead time + 1st order delay system, and the value of 1 time constant T1 dead time in the process gain is as shown in the table below. did.

実験1における振動波形が第2図aから第2図℃であり
、これらの振動の減衰定数σ、及び角周波数ωと、比例
ゲインKpとの関係を第3図に示す。
The vibration waveforms in Experiment 1 are shown in FIGS. 2A to 2C, and the relationship between the damping constant σ and angular frequency ω of these vibrations and the proportional gain Kp is shown in FIG.

第3図において、縦軸の値が1.0と々る比例ゲインK
pを発振比例ゲインKpoとし、比例ゲインKpを発振
比例ゲインKp0で除した値と、減衰定数σ及び角周波
数ωとの関係、及び周期Pを積分時間T iで除した値
との関係を全ての実験に関して第4図に示す。
In Figure 3, the proportional gain K has a value of 1.0 on the vertical axis.
Let p be the oscillation proportional gain Kpo, and the relationship between the proportional gain Kp divided by the oscillation proportional gain Kp0, the damping constant σ and the angular frequency ω, and the relationship between the period P divided by the integration time T i are all The experiment is shown in Figure 4.

6パ− 第4図中の減衰定数σ、及び角周波数ωに関しで、実験
点はほぼ一本の直線上に存在する事がわかる。この実験
点の最小2乗法による回帰式は、となる。
6. Regarding the attenuation constant σ and the angular frequency ω in FIG. 4, it can be seen that the experimental points exist almost on one straight line. The regression equation based on the least squares method for this experimental point is as follows.

ここで a :係数(ap=−0,590) b :係数(bp= 1.596 ) である。here a: Coefficient (ap=-0,590) b: Coefficient (bp=1.596) It is.

減衰定数σ、及び角周波数ωと、減衰係数ξとの関係は
、 であり、減衰係数ξが0.5の時、2乗制御面積が最小
と寿る事が知られており、(自動制御・・ンドプソク基
礎編1984)、(6)式より、第4図中の縦軸−eX
pω“が0.163の時、2乗制御面積が最小となり、
これに対応する横軸Kp/Kpoは0.472 となる
The relationship between the damping constant σ, the angular frequency ω, and the damping coefficient ξ is as follows. It is known that when the damping coefficient ξ is 0.5, the square control area is the minimum, and (automatic control ...Ndopsoku Basic Edition 1984), from equation (6), the vertical axis -eX in Figure 4
When pω" is 0.163, the square control area is minimum,
The corresponding horizontal axis Kp/Kpo is 0.472.

一方、第4図中の周期Pを積分時間Tiで除した値と、
横軸Kp/Kpo との関係は、全ての実験に関して比
例ゲインKpが適正々値に比べ小さい場合、周期Pが積
分時間Tiに対し急速に大きくなる事を示している。
On the other hand, the value obtained by dividing the period P in FIG. 4 by the integration time Ti,
The relationship with the horizontal axis Kp/Kpo shows that in all experiments, when the proportional gain Kp is smaller than the appropriate value, the period P increases rapidly with respect to the integration time Ti.

以上のことより、周期Pが、PID調節器に設定されて
いる積分時間T1より一定比率以上長い場合、比例ゲイ
ンKpを一定比率増加さぜることにより、制御性が向上
する。
From the above, when the period P is longer than the integral time T1 set in the PID controller by a certain ratio or more, controllability is improved by increasing the proportional gain Kp by a certain ratio.

発明の効果 以上述べてきたように、本発明によれば、振動の周期の
みから、PID調節器の制御定数が決定でき、更に発振
状態を生じさせる事なく自動調整できる為、調整の為に
制御性を悪化させる事がなく、実用的にきわめて有用で
ある。
Effects of the Invention As described above, according to the present invention, the control constant of the PID regulator can be determined only from the period of vibration, and furthermore, since it can be automatically adjusted without causing an oscillation state, it is possible to control the control constant for adjustment. It does not cause any deterioration in sex and is extremely useful for practical purposes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明のPID調節器の制御定数自動調整方
法を用いた制御系の一実施例を示すブロック図、第2図
dより第2図!壕では、比例ゲインを変化させて求めた
振動波形図、第3図は第2図aより第2図βの振動の減
衰定数、及び角周波数と、比例ゲインの関係を示す特性
図、第4図は比例ゲインを発振比例ゲインで除した値と
、減衰定数、及び角周波数との関係、及び周期を積分時
間で除した値との関係を、全実験にわたり、示す特性図
である。 1・・・PID調節器、2・・・・・制御対象、3・・
・・・・制御定数自動調整部。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 力 第2図     (ス9 +1JI (b) 第2図 (C) (ズ9 第2図 (ぞ) 第2図 CI) (/I) 第2図
FIG. 1 is a block diagram showing an embodiment of a control system using the automatic control constant adjustment method for a PID controller of the present invention, and FIG. In the trench, the vibration waveform diagram obtained by changing the proportional gain, Figure 3 is a characteristic diagram showing the relationship between the vibration damping constant of Figure 2 β from Figure 2 a, the angular frequency, and the proportional gain, Figure 4 The figure is a characteristic diagram showing the relationship between the value obtained by dividing the proportional gain by the oscillation proportional gain, the damping constant, and the angular frequency, and the relationship between the value obtained by dividing the period by the integral time, over all experiments. 1... PID controller, 2... Controlled object, 3...
...Control constant automatic adjustment section. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 (S9 +1JI (b) Figure 2 (C) (Z9 Figure 2 (zo) Figure 2 CI) (/I) Figure 2

Claims (1)

【特許請求の範囲】[Claims] 過渡的偏差が生じたことにより発生する振動の周期が、
PID調節器に設定されている積分時間の一定比率以上
長い場合、比例ゲインを一定比率増加させることを特徴
とするPID調節器の制御定数自動調整方法。
The period of vibration caused by the transient deviation is
A method for automatically adjusting a control constant of a PID controller, characterized in that when the integration time set in the PID controller is longer than a certain ratio, a proportional gain is increased by a certain ratio.
JP14334586A 1986-06-19 1986-06-19 Automatic adjusting method for control constant of pid controller Pending JPS62298804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14334586A JPS62298804A (en) 1986-06-19 1986-06-19 Automatic adjusting method for control constant of pid controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14334586A JPS62298804A (en) 1986-06-19 1986-06-19 Automatic adjusting method for control constant of pid controller

Publications (1)

Publication Number Publication Date
JPS62298804A true JPS62298804A (en) 1987-12-25

Family

ID=15336626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14334586A Pending JPS62298804A (en) 1986-06-19 1986-06-19 Automatic adjusting method for control constant of pid controller

Country Status (1)

Country Link
JP (1) JPS62298804A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4214300A (en) * 1977-05-17 1980-07-22 Kenneth Robert Jones Three term (PID) controllers
JPS60215204A (en) * 1984-04-10 1985-10-28 Omron Tateisi Electronics Co Pid controller
JPS62108306A (en) * 1985-11-06 1987-05-19 Yokogawa Electric Corp Controller

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4214300A (en) * 1977-05-17 1980-07-22 Kenneth Robert Jones Three term (PID) controllers
JPS60215204A (en) * 1984-04-10 1985-10-28 Omron Tateisi Electronics Co Pid controller
JPS62108306A (en) * 1985-11-06 1987-05-19 Yokogawa Electric Corp Controller

Similar Documents

Publication Publication Date Title
JPH06119001A (en) Controller
JPH0325505A (en) Multifunction controller
JPS638902A (en) Automatic adjusting method for control constant of pid controller
JPH07200002A (en) Feedback controller
JPS62298804A (en) Automatic adjusting method for control constant of pid controller
JPH03289385A (en) Regulating method for gain of motor control
JPS6346502A (en) Pid controller
JPS62298802A (en) Automatic adjusting method for control constant of pid controller
JPS638901A (en) Automatic adjusting method for control constant of pid controller
JPH0561504A (en) Fuzzy feedback controller
JPS63301303A (en) Control input designing method for variable structure control system
JPS63705A (en) Automatic control method for control constant of pid controller
JPH0378806A (en) Multi-function type controller
JPH086603A (en) Adjusting method for servo system and its servo controller
JPS6346503A (en) Pid controller
RU2234116C1 (en) Device for pid-regulation
JPH0588704A (en) Pid controller
JPS63706A (en) Automatic control method for control constant of pid controller
JP2651152B2 (en) PID control device
JPS62119603A (en) Method of adjusting automatically control constant of pid controller
JPS62298803A (en) Automatic adjusting method for control constant of pid controller
JPH0324341A (en) Control method for active system dynamic vibration reducer
JPH0275001A (en) Sliding mode control system
JPH09106303A (en) Automatic gain decision method for control system
JPS58140807A (en) Controller with automatic control mechanism of integral limiter