JPS638901A - Automatic adjusting method for control constant of pid controller - Google Patents

Automatic adjusting method for control constant of pid controller

Info

Publication number
JPS638901A
JPS638901A JP15316386A JP15316386A JPS638901A JP S638901 A JPS638901 A JP S638901A JP 15316386 A JP15316386 A JP 15316386A JP 15316386 A JP15316386 A JP 15316386A JP S638901 A JPS638901 A JP S638901A
Authority
JP
Japan
Prior art keywords
period
pid controller
proportional gain
constant rate
constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15316386A
Other languages
Japanese (ja)
Inventor
Koji Ebisu
戎 晃司
Shiro Hozumi
穂積 史郎
Hozumi Yamada
山田 穂積
Masataka Iwasaki
昌隆 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Ecology Systems Co Ltd
Panasonic Holdings Corp
Original Assignee
Matsushita Seiko Co Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Seiko Co Ltd, Matsushita Electric Industrial Co Ltd filed Critical Matsushita Seiko Co Ltd
Priority to JP15316386A priority Critical patent/JPS638901A/en
Publication of JPS638901A publication Critical patent/JPS638901A/en
Pending legal-status Critical Current

Links

Landscapes

  • Feedback Control In General (AREA)

Abstract

PURPOSE:To make an automatic adjustment without causing an oscillation state and to prevent deterioration in controllability due to the adjustment from being caused by decreasing a proportional gain by a constant rate when the period of vibration caused due to transient deviation is shorter than the constant rate of an integral time set in a PID controller. CONSTITUTION:If a command (r) varies or an output (y) varies owing to disturbance, transient deviation (e) is generated and if the control constant of the PID controller 1 is improper to the characteristics of a controlled system 2, the deviation (e) does not settle speedily and vibration occurs. In this case, when the period (p) is a constant rate and less shorter than the integral time set in the PID controller, the proportional gain Kp is decreased by the constant rate to improve the controllability. Further, similar operation is repeated until the period (p) becomes the constant rate longer than the integration time and thus the period (p) is made the constant rate larger than the integration time, thereby finding the best proportional gain Kpt.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、比例、積分、微分(PID)調節器を用い
たフィードバック制御系において、制御対象の特性変化
に追従して、PID調節器の制御定数を自動的に最適値
に調整するPID調節器の制御定数自動調整方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a feedback control system using a proportional, integral, and derivative (PID) regulator. The present invention relates to a method for automatically adjusting control constants of a PID controller, which automatically adjusts the control constant to an optimum value.

従来の技術 従来のPID調節器の制御定数自動調整方法では、PI
D調節器の積分時間T、を無限大、微分時間Tdを零と
して比例制御とし、比例ゲインKpを徐々に大きくし、
発振状態を発生させ、この発振状態ておける比例ゲイン
Kpδ、及び周期Puより、最適の比例ゲインKpt、
積分時間Tit、微分時間”dt  を KP、 ==0.6 X Kpδ       ・・・
・・・(1)T 1t=o、ts x P u−−−−
−−(2)’rd、 = 0.125 X Pu・−・
・(3)として求めていた。(Ziegler−Nic
hols(ジーグラ・ニコルス)の限界感度法〕  。
Prior Art In the conventional automatic control constant adjustment method for a PID controller, the PI
Proportional control is performed by setting the integral time T of the D regulator to infinity and the differential time Td to zero, gradually increasing the proportional gain Kp,
An oscillation state is generated, and from the proportional gain Kpδ and period Pu in this oscillation state, the optimal proportional gain Kpt,
Integral time Tit, differential time "dt" are KP, ==0.6 X Kpδ...
...(1) T 1t=o, ts x P u----
--(2)'rd, = 0.125 X Pu・-・
・I was looking for (3). (Ziegler-Nic
hols (Ziegra-Nichols) marginal sensitivity method].

発明が解決しようとする問題点 しかし、このような制御定数の自動調整方法では、調整
のために制御系を発振状態にする必要があり、そのため
に制御性が悪くなるという問題点があった。
Problems to be Solved by the Invention However, in this method of automatically adjusting control constants, it is necessary to bring the control system into an oscillation state for adjustment, which has the problem of poor controllability.

本発明は、かかる点に鑑みてなされたもので、制御系を
発振状態とすることなく、制御定数を自動調整すること
を目的としている。
The present invention has been made in view of this problem, and an object of the present invention is to automatically adjust control constants without causing the control system to enter an oscillation state.

問題点を解決するための手段 本発明は上記問題点を解決するため、過渡的偏差が生じ
たことにより発生する振動の周期がPID調節器だ設定
されている積分時間の一定比率以下の短い場合、比例ゲ
インを一定比率減少させる。
Means for Solving the Problems In order to solve the above problems, the present invention solves the problems described above.When the period of vibration caused by a transient deviation is short and is less than a certain ratio of the integration time set in the PID controller. , decreases the proportional gain by a constant ratio.

作  用 本発明では、上記の方法によシ制御定数を決定すること
により、発振状態を生じさせることなく自動調整ができ
、調整のための制御性の悪化がない。
Function: In the present invention, by determining the control constant using the method described above, automatic adjustment can be performed without causing an oscillation state, and there is no deterioration in controllability for adjustment.

実施例 第1図は本発明のPID調節器の制御定数自動調整方法
を用いた制御系の一実施例を示すブロック図である。
Embodiment FIG. 1 is a block diagram showing an embodiment of a control system using the method for automatically adjusting control constants of a PID controller according to the present invention.

第1図において、1はPID調節器、2は制御対象3は
制御定数自動調整部であ・って、PID調節器1より出
力される操作量Uは、制御対象2に入力され、制御対象
2の出力yは、目標値rとの差である偏差eとしてPI
D調節器1に入力され、フィードバック制御ループが構
成されている。
In FIG. 1, 1 is a PID regulator, 2 is a controlled object 3 is a control constant automatic adjustment section, and the manipulated variable U output from the PID regulator 1 is input to the controlled object 2, and the controlled object 3 is a control constant automatic adjustment section. The output y of 2 is expressed as the deviation e, which is the difference from the target value r, as PI
The signal is input to the D controller 1, and a feedback control loop is configured.

さらに、偏差eは、制御定数自動調整部3に入力され制
御定数自動調整部3において、比例ゲインKpが決定さ
れ、PID調節器1の制御定数が自動調整される。
Furthermore, the deviation e is input to the control constant automatic adjustment section 3, where the proportional gain Kp is determined and the control constant of the PID regulator 1 is automatically adjusted.

次に、制御定数自動調整部3の調整方法について説明す
る。
Next, a method of adjusting the control constant automatic adjustment section 3 will be explained.

第1図において目標値rが変化、あるいは外乱により出
力yが変化すると、過渡的な偏差eが生じ、制御対象2
の特性に対し、PID調節器1の制御定数が不適正な場
合には偏差eが速やかに整定せず、振動が発生する。こ
の振動は e=A−exp   5IN(ωt÷ψ)  −−−−
−・(4)として表わされる。
In Fig. 1, when the target value r changes or the output y changes due to disturbance, a transient deviation e occurs, and the controlled object 2
With respect to the characteristics, if the control constant of the PID regulator 1 is inappropriate, the deviation e will not settle quickly and vibration will occur. This vibration is e=A-exp 5IN(ωt÷ψ) -----
−・(4)

ここで、e:偏差、A:振幅、σ:減衰定数、t:時間
、ω:角周波数、ψ:位相角である。
Here, e: deviation, A: amplitude, σ: attenuation constant, t: time, ω: angular frequency, ψ: phase angle.

この減衰定数σ及び角周波数ωと、制御定数との関係を
求めるために、目標値rを変化させて振動発生の数値実
験を行なった。
In order to find the relationship between the damping constant σ and the angular frequency ω and the control constant, a numerical experiment was conducted on vibration generation while changing the target value r.

ただし、PID調節器1の積分時間T、及び微分時間T
dは固定、制御対象2の特性をむだ時間÷1次おくれ系
とし、プロセスゲインに1時定数T1むだ時間りの値は
、下表のようにした。
However, the integral time T and differential time T of the PID controller 1
d is fixed, the characteristics of the controlled object 2 are dead time ÷ first-order delay system, and the values of the process gain and one time constant T1 dead time are as shown in the table below.

実験1における振動波形が第2図であり、これらの振動
の減衰定数σ及び角周波数ωと、比例ゲインKpとの関
係を第3図に示す。
The vibration waveforms in Experiment 1 are shown in FIG. 2, and the relationship between the damping constant σ and angular frequency ω of these vibrations and the proportional gain Kp is shown in FIG.

第3図において、縦軸の値が1.0  となる比例ゲイ
ンK を発振比例ゲインKpδ とし、比例ゲインKp
を発振比例ゲインKpδ で除した値と、減衰定数σ及
び角周波数ωとの関係、及び周期pを積分時間Tiで除
した値との関係を全ての実験に関して第4図に示す。
In Fig. 3, the proportional gain K whose value on the vertical axis is 1.0 is defined as the oscillation proportional gain Kpδ, and the proportional gain Kp
FIG. 4 shows the relationship between the value obtained by dividing the period p by the oscillation proportional gain Kpδ, the damping constant σ and the angular frequency ω, and the value obtained by dividing the period p by the integration time Ti for all experiments.

第4図中の減衰定数σ及び角周波数ωに関して、実験点
はほぼ一本の直線上に存在することがわかる。この実験
点の最小2乗法による回帰式は、となる。
Regarding the attenuation constant σ and the angular frequency ω in FIG. 4, it can be seen that the experimental points exist almost on one straight line. The regression equation based on the least squares method for this experimental point is as follows.

ここで、 ap:係数(a p 二〇 −690)bp=係数(b
p= 1.596) である。
Here, ap: coefficient (a p 20 -690) bp=coefficient (b
p = 1.596).

減衰定数σ、及び角周波数ωと、減衰係数ことの関係は
、 σ   ζ 31匹7     °−−−−−−−−<e)であシ、
減衰係数ζが0.5のとき、2乗制御面積が最小となる
ことが知られておシ(自動制御ハ/最小となり、これに
対応する横軸Kp/Kpδは0.472  となる。
The relationship between the damping constant σ, the angular frequency ω, and the damping coefficient is as follows.
It is known that when the damping coefficient ζ is 0.5, the square control area becomes the minimum (automatic control C/minimum), and the corresponding horizontal axis Kp/Kpδ becomes 0.472.

一方、第4図中の周期pを積分時間T、で除した値と横
軸Kp/Kpδとの関係は全ての実験に関して、比例ゲ
インKpが適正な値に比べ大きい場合、周期pが積分時
間Tiに対し小さくなることを示している。
On the other hand, the relationship between the value obtained by dividing the period p by the integration time T in Fig. 4 and the horizontal axis Kp/Kpδ shows that for all experiments, when the proportional gain Kp is larger than the appropriate value, the period p is the integration time It is shown that it becomes smaller with respect to Ti.

制御対象2は一般に入出力幅に制限があり、例えば、プ
ロセス機器の一つであるパルプではその入出力特性は第
5図のような非線形特性をもち、制御対象2がこのよう
な非線形特性をもつ場合、撮幅が制限され、第4図の特
性図は第6図のよう−Lπ な特性図となり、縦軸である@Xp ” の値は1.0
以上では変化しなくなる。
The controlled object 2 generally has a limited input/output width. For example, pulp, which is one of the process equipment, has a nonlinear input/output characteristic as shown in Figure 5, and the controlled object 2 has such nonlinear characteristics. In this case, the imaging width is limited, and the characteristic diagram in Fig. 4 becomes -Lπ characteristic diagram as shown in Fig. 6, and the value of @Xp'' on the vertical axis is 1.0.
Above that, there will be no change.

以上のことより、周期pが、PID調節器に設定されて
いる積分時間T、に比べ一定比率以下の短い場合、比例
ゲインK を一定比率減少させることにより、制御性が
向上する。
From the above, when the period p is shorter than the predetermined ratio compared to the integration time T set in the PID controller, the controllability is improved by reducing the proportional gain K by a predetermined ratio.

さらに、周期pが積分時間T、より、一定比率以上長く
なるまで同様の動作を繰り返し、周期pが積分時間TL
の一定比率以上になれば、振動している現在の減衰定数
σユ及び角周波数ωユと、目標減衰値exp−”を及び
現在の比例ゲインKpnを用いて、(四穴の関係から、
最適の比例ゲインKpt を、 として求めることができる。
Furthermore, the same operation is repeated until the period p becomes longer than the integral time T by a certain ratio, and the period p becomes the integral time TL.
If the ratio exceeds a certain ratio of
The optimal proportional gain Kpt can be found as follows.

固有角周波数ω8は、 ω、==fi     ・−・・・・・・・(8)とし
て求められ、この固有角周波数ω8と、限界感度法にお
ける周期puは、 の関係があり、限界感度法における係数をa・及びad
とし、(2)式に(8)式及び(9)式を代入すると、
同様に、(3)式に(8)式及び(9)式を代入すると
、となり、これら(10)式及び(11)式により、最
適の積分時間Tit  及び微分時間”dt  が決定
される。
The natural angular frequency ω8 is obtained as ω,==fi (8), and the relationship between this natural angular frequency ω8 and the period pu in the limit sensitivity method is as follows. Let the coefficients in a and ad
and substituting equations (8) and (9) into equation (2), we get
Similarly, by substituting equations (8) and (9) into equation (3), the following equations are obtained, and the optimal integration time Tit and differential time "dt" are determined by these equations (10) and (11).

発明の効果 以上述べてきたように、本発明によれば、振動の波形か
らPID調節器の制御定数が決定でき、さらに、発振状
態を生じさせることなく自動調整できるため、調整のた
めに制御性を悪化させることがなく、実用的にきわめて
有用である。
Effects of the Invention As described above, according to the present invention, the control constant of the PID regulator can be determined from the vibration waveform, and furthermore, it can be automatically adjusted without causing an oscillation state, so that the controllability for adjustment is improved. It does not cause any deterioration and is extremely useful in practice.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のPID調節器の制御定数自動調整方法
を用いた制御系の一実施例を示すブロック図、第2図は
実験1において比例ゲインを変化させて求めた振動波形
図、第3図は第2図の振動の減衰定数及び角周波数と比
例ゲインの関係を示す特性図、第4図は比例ゲインを発
振比例ゲインで除した値と減衰定数及び角周波数との関
係、及び周期を積分時間で除した値との関係を全実験に
わたシ示す特性図、第6図はバルブの入出力特性図、第
6図は制御対象が非線形特性を持つ場合の比例ゲインを
発振比例ゲインで除した値と、減衰定数及び角周波数と
の関係、及び周期を積分時間で除した値との関係を示す
特性図である。 1・・・・・・PID調節器、2・・・・・・制御対象
、3・・・・パ・制御定数自動調整部。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 、? 第2図 (b) KP−θ、5  7j−0,317−djθ蔦2図 (す Cd) ILり」 第2図 (f) 第2図 (h) +151 12図 TISノ f5J 第2図 (K) ISJ 第3図 第4図 1’   1.1  11.4  It   11.1
  10  1.2   /、#   l≦第5図
Fig. 1 is a block diagram showing an example of a control system using the automatic control constant adjustment method for a PID controller of the present invention; Fig. 2 is a vibration waveform diagram obtained by varying the proportional gain in Experiment 1; Figure 3 is a characteristic diagram showing the relationship between the vibration damping constant and angular frequency in Figure 2 and the proportional gain, and Figure 4 is the relationship between the value obtained by dividing the proportional gain by the oscillation proportional gain, the damping constant and angular frequency, and the period. Figure 6 shows the input/output characteristics of the valve, and Figure 6 shows the oscillation proportional gain when the controlled object has nonlinear characteristics. FIG. 4 is a characteristic diagram showing the relationship between the value obtained by dividing the period by the integral time, the relationship between the attenuation constant and the angular frequency, and the relationship between the value obtained by dividing the period by the integral time. 1...PID controller, 2...Controlled object, 3...Par/control constant automatic adjustment section. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
figure,? Figure 2 (b) KP-θ, 5 7j-0,317-djθ Tsuta 2 Figure (S Cd) IL ri' Figure 2 (f) Figure 2 (h) +151 Figure 12 TIS f5J Figure 2 ( K) ISJ Figure 3 Figure 4 1' 1.1 11.4 It 11.1
10 1.2 /, #l≦Figure 5

Claims (1)

【特許請求の範囲】[Claims] 制御対象の出力と目標値との偏差により制御対象の偏差
量を出力するPID調節器を設け、過渡的偏差が生じた
ことにより発生する振動の周期が前記PID調節器に設
定されている積分時間の一定比率以下の短い場合、比例
ゲインを前記PID調節器に設定されている比例ゲイン
に対し一定比率減少させ、前記振動の周期が、前記積分
時間の一定比率以上長くなるまで同様の動作を繰り返し
、前記振動の周期が前記積分時間の一定比率以上になれ
ば、前記振動の減衰定数及び角周波数から前記PID調
節器の制御定数を求めるPID調節器の制御定数自動調
整方法。
A PID controller is provided that outputs the amount of deviation of the controlled object based on the deviation between the output of the controlled object and the target value, and the period of vibration that occurs due to the occurrence of a transient deviation is an integral time set in the PID controller. If it is shorter than a certain ratio of the integral time, reduce the proportional gain by a certain ratio to the proportional gain set in the PID controller, and repeat the same operation until the period of the vibration becomes longer than a certain ratio of the integration time. . A method for automatically adjusting a control constant of a PID adjuster, which calculates a control constant of the PID adjuster from a damping constant and an angular frequency of the vibration when the period of the vibration exceeds a certain ratio of the integration time.
JP15316386A 1986-06-30 1986-06-30 Automatic adjusting method for control constant of pid controller Pending JPS638901A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15316386A JPS638901A (en) 1986-06-30 1986-06-30 Automatic adjusting method for control constant of pid controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15316386A JPS638901A (en) 1986-06-30 1986-06-30 Automatic adjusting method for control constant of pid controller

Publications (1)

Publication Number Publication Date
JPS638901A true JPS638901A (en) 1988-01-14

Family

ID=15556420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15316386A Pending JPS638901A (en) 1986-06-30 1986-06-30 Automatic adjusting method for control constant of pid controller

Country Status (1)

Country Link
JP (1) JPS638901A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011113111A (en) * 2009-11-24 2011-06-09 Saginomiya Seisakusho Inc Device and method for controlling pid

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4214300A (en) * 1977-05-17 1980-07-22 Kenneth Robert Jones Three term (PID) controllers
JPS60215204A (en) * 1984-04-10 1985-10-28 Omron Tateisi Electronics Co Pid controller
JPS62108306A (en) * 1985-11-06 1987-05-19 Yokogawa Electric Corp Controller

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4214300A (en) * 1977-05-17 1980-07-22 Kenneth Robert Jones Three term (PID) controllers
JPS60215204A (en) * 1984-04-10 1985-10-28 Omron Tateisi Electronics Co Pid controller
JPS62108306A (en) * 1985-11-06 1987-05-19 Yokogawa Electric Corp Controller

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011113111A (en) * 2009-11-24 2011-06-09 Saginomiya Seisakusho Inc Device and method for controlling pid

Similar Documents

Publication Publication Date Title
JP2007336792A (en) Controller for servo motor
US5625551A (en) Feedback controller
JPH0325505A (en) Multifunction controller
JPS638902A (en) Automatic adjusting method for control constant of pid controller
JPS638901A (en) Automatic adjusting method for control constant of pid controller
JP4648448B2 (en) Closed loop process control device including PID regulator
JPH086603A (en) Adjusting method for servo system and its servo controller
JPS62298802A (en) Automatic adjusting method for control constant of pid controller
JPS62298804A (en) Automatic adjusting method for control constant of pid controller
JPH0561504A (en) Fuzzy feedback controller
JPS62119603A (en) Method of adjusting automatically control constant of pid controller
RU2234116C1 (en) Device for pid-regulation
Shamsuzzoha et al. IMC based control system design of PID cascaded filter
JPH06222809A (en) Adaptive controller
US20010053941A1 (en) Control apparatus
JP2651152B2 (en) PID control device
JP4378903B2 (en) PID adjustment device
JPH043202A (en) Pid control method
CN116520680B (en) Anti-interference PID controller setting method
JPS63705A (en) Automatic control method for control constant of pid controller
JPS6194104A (en) Pid controller
JPH0275001A (en) Sliding mode control system
JPS62298803A (en) Automatic adjusting method for control constant of pid controller
JPS58140807A (en) Controller with automatic control mechanism of integral limiter
JPH10312201A (en) Process controller for closed loop system including pid adjuster