JPS62298803A - Automatic adjusting method for control constant of pid controller - Google Patents

Automatic adjusting method for control constant of pid controller

Info

Publication number
JPS62298803A
JPS62298803A JP14334486A JP14334486A JPS62298803A JP S62298803 A JPS62298803 A JP S62298803A JP 14334486 A JP14334486 A JP 14334486A JP 14334486 A JP14334486 A JP 14334486A JP S62298803 A JPS62298803 A JP S62298803A
Authority
JP
Japan
Prior art keywords
constant
angular frequency
pid controller
deviation
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14334486A
Other languages
Japanese (ja)
Inventor
Koji Ebisu
戎 晃司
Shiro Hozumi
穂積 史郎
Hozumi Yamada
山田 穂積
Masataka Iwasaki
昌隆 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Ecology Systems Co Ltd
Panasonic Holdings Corp
Original Assignee
Matsushita Seiko Co Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Seiko Co Ltd, Matsushita Electric Industrial Co Ltd filed Critical Matsushita Seiko Co Ltd
Priority to JP14334486A priority Critical patent/JPS62298803A/en
Publication of JPS62298803A publication Critical patent/JPS62298803A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To automatically adjust a control system without placing it in an oscillation state by finding the angular frequency and phase angle of vibrations caused owing to transient deviation and determining the control constant of a PID controller. CONSTITUTION:A manipulated variable (u) output by the PID controller 1 is inputted to a controlled system 2, whose output (y) is inputted to the PID controller 1 as deviation which is a difference from a target value (r), thus constituting a feedback control loop. Further, the deviation (e) is inputted to an automatic control constant adjustment part 3. The automatic control constant adjustment part 3 finds the angular frequency and phase angle of oscillations due to the transient deviation from the time when the deviation observed value of the vibrations becomes zero and approximates the vibrations to the smallest square- law method to find the attenuation constant of the vibrations. Then, control constants of the best proportional gain Kp, integration time Tit, and differentiation time Tdt of the PID controller 1 are found from the attenuation constant and angular frequency to make an automatic adjustment.

Description

【発明の詳細な説明】 3、発明の詳細な説明 産業上の利用分野 本発明は、比例、積分、微分())ID)調節器を用い
たフィードバック制御系において、制御対象の特性変化
に追従して、PID調節器の制御定2 パ− 数を自動的に最適値に調整するPID調節器の制御定数
自動調整方法に関するものである。
[Detailed Description of the Invention] 3. Detailed Description of the Invention Industrial Field of Application The present invention follows changes in the characteristics of a controlled object in a feedback control system using proportional, integral, and differential ()) ID) regulators. The present invention relates to a method for automatically adjusting a control constant of a PID adjuster, which automatically adjusts the control constant of the PID adjuster to an optimum value.

従来の技術 従来のPID調節器の制御定数自動調整方法では、PI
D調節器の積分時間Tiを無限大、微分時間Tdを零と
して比例制御とし、比例ゲインKpを徐々に大きくし、
発振状態を発生させ、この発振状態における比例ゲイン
Kp0 及び周期Puより、最適の比例ゲインKpt、
積分時間T41.微分時間Tdt  を Kpt=o、exKpo       −−(1)T、
 t=0.5XPu          −、−(2)
Tdt=0.125xPu      −・・−・(3
)として求めていたC Ziegler−Nichol
s(ジ−グラ−ニコルス)の限界感度法〕。
Prior Art In the conventional automatic control constant adjustment method for a PID controller, the PI
Proportional control is performed by setting the integral time Ti of the D regulator to infinity and the differential time Td to zero, gradually increasing the proportional gain Kp,
An oscillation state is generated, and from the proportional gain Kp0 and period Pu in this oscillation state, the optimal proportional gain Kpt,
Integral time T41. The differential time Tdt is Kpt=o, exKpo --(1)T,
t=0.5XPu −, −(2)
Tdt=0.125xPu −・・−・(3
) was sought as C Ziegler-Nichol
s (Ziegler-Nichols) limit sensitivity method].

発明が解決しようとする問題点 しかし、このような制御定数の自動調整方法では、調整
の為に制御系を発振状態にする必要があ3パ−・ す、その為に制御性が悪くなるという問題点があった・ 本発明は、かかる点に鑑みてなされたもので、制御系を
発振状態とすることなく、制御定数を自動調整する事を
目的としている。
Problems to be Solved by the Invention However, in this automatic adjustment method of control constants, it is necessary to bring the control system into an oscillation state for adjustment, which deteriorates controllability. There were problems. The present invention was made in view of the above problems, and aims to automatically adjust control constants without causing the control system to be in an oscillation state.

問題点を解決するための手段 本発明は、上記問題点を解決する為、過渡的偏差が生じ
た事により発生する振動の偏差観測値が、偏差零を通過
する時刻より、振動の角周波数及び位相角を求め、これ
らを基に、振動を最小2乗法により周期関数近似し、振
動の減衰定数を求め、これら減衰定数及び角周波数より
PID調節器の制御定数を決定するものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention aims to improve the angular frequency of vibrations and The phase angle is determined, and based on these, the vibration is approximated as a periodic function by the method of least squares, the damping constant of the vibration is determined, and the control constant of the PID controller is determined from these damping constants and the angular frequency.

作  用 本発明では、上記の方法により制御定数を決定する事に
より、発振状態を生じさせる事なく自動調整ができ、調
整の為の制御性の悪化がない。
Function: In the present invention, by determining the control constant using the method described above, automatic adjustment can be performed without causing an oscillation state, and there is no deterioration in controllability for adjustment.

実施例 第1図は、本発明のPID調節器の制御定数自動調整方
法を用いた制御系の一実施例を示すブロック図である。
Embodiment FIG. 1 is a block diagram showing an embodiment of a control system using the method for automatically adjusting control constants of a PID controller according to the present invention.

第1図において、1はPID調節器、2は制御対象、3
は制御定数自動調整部であって、PID調節器1より出
力される操作量Uは、制御対象2に入力され、制御対象
2の出力yは、目標値rとの差である偏差eとしてPI
D調節器1に入力され、フィードバック制御ループが構
成されている。
In FIG. 1, 1 is a PID controller, 2 is a controlled object, and 3 is a PID controller.
is a control constant automatic adjustment section, in which the manipulated variable U output from the PID controller 1 is input to the controlled object 2, and the output y of the controlled object 2 is expressed as the deviation e which is the difference from the target value r.
The signal is input to the D controller 1, and a feedback control loop is configured.

更に、偏差eは、制御定数自動調整部3に入力され、制
御定数自動調整部3において、最適の比例ゲインKp、
、積分時間T84.微分時間Tdt  が決定され、P
ID調節器1の制御定数が自動調整される。
Furthermore, the deviation e is input to the control constant automatic adjustment section 3, and the control constant automatic adjustment section 3 calculates the optimum proportional gain Kp,
, integration time T84. The differential time Tdt is determined and P
The control constant of the ID controller 1 is automatically adjusted.

次に、制御定数自動調整部3の調整方法について説明す
る。
Next, a method of adjusting the control constant automatic adjustment section 3 will be explained.

第1図において目標値rが変化、あるいは外乱により出
力yが変化すると、過渡的な偏差eが生じ、制御対象2
の特性に対し、PID調節器1の制御定数が不適正な場
合には偏差eが速やかに整定せず、振動が発生する。こ
の振動は e=A−exp  −8IN(ωt+ψ)  ・=−(
4)5′″′− として表わされる。
In Fig. 1, when the target value r changes or the output y changes due to disturbance, a transient deviation e occurs, and the controlled object 2
With respect to the characteristics, if the control constant of the PID regulator 1 is inappropriate, the deviation e will not settle quickly and vibration will occur. This vibration is e=A−exp −8IN(ωt+ψ) ・=−(
4) Expressed as 5''''-.

ここで、 e:偏 差 A:振 幅 σ:減衰定数 t:時 間 ω:角周波数 ψ:位相角 である。here, e: deviation A: Amplitude σ: Attenuation constant t: time ω: Angular frequency ψ: phase angle It is.

この減衰定数σ及び角周波数ωと、制御定数との関係を
求めるために、目標値rを変化させて振動発生の数値実
験を行なった。
In order to find the relationship between the damping constant σ and the angular frequency ω and the control constant, a numerical experiment was conducted on vibration generation while changing the target value r.

ただし、PID調節器1の積分時間T、及び微分時間T
dは固定、制御対象2の特性をむだ時間+1次おくれ系
とし、プロセスゲインに1時定数T、むだ時間りの値は
、表のようにした。
However, the integral time T and differential time T of the PID controller 1
d was fixed, the characteristics of the controlled object 2 were dead time + first-order delay system, the process gain was 1 time constant T, and the values of dead time were as shown in the table.

A− 実験1における振動波形が第2図(a)から第2図(乃
であり、これらの振動の減衰定数σ及び角周波数ωと、
比例ゲインKpとの関係を第3図に示す。
A- The vibration waveforms in Experiment 1 are shown in Figures 2(a) to 2(no), and the damping constant σ and angular frequency ω of these vibrations are
The relationship with proportional gain Kp is shown in FIG.

第3図において、縦軸の値が1.0となる比例ゲインK
 を発振比例ゲインK  とし、比例ゲインK を発振
比例ゲインK  で除した値と、減p        
        p。
In Figure 3, the proportional gain K has a value of 1.0 on the vertical axis.
is the oscillation proportional gain K, and the value obtained by dividing the proportional gain K by the oscillation proportional gain K and the reduction p
p.

表定数σ及び角周波数ωとの、全ての実験についての関
係を第4図に示す。
The relationship between the table constant σ and the angular frequency ω for all experiments is shown in FIG.

第4図中の実験点の最小2乗法による回帰式は恒等的に
、 となる。
The regression equation based on the least squares method for the experimental points in Figure 4 is identically expressed as follows.

ここで、 ap:係数(ap−一〇、590) bp:係数(bp= 1.596) である。here, ap: coefficient (ap-10, 590) bp: coefficient (bp=1.596) It is.

減衰定数σ及び角周波数ωは、制御性に大きな影響を与
える事から、制御性が最良の6 z p−(II7rを
、目標減衰値θXp   と定義し、現在の比例ゲイン
Kpn における振動の減衰定数σ。及び角周波数九と
、最適の比例ゲインKpt との関係は、(6)式より として表わせ、(6)式及び(7)式を変形するととな
り、(8)式により最適の比例ゲインKpt が求まる
O 目標減衰値eXp−atの値としては、減衰係数ξが、
0.5の時、2乗制御面積が最小となる事が知られてお
り、(自動制御ハンドブック基礎編1984)、減衰係
数ξと、減衰定数σ及び角周波数ωとの関係は、 であり、目標減衰値e x p”−atは、で表わされ
、減衰係数ξを0.5とすると、目標減衰値eXp’−
”は0.163となり、この時2乗制御面積が最小とな
る。
Since the damping constant σ and the angular frequency ω have a large influence on controllability, 6 z p-(II7r, which provides the best controllability, is defined as the target damping value θXp, and the damping constant of vibration at the current proportional gain Kpn The relationship between σ and angular frequency 9 and the optimal proportional gain Kpt can be expressed as from equation (6), and by transforming equations (6) and (7), the optimal proportional gain Kpt can be obtained from equation (8). As the value of the target damping value eXp-at, the damping coefficient ξ is
It is known that the square control area is minimum when the value is 0.5 (Automatic Control Handbook Basic Edition 1984), and the relationship between the damping coefficient ξ, the damping constant σ, and the angular frequency ω is as follows. The target attenuation value e x p''-at is expressed as, and if the attenuation coefficient ξ is 0.5, the target attenuation value eXp'-at is expressed as
” becomes 0.163, and at this time, the square control area becomes the minimum.

固有角周波数ω。と、現在の減衰定数σ。及び角周波数
ω。は、 の関係があり、発振周期Puと、固有角周波数ω。
Natural angular frequency ω. and the current damping constant σ. and angular frequency ω. There is a relationship between the oscillation period Pu and the natural angular frequency ω.

9 ″ とは、 と表わせ、(2)式及び(3)式における係数を各々a
9 ″ is expressed as , and the coefficients in equations (2) and (3) are each a
.

及びadとし、(11)式及び(12)式を(2)式及
び(3)式に代入すると、 と々す、これら(13)式及び(14)式より、最適の
積分時間T目 及び微分時間Tdt  が求まる。
and ad, and by substituting equations (11) and (12) into equations (2) and (3), we obtain the following: From these equations (13) and (14), the optimal integration time T and The differential time Tdt is found.

これら(8)式、 (13)式、及び(14)式より最
適の比例ゲインKp、、積分時間Tit  及び微分時
間Tdtが求まるが、現在の減衰定数σ。及び角周波数
ω。
From these equations (8), (13), and (14), the optimal proportional gain Kp, integral time Tit, and differential time Tdt can be found, but the current attenuation constant σ. and angular frequency ω.

を、振動の観測値より求める必要がある。needs to be determined from the observed values of vibration.

制御対象2の特性が線形で、雑音が加わらない場合(4
)式で表わされる振動は、第5図のような振動波形とな
り、偏差観測値が、偏差零を通過する10′″″ 時刻tz1.tz2.tz3  より、(4)式におけ
る角周波数ω及び位相角ψを、 として求めることができる。
When the characteristics of controlled object 2 are linear and no noise is added (4
) The vibration expressed by the equation has a vibration waveform as shown in FIG. 5, and the observed deviation value passes through zero deviation at time 10''''' tz1. tz2. From tz3, the angular frequency ω and phase angle ψ in equation (4) can be determined as follows.

偏差観測値が、サンプリング時間Δを毎に得られた観測
データ(t e )、(t2.e2)、・。
Observation data (t e ), (t2.e2), where the deviation observation value is obtained every sampling time Δ.

1’   1 ・・(tn、en)とすると、(4)式は、e(=As
exp   1*5IN(ωati十ψ)−−(17)
となる。ここで(i=1.2.・・・・n)である。
1' 1 ... (tn, en), equation (4) becomes e(=As
exp 1*5IN (ωati ten ψ) --(17)
becomes. Here, (i=1.2...n).

この(17)式を変形すると、 となり、両辺の対数をとると ここで Xi二11           ・−・・・・−(2
1)a  =nogo(A)          −−
(22)b −一σ          ・旧 ・−・
(23)とすると、(19)式は、 yi=a+l)z、           ・・ ・・
・・(24)となる。
Transforming this equation (17), we get the following, and by taking the logarithm of both sides, we get
1) a = nogo(A) --
(22)b −1σ ・Old ・−・
(23), equation (19) is yi=a+l)z, ・・・
...(24).

ここで、角周波数ω及び位相角ψは、(15)式及び(
16)式により既知である事がら、最小2乗法により(
24)式の係数a、bが として求まる。この係数a、bより、減衰定数σは、 σ−−b          ・・−・ −(27)と
して求める事ができる。
Here, the angular frequency ω and phase angle ψ are expressed by equation (15) and (
16) Since it is known from equation 16), by the least squares method, (
24) The coefficients a and b of the equation can be found as follows. From the coefficients a and b, the damping constant σ can be obtained as σ−−b···−−(27).

しかし、実際の振動の観測値においては、制御対象2の
特性が非線形な場合の第6図のような振動の中心が偏差
零からずれた振動波形や、第7図のような雑音波形があ
り、これらの波形から求めた減衰定数や角周波数を用い
て求めた制御定数は、不適当な値である為制御性が悪化
する。
However, in actual observed values of vibration, there are vibration waveforms in which the center of vibration deviates from zero deviation, as shown in Figure 6, when the characteristics of the controlled object 2 are nonlinear, and noise waveforms, as shown in Figure 7. , control constants obtained using the attenuation constants and angular frequencies obtained from these waveforms are inappropriate values, resulting in poor controllability.

第6図や第7図のような振動波形の場合、減衰定数を求
める為の周期関数近似の誤差が大きくなる。
In the case of vibration waveforms such as those shown in FIGS. 6 and 7, the error in periodic function approximation for determining the damping constant becomes large.

この事から、周期関数近似の誤差が大きい場合には、減
衰定数及び角周波数より求めた制御定数による自動調整
を行なわない事により、制御性の悪化を無くすることが
できる。
From this, when the error in periodic function approximation is large, deterioration in controllability can be avoided by not performing automatic adjustment using the control constant determined from the damping constant and the angular frequency.

これらの制御定数の決定手順を、第8図のフローチャー
トに示す。第8図では、まず振動の観測データ(ti、
e、)よシ、偏差eが、偏差零を通13″ 過する時刻tz1 、 z2’ tz3  を検出し、
これらより(15)式及び(16)式により角周波数ω
。及び位相角ψ。を求め、(2o)式及び(21)式に
よりデータ変換を行い、(26)式の最小2乗法による
演算及び(27)式により、減衰定数σ□を求める。
The procedure for determining these control constants is shown in the flowchart of FIG. In Figure 8, we first show the vibration observation data (ti,
e, ), detect the time tz1, z2' tz3 at which the deviation e passes 13'' through zero deviation,
From these equations (15) and (16), the angular frequency ω
. and phase angle ψ. is obtained, data conversion is performed using equations (2o) and (21), and the attenuation constant σ□ is obtained using the least squares method calculation of equation (26) and equation (27).

最小2乗法による振動の、周期関数近似の誤差が大きい
場合、減衰定数σ。及び角周波数ωユによる制御定数の
決定を行なわない。そうでない場合は、(8)式、 (
13)式及び(14)式により、最適の比例ゲインKp
、、積分時間Tit  及び微分時間Tdtを決定する
If the error in periodic function approximation of vibration by the least squares method is large, the damping constant σ. and the control constant is not determined based on the angular frequency ω. Otherwise, equation (8), (
From equations (13) and (14), the optimal proportional gain Kp
, , determine the integral time Tit and the differential time Tdt.

発明の効果 以上述べてきたように、本発明によれば、きわめて簡単
な演算で、PID調節器の制御定数が自動調整でき、更
に、発振状態を生じさせる事なく自動調整できる為、調
整の為に制御性を悪化させる事が無く、また雑音等によ
る制御定数の不適当な調整が防止でき、実用的にきわめ
て有用である。
Effects of the Invention As described above, according to the present invention, the control constant of the PID controller can be automatically adjusted by extremely simple calculations, and furthermore, since the automatic adjustment can be performed without causing an oscillation state, the adjustment This method does not deteriorate controllability, and prevents inappropriate adjustment of control constants due to noise, etc., and is extremely useful in practice.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のPID調節器の制御定数自動14゛ゝ 調整方法を用いた制御系の一実施例を示すブロック図、
第2図(−)より第2図Ul))までは、実験1におい
て比例ゲインを変化させて求めた振動波形図、第3図は
第2図(、)より第2図(I!、)の振動の減衰定数及
び角周波数と、比例ゲインの関係を示す特性図、第4図
は全実験における振動の減衰定数及び角周波数と、比例
ゲインを発振比例ゲインで除した値の関係を示す特性図
、第6図は雑音の加わらない振動波形吃、第6図は制御
対象の特性が非線形な場合の振動波形11、第7図は雑
音波形出、第8図は制御定数の決定手順を示すフローチ
ャートである。 1・・・PID調節器、2・・・・制御対象、3・・・
・制御定数自動調整部。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 、? 2図(a) (b) 第2図 (C) (d) 第 (干〕 kP−4,OTj−0,33Tel−0(h) 第2図 (j) 第2図 (ド) kp−fJ、0  η−θ33 Td−0()つ kP−9,07t” 0337d−Q 第3図 01234567B? ↑ 第4図 KP KP万 第5図 第6図 第7図
FIG. 1 is a block diagram showing an embodiment of a control system using the method of automatically adjusting the control constant of a PID controller according to the present invention;
From Figure 2 (-) to Figure 2 Ul)) are vibration waveform diagrams obtained by changing the proportional gain in Experiment 1, and Figure 3 is from Figure 2 (,) to Figure 2 (I!,) Figure 4 shows the relationship between the vibration damping constant and angular frequency and the proportional gain in all experiments. Figure 6 shows the vibration waveform without adding noise, Figure 6 shows the vibration waveform 11 when the characteristics of the controlled object are nonlinear, Figure 7 shows the noise waveform, and Figure 8 shows the procedure for determining the control constants. It is a flowchart. 1... PID controller, 2... Controlled object, 3...
・Control constant automatic adjustment section. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
figure,? Fig. 2 (a) (b) Fig. 2 (C) (d) No. (dry) kP-4, OTj-0, 33Tel-0 (h) Fig. 2 (j) Fig. 2 (do) kp-fJ , 0 η-θ33 Td-0()kP-9,07t" 0337d-Q Fig. 3 01234567B? ↑ Fig. 4 KP KP 1000 Fig. 5 Fig. 6 Fig. 7

Claims (1)

【特許請求の範囲】[Claims] 過渡的偏差が生じた事により発生する振動の偏差観測値
が、偏差零を通過する時刻より、前記振動の角周波数及
び位相角を求め、前記角周波数及び位相角を基に、前記
振動を、最小2乗法により周期関数近似して、前記振動
の減衰定数を求め、前記減衰定数及び前記角周波数より
、PID調節器における制御定数の最適値を求め、自動
調整を行い、前記周期関数近似の誤差が大きい場合には
、前記減衰定数及び前記角周波数より求めた制御定数に
よる自動調整を行なわないことを特徴とするPID調節
器の制御定数自動調整方法。
Determine the angular frequency and phase angle of the vibration from the time when the observed deviation value of the vibration generated due to the occurrence of a transient deviation passes the zero deviation, and based on the angular frequency and phase angle, calculate the vibration, A periodic function approximation is performed using the method of least squares to determine the damping constant of the vibration, and from the damping constant and the angular frequency, the optimal value of the control constant in the PID controller is determined, automatic adjustment is performed, and the error in the periodic function approximation is determined. A method for automatically adjusting a control constant of a PID controller, characterized in that when the attenuation constant and the angular frequency are large, automatic adjustment is not performed using the control constant determined from the attenuation constant and the angular frequency.
JP14334486A 1986-06-19 1986-06-19 Automatic adjusting method for control constant of pid controller Pending JPS62298803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14334486A JPS62298803A (en) 1986-06-19 1986-06-19 Automatic adjusting method for control constant of pid controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14334486A JPS62298803A (en) 1986-06-19 1986-06-19 Automatic adjusting method for control constant of pid controller

Publications (1)

Publication Number Publication Date
JPS62298803A true JPS62298803A (en) 1987-12-25

Family

ID=15336603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14334486A Pending JPS62298803A (en) 1986-06-19 1986-06-19 Automatic adjusting method for control constant of pid controller

Country Status (1)

Country Link
JP (1) JPS62298803A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5140220A (en) * 1974-07-31 1976-04-03 Siemens Ag
US4214300A (en) * 1977-05-17 1980-07-22 Kenneth Robert Jones Three term (PID) controllers

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5140220A (en) * 1974-07-31 1976-04-03 Siemens Ag
US4214300A (en) * 1977-05-17 1980-07-22 Kenneth Robert Jones Three term (PID) controllers

Similar Documents

Publication Publication Date Title
US5124626A (en) Sinusoidal signal amplitude and phase control for an adaptive feedback control system
US5404289A (en) Controller apparatus having improved transient response speed by means of self-tuning variable set point weighting
Vu et al. Smith predictor based fractional-order PI control for time-delay processes
JP2772106B2 (en) 2-DOF adjustment device
JPH07200002A (en) Feedback controller
JPH03289385A (en) Regulating method for gain of motor control
JPS62298803A (en) Automatic adjusting method for control constant of pid controller
JPS62108306A (en) Controller
JPS638902A (en) Automatic adjusting method for control constant of pid controller
JPS63706A (en) Automatic control method for control constant of pid controller
Scherlozer et al. Simulation and Numerical Analysis and Comparative Study of a PID Controller Based on Ziegler-Nichols and Auto Turning Method
JPS638901A (en) Automatic adjusting method for control constant of pid controller
Jiayu et al. Analysis of an automatic control system based on linear controllers and MPC controller
JPS62298802A (en) Automatic adjusting method for control constant of pid controller
Bhase et al. Tuning of robust FO [PI] plus fractional lead controller for integrating time-delay systems
JPH08179805A (en) Parameter setting method for robust controller
JPS63705A (en) Automatic control method for control constant of pid controller
RU2714372C1 (en) Method of adjusting proportional-integral-differential controller of closed dynamic system
Bošković et al. Non-symmetrical Optimum Design Method of Fractional-order PID Controller
JPS62298804A (en) Automatic adjusting method for control constant of pid controller
CN116520680B (en) Anti-interference PID controller setting method
JPH06222809A (en) Adaptive controller
JP2651152B2 (en) PID control device
JP4378903B2 (en) PID adjustment device
Dubonjic et al. Design of an H∞ PI controller with given relative stability and its application to the CSTR problem