JPH0378806A - Multi-function type controller - Google Patents

Multi-function type controller

Info

Publication number
JPH0378806A
JPH0378806A JP21685689A JP21685689A JPH0378806A JP H0378806 A JPH0378806 A JP H0378806A JP 21685689 A JP21685689 A JP 21685689A JP 21685689 A JP21685689 A JP 21685689A JP H0378806 A JPH0378806 A JP H0378806A
Authority
JP
Japan
Prior art keywords
deviation
equivalent disturbance
control
disturbance compensation
function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21685689A
Other languages
Japanese (ja)
Other versions
JP2770461B2 (en
Inventor
Atsushi Fujikawa
淳 藤川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP1216856A priority Critical patent/JP2770461B2/en
Publication of JPH0378806A publication Critical patent/JPH0378806A/en
Application granted granted Critical
Publication of JP2770461B2 publication Critical patent/JP2770461B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/41Servomotor, servo controller till figures
    • G05B2219/41367Estimator, state observer, space state controller
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/42Servomotor, servo controller kind till VSS
    • G05B2219/42037Adaptive pi
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/42Servomotor, servo controller kind till VSS
    • G05B2219/42103Switch from pi, if large error to disturbance mode control if small error

Landscapes

  • Feedback Control In General (AREA)
  • Control Of Position Or Direction (AREA)

Abstract

PURPOSE:To eliminate the mutual interference between the variable structure PI control and the equivalent disturbance compensation control and to attain the stability of a multi-function type controller by providing a function which varies the equivalent disturbance compensation value based on the deviation value. CONSTITUTION:A function signal generating part 6 is provided at the output side of an equivalent disturbance compensating part 5, and the equivalent disturbance compensation output is varied based on the deviation (e) and fed back. In other words, the deviation (e), i.e., the input of a variable structure PI control part 1 is detected. Then the equivalent disturbance compensation is stopped when the deviation (e) is large, and the deviation (e) is settled by the variable structure PI control only with no overshoot. When the deviation (e) is set at a certain level or less, the equivalent disturbance compensation is carried out again. At the same time, a proportional coeffi cient K which varies the equivalent disturbance compensation value by the deviation (e) is turned into a function. Thus it is possible to suppress the mutual interference between a variable structure PI controller and an equivalent disturbance compensating part without deteriorating the characteristics of control functions of both parts via the control of the equivalent disturbance compensation value carried out just with supplication of a relational formula (K - e).

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は安定化フィードバック制御装置に係り、特にロ
バストでなおかつ高速応答を達成できる多機卵形制御装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a stabilizing feedback control device, and more particularly to a multi-machine egg-shaped control device that is robust and can achieve high-speed response.

〔従来の技術〕[Conventional technology]

本発明にかかる多機卵形制御装置につき、本出願人は先
に平成1年3月27日の特許出願「可変構造PI制御装
置」を提案しているところである。
Regarding the multi-machine egg-shaped control device according to the present invention, the present applicant has previously proposed a patent application titled "Variable Structure PI Control Device" filed on March 27, 1999.

その先の提案による一例を第3図に示す。An example of a further proposal is shown in FIG.

第3図は本出願人による先の提案の一例を示すもので、
lは可変構造PI制御装置である。
Figure 3 shows an example of an earlier proposal by the applicant.
1 is a variable structure PI controller.

すなわち、比例ゲインKpおよび積分ゲインKxを、制
御対象に指示値として入力される設定人力Rと制御対象
2の状態量との偏差eと、その時間当たりの変化との関
係からなる位相面、この位相面における偏差の時間当た
りの変化とスライディングモードの切替線との差に応じ
て変化さすようにしたものである。
That is, the proportional gain Kp and the integral gain Kx are expressed as a phase plane consisting of the relationship between the deviation e between the set human power R input as an instruction value to the controlled object and the state quantity of the controlled object 2, and its change per time. The change is made in accordance with the difference between the change in deviation in the phase plane over time and the switching line of the sliding mode.

さらに、本出願人は平成1年6月n日の特許出願「多機
蛇形制御装置」を別に提案している。その先の別の提案
による一例を第4図に示す。
Furthermore, the present applicant has separately proposed a patent application ``Multi-machine serpentine control device'' dated June 1, 1999. An example of another proposed method is shown in FIG.

第4図は本出願人による先の別の提案の一例を示すもの
で、3は指令入力部、4はフィードフォワード補償部、
5は等価外乱補償部である。
FIG. 4 shows an example of another previous proposal by the present applicant, in which 3 is a command input section, 4 is a feedforward compensation section,
5 is an equivalent disturbance compensation section.

すなわち、特に可変構造PI制御装置1.フィードフォ
ワード補償部4および等価外乱補償部5を組み合わせ用
いてなり、制御系に対してロバストでかつ、高速応答を
可能とした装置を実現したものである。
That is, in particular, the variable structure PI control device 1. The feedforward compensator 4 and the equivalent disturbance compensator 5 are used in combination to realize a device that is robust to the control system and capable of high-speed response.

かかる第4図についての詳細説明を省略し、その各部分
についてのみ記述すればつぎの如くである・ ■ 指令入力部3 実用上の制御系においては、サイリスタレオナード、イ
ンバータ等で構成されるパワーアクチュエータが有限な
ために、過大な設定人力Rが入ると飽和現象があり、図
示の如き可変構造PI制御装置1のように高精度な運転
をするため設けた積分器が存在すると、飽和している間
は偏差eを積分していくために偏差が修正される過程で
オーバシーートが発生して制御上好ましくない。また、
あまり急激な入力が入ると、次ブロックのフィードフォ
ワード補償部4の高速追従の機能が充分発揮できなくな
る。
A detailed explanation of FIG. 4 will be omitted, and only each part will be described as follows. ■ Command input section 3 In a practical control system, a power actuator consisting of a thyristor Leonard, an inverter, etc. Since R is finite, saturation will occur if an excessive setting human power R is applied, and if there is an integrator installed for high precision operation like the variable structure PI control device 1 shown in the figure, saturation will occur. Since the deviation e is integrated during the interval, an oversheet occurs in the process of correcting the deviation, which is unfavorable in terms of control. Also,
If too sudden an input is applied, the high-speed tracking function of the feedforward compensator 4 of the next block cannot be fully demonstrated.

結局、ステ、プ状の設定人力Rに対し加減速時間の’r
Ua ’rDを調整して最終指令の指令出力rとするの
が一般である。
In the end, the acceleration/deceleration time 'r
Generally, Ua'rD is adjusted to obtain the command output r of the final command.

■ フィードフォワード補償部4 指令出力rと出力の状態量7間の伝達函数において、制
御対象(G)の通函数の形(1/ GK7 )にすると
、((Y/r)=1)  となる。したがってこのとき
偏差は(e=0)になり、出力は常に入力に追従して動
作し、その間の偏差は常に零に保たれる。しかし、制御
対象の慣性Jや粘性係数りが変動すると、制御上不安定
になることがある。
■ Feedforward compensation unit 4 In the transfer function between the command output r and the output state quantity 7, if it is expressed in the form of a function of the controlled object (G) (1/GK7), then ((Y/r) = 1). . Therefore, at this time, the deviation becomes (e=0), the output always follows the input, and the deviation between them is always kept at zero. However, if the inertia J or viscosity coefficient of the controlled object fluctuates, control may become unstable.

■ 等価外乱補償部5 * 指令T (速度制御の場合はトルク指令)とY(同じく
回転出力または回転数)の情報を活用して等価外乱を算
出し、これを指令Tに加算することにより構成される。
■ Equivalent disturbance compensation unit 5 * Configured by calculating the equivalent disturbance using the information of the command T (torque command in the case of speed control) and Y (also rotational output or rotational speed) and adding this to the command T be done.

そして、後述する如く式(1) 、 (2)に基づき式
(3)が得られる。
Then, as described later, equation (3) is obtained based on equations (1) and (2).

* T (S)KT−Tt、(8) =(J8+D)−(S
)・・・・・・(1)TL(S):負荷外乱 ω(S)二回転速度 ここで、パラメータ変動を考慮してつぎのようにおく。
*T (S)KT-Tt, (8) = (J8+D)-(S
)...(1) TL(S): Load disturbance ω(S) 2 Rotational speed Here, considering parameter fluctuations, the following is set.

ただし、4印はノミナル値、Δは変動分を示す。However, the 4 marks indicate the nominal value, and Δ indicates the variation.

Tz(8)=T*(8)・K、−(JS+D)・−C8
)  ・・・・・・(3)となる。
Tz(8)=T*(8)・K, −(JS+D)・−C8
) ......(3).

よって式(3)の物理的内容は、等価外乱Tg(8)は
負荷外乱TL(8)や各定数のノミナル値からの変動分
等を全て含めて詔り、それらを−括して等価外乱・と考
えることにより、式(3)の右辺の如く、°各定数のノ
ミナル値のみで記述できることを示している。
Therefore, the physical content of equation (3) is that the equivalent disturbance Tg (8) includes the load disturbance TL (8) and the fluctuations from the nominal value of each constant, etc., and these are grouped together to form the equivalent disturbance. By considering this, it is shown that ° can be described using only the nominal value of each constant, as shown on the right side of equation (3).

このTm(S)をノイズ除去のためのローパスフィルタ
* を通してT (S)に加算することにより、等価外乱補
償がなされる。
Equivalent disturbance compensation is performed by adding this Tm(S) to T(S) through a low-pass filter* for noise removal.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前述した如き可変構造PI制御装置においては、偏差e
が大きくなると、スライディングモード位相面は比例ゲ
インに、の極性を切替ることにより制御され、切替線に
そって原点に収束させるように制御する。このときスラ
イディングモードの欠点であるチャタリング現象が起こ
る。
In the variable structure PI control device as described above, the deviation e
When becomes large, the sliding mode phase front is controlled by a proportional gain by switching the polarity of and converging to the origin along the switching line. At this time, a chattering phenomenon occurs, which is a drawback of the sliding mode.

このチャタリング現象は可変構造PI制御の原理からも
発生することは明らかであり、その起因である可変構造
PI制御装置の正逆を繰り返す出力が発生したとき、可
変構造PI制御装置の後段に設けられた等価外乱補償部
に入力として伝達されるため、等価外乱補償部薔とおい
ては、この前段出力の影響を直接的に受は入れ過大な振
動入力となって干渉を与え、それが故、安定化が遅くな
ったり、持続振動を起こしてしまうこともある。
It is clear that this chattering phenomenon occurs also from the principle of variable structure PI control, and when the cause of this chattering phenomenon occurs, which is the output that repeats forward and reverse from the variable structure PI control device, the The equivalent disturbance compensator directly receives the influence of this previous stage output, resulting in excessive vibration input and interference, which causes stability. This may slow down the process or cause sustained vibration.

つまり、比例ゲインKpの極性の切替詔よび切替線から
の偏差により比例ゲインの大きさを可変としているので
、偏差eが大きくて切替線を横切るときは、その出力も
大きく、また極性は瞬時にして切替るため、後段の等価
外乱補償部はこれを補償すべく極性の切替った振動する
補償出力を発生する。この出力がさらに可変構造PI制
御装置出力に加算補償され、よって相互干渉を起こし、
しいては固定PI制御装置に比べて応答の遅れが生じる
こともあった。
In other words, the magnitude of the proportional gain is variable depending on the polarity switching order of the proportional gain Kp and the deviation from the switching line, so when the deviation e is large and crosses the switching line, the output is also large and the polarity changes instantly. Therefore, the subsequent equivalent disturbance compensator generates an oscillating compensation output with switched polarity in order to compensate for this. This output is further compensated by addition to the variable structure PI controller output, thus causing mutual interference,
As a result, there may be a delay in response compared to a fixed PI control device.

本発明は上述したような不具合を除去するためなされた
ものであり、以下に本発明を詳細説明する。
The present invention has been made to eliminate the above-mentioned problems, and the present invention will be explained in detail below.

〔課題を解決するための手段〕[Means to solve the problem]

しかして、本発明は前述した相互干渉を解消する手段と
して、特に等価外乱補償部出力側に配した関数信号発生
部を備えてなり、可変構造PI制御と等価外乱補償との
相互干渉を防止しまたは抑制するため、偏差eの値によ
って等価外乱補償出力を可変としてフィードバックする
手段を講することにより、両制御機能の特長を損うこと
なく奏し得るものである。
Therefore, as a means for eliminating the above-mentioned mutual interference, the present invention is provided with a function signal generation section particularly arranged on the output side of the equivalent disturbance compensation section, thereby preventing mutual interference between the variable structure PI control and the equivalent disturbance compensation. Alternatively, by providing means for feeding back the equivalent disturbance compensation output as variable depending on the value of the deviation e in order to suppress the disturbance, it is possible to achieve the advantages of both control functions without impairing them.

〔作 用〕[For production]

かかる解決手段により、可変構造PI制御部入力である
偏差eを検出し、この検出量により等価外乱補償出力を
制御する。
With this solution, the deviation e which is input to the variable structure PI control unit is detected, and the equivalent disturbance compensation output is controlled based on this detected amount.

すなわち、偏差eが大きいときは等価外乱補償を中止し
、可変構造PI制御のみでオーバーシー−トなしで整定
を行い、偏差eがある量以下になれば等価外乱補償を復
帰させる。あるいは偏差已に逆比例させるようにするこ
とでもよい。
That is, when the deviation e is large, the equivalent disturbance compensation is stopped, and settling is performed without oversheeting only by variable structure PI control, and when the deviation e becomes less than a certain amount, the equivalent disturbance compensation is restored. Alternatively, it may be made to be inversely proportional to the deviation.

ここで、偏差eにより等価外乱補償量を可変とする比例
係数Kを関数化しておくことにより、かくの如き簡単な
(K−e)の関係式を導入するだけで1等価外乱補償量
の制御を行うよう作用させれば、実用上何ら支障なく相
互干渉を抑制することができる。
Here, by converting the proportionality coefficient K, which makes the equivalent disturbance compensation amount variable according to the deviation e, into a function, one equivalent disturbance compensation amount can be controlled by simply introducing the simple relational expression (K-e). By acting to perform this, mutual interference can be suppressed without causing any practical problems.

〔実施例〕〔Example〕

第1図および第2図は本発明の一実施例の要部構成およ
びその関数信号発生回路の関数出力特性を示すもので、
6は関数信号発生回路である。図中、第4図と同符号の
ものは同じ機能を有する部分を示す。
FIGS. 1 and 2 show the main part configuration of an embodiment of the present invention and the function output characteristics of its function signal generation circuit,
6 is a function signal generation circuit. In the figure, the same reference numerals as in FIG. 4 indicate parts having the same functions.

すなわち、第1図においては、特に偏差己および等価外
乱補償部5出力の二人力信号を得て、加算器に信号発生
する関数信号発生回路6が設けられてなる。
That is, in FIG. 1, a function signal generation circuit 6 is provided which obtains two input signals, particularly the outputs of the deviation self and the equivalent disturbance compensator 5, and generates the signals to the adder.

ここで、第1図に示した系統において上記関数信号発生
回路6の付設を除けば、第4図に示した構成と同じであ
り、その詳細説明は省略する。つぎに、かかる関数信号
発生回路6の機能を第2図を参照して説明する。
Here, the system shown in FIG. 1 has the same configuration as that shown in FIG. 4 except for the addition of the function signal generating circuit 6, and detailed explanation thereof will be omitted. Next, the function of the function signal generating circuit 6 will be explained with reference to FIG.

関数信号発生回路6は可変構造PI制御装置lの入力で
ある偏差eの値により出力を可変とするものであり、さ
らに等価外乱補償部5の出力を、保有の関数信号発生信
号と乗算のうえ信号送出するものである。その関数発生
機能は第2図の如くである。
The function signal generation circuit 6 makes its output variable depending on the value of the deviation e which is the input of the variable structure PI control device l, and further multiplies the output of the equivalent disturbance compensator 5 by the own function signal generation signal. It sends out signals. The function generation function is shown in FIG.

すなわち第2図(a)においては、偏差eがリミ。That is, in FIG. 2(a), the deviation e is the limit.

ト値αに対し、(0<e<α)のとき係数出力Kcは(
Kc=1)、(α<e<β)のときは図示の如く偏差e
の大きさに比例して係数出力Kcは比例して減衰し、零
に至る一例を示している。
When (0<e<α), the coefficient output Kc is (
Kc=1), (α<e<β), the deviation e
An example is shown in which the coefficient output Kc attenuates in proportion to the magnitude of , and reaches zero.

さらに第2図(b)においては、(o<e<α)のとき
係数出力Kcは(Kc=1 )、(8> α)のとき係
数出力Kcは偏差eに逆比例で減衰する他の例を示して
いる。
Furthermore, in Fig. 2(b), when (o<e<α), the coefficient output Kc is (Kc=1), and when (8>α), the coefficient output Kc is attenuated in inverse proportion to the deviation e. An example is shown.

よって、このような関数発生部分の係数出力Kcをもつ
関数信号発生回路6は、その係数出力Kを等価外乱補償
部5に乗算のうえ信号送出することにより、可変構造P
I制御装置1と等価外乱補償部5の相互干渉を防止し、
制御の安定化に効用し得るものである。
Therefore, the function signal generation circuit 6 having such a coefficient output Kc of the function generation part multiplies the coefficient output K by the equivalent disturbance compensator 5 and sends a signal to the variable structure P.
To prevent mutual interference between the I control device 1 and the equivalent disturbance compensator 5,
This can be effective in stabilizing control.

ここで、指令入力部3やフィードフォワード補償部4に
より、設定入力孔の急激な変動に追従させることができ
るため、可変構造PI制御装置lの入力である偏差eは
小になるが、過大な設定人力B、慣性J、粘性係数りの
変動がある場合に偏差が大となり、かようなフィードバ
ック手段を講じられることによって、制御系の安定化を
早めることができる。
Here, since the command input section 3 and the feedforward compensator 4 can follow sudden changes in the setting input hole, the deviation e, which is the input to the variable structure PI control device l, becomes small, but it When there are fluctuations in the setting manual force B, inertia J, and viscosity coefficient, the deviation becomes large, and by providing such feedback means, the control system can be stabilized more quickly.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、特に偏差量により
等価外乱補償量を可変とする機能を有することにより、
可変構造PI制御と等価外乱補償制御の相互干渉を解消
し、両制御方式の特長を損うことなく安定化が計れる実
用上有用な装置を提供できる。
As explained above, according to the present invention, by having the function of making the equivalent disturbance compensation amount variable depending on the amount of deviation,
It is possible to provide a practically useful device that eliminates mutual interference between the variable structure PI control and the equivalent disturbance compensation control and achieves stabilization without impairing the features of both control systems.

さらに、係数Kにて偏差eとの関係をとる方式により、
調整が極めて簡単であることは言うまでもない。
Furthermore, by using a method that takes the relationship between the coefficient K and the deviation e,
Needless to say, adjustment is extremely easy.

さらにまた、可変構造PI制御装置9等価外乱補償部に
、指令入力部、フィードフォワード補償部を有し、偏差
eを極力小さいところで制御しながら、過大入力の慣性
、粘性係数の変動時屹関数信号発生機能が有効に作用し
、安定動作領域が拡大し得るのは明らかである。
Furthermore, the equivalent disturbance compensation section of the variable structure PI control device 9 has a command input section and a feedforward compensation section, and while controlling the deviation e to be as small as possible, the inertia and viscosity coefficient fluctuation time function signals of excessive input are provided. It is clear that the generation function works effectively and the stable operating region can be expanded.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明の一実施例の要部構成を示
すプロ、り系統図およびその関数信号発生回路の関数出
力特性図、第3図は本出願人による先の提案を説明する
ため示したプロ、り系統図、第4図は本出願人による先
の別の提案を説明するため示したブロック系統図である
。 1・・・・・・9質構造I) I制御装置、2・・・・
・・制御対象、3・・・・・・指令入力部、4・・・・
・・フィードフォワード補償部、5・・・・・・等価外
乱補償部、6・・・・・・関数信号発生回路、e・・・
・・・偏差、Kc・・・・・・係数出力。
Fig. 1 and Fig. 2 are a system diagram showing the main part configuration of an embodiment of the present invention and a function output characteristic diagram of its function signal generation circuit, and Fig. 3 explains the previous proposal by the applicant. FIG. 4 is a block system diagram shown to explain another previous proposal by the applicant. 1...9 quality structure I) I control device, 2...
...Controlled object, 3...Command input section, 4...
... Feedforward compensation unit, 5... Equivalent disturbance compensation unit, 6... Function signal generation circuit, e...
... Deviation, Kc ... Coefficient output.

Claims (1)

【特許請求の範囲】[Claims] 1 制御対象の指令入力および該制御対象の状態量との
偏差量とその時間当たりの変化との関係からなる位相面
、該位相面における該偏差量の時間歯たりの変化とスラ
イディングモードの切替線との差に応じて比例ゲイン(
Kp)および積分ゲイン(K_I)を変化さす可変構造
PI制御部と、制御対象の入力量と状態量から該制御対
象の運転特性に影響を与える変動要素を含めた等価外乱
を算出し該等価外乱を制御対象の入力側に加算する等価
外乱補償部と、前記指令入力が制御対象の動特性と関係
のある状態量に応じて与えられるように構成した指令入
力部と、該指令入力を制御対象の数式モデルの逆函数の
形に構成した補償装置を通して該補償装置の出力に印加
するフィードフォワード補償部と、前記等価外乱補償部
の出力側に前記偏差量に応じて等価外乱補償部出力を関
数指令出力値として信号発生する関数信号発生部とを設
けるようにしたことを特徴とする多機能形制御装置。
1. A phase plane consisting of the relationship between the command input of the controlled object and the amount of deviation from the state quantity of the controlled object and its change per time, the change in the time period of the deviation amount in the phase plane, and the switching line of the sliding mode The proportional gain (
Kp) and integral gain (K_I), and a variable structure PI control unit that changes the input amount and state amount of the controlled object to calculate an equivalent disturbance including variable elements that affect the driving characteristics of the controlled object. an equivalent disturbance compensation unit that adds the command input to the input side of the controlled object; a command input unit configured such that the command input is given according to a state quantity related to the dynamic characteristics of the controlled object; a feedforward compensator that applies the output of the compensator through a compensator constructed in the form of an inverse function of a mathematical model; A multi-functional control device characterized in that it is provided with a function signal generating section that generates a signal as a command output value.
JP1216856A 1989-08-23 1989-08-23 Multi-function control device Expired - Lifetime JP2770461B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1216856A JP2770461B2 (en) 1989-08-23 1989-08-23 Multi-function control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1216856A JP2770461B2 (en) 1989-08-23 1989-08-23 Multi-function control device

Publications (2)

Publication Number Publication Date
JPH0378806A true JPH0378806A (en) 1991-04-04
JP2770461B2 JP2770461B2 (en) 1998-07-02

Family

ID=16694980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1216856A Expired - Lifetime JP2770461B2 (en) 1989-08-23 1989-08-23 Multi-function control device

Country Status (1)

Country Link
JP (1) JP2770461B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992018920A1 (en) * 1991-04-16 1992-10-29 Fanuc Ltd Adaptive pi control system
WO1992020019A1 (en) * 1991-04-24 1992-11-12 Fanuc Ltd Method and apparatus for prediction repetition control of servo motor
JPH0635506A (en) * 1992-07-16 1994-02-10 Toyo Electric Mfg Co Ltd Variable structure control method
US5444612A (en) * 1991-04-16 1995-08-22 Fanuc Ltd. Adaptive PI control system
JPH11175163A (en) * 1997-12-12 1999-07-02 Mitsubishi Electric Corp Position controller
WO2000019288A1 (en) * 1998-09-28 2000-04-06 Kabushiki Kaisha Yaskawa Denki Position controller
CN104880944A (en) * 2015-06-10 2015-09-02 南京航空航天大学 Novel variable structure PI controller

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992018920A1 (en) * 1991-04-16 1992-10-29 Fanuc Ltd Adaptive pi control system
US5444612A (en) * 1991-04-16 1995-08-22 Fanuc Ltd. Adaptive PI control system
WO1992020019A1 (en) * 1991-04-24 1992-11-12 Fanuc Ltd Method and apparatus for prediction repetition control of servo motor
US5371451A (en) * 1991-04-24 1994-12-06 Fanuc Ltd. Predictive repetition control method for a servo motor and an apparatus therefor
JPH0635506A (en) * 1992-07-16 1994-02-10 Toyo Electric Mfg Co Ltd Variable structure control method
JPH11175163A (en) * 1997-12-12 1999-07-02 Mitsubishi Electric Corp Position controller
WO2000019288A1 (en) * 1998-09-28 2000-04-06 Kabushiki Kaisha Yaskawa Denki Position controller
CN104880944A (en) * 2015-06-10 2015-09-02 南京航空航天大学 Novel variable structure PI controller

Also Published As

Publication number Publication date
JP2770461B2 (en) 1998-07-02

Similar Documents

Publication Publication Date Title
US5698968A (en) Power system stabilizer for generator
JP3900219B2 (en) Electric motor speed control device and gain setting method for the same
JPH0325505A (en) Multifunction controller
JPS615302A (en) Controller of manipulator
JPH0378806A (en) Multi-function type controller
JP2005085074A (en) Position controller
JP2006190074A (en) Synchronization control apparatus
JP4452367B2 (en) Position control device
JPH086603A (en) Adjusting method for servo system and its servo controller
JP2737064B2 (en) Control device
JP2650822B2 (en) Control device
JP3972155B2 (en) Motor control device
JPH03107384A (en) Motor drive controller
KR20010022866A (en) Method and apparatus for phase compensation in a vehicle control system
JPH058191A (en) Robot hand control method
JPH02262843A (en) Power system stabilizer
JPH05150802A (en) Deviation variable and deviation hysteresis type pi control method
JPS63213001A (en) Stabilizing filter for feedback control system
JP2736056B2 (en) Motor speed control device
JP3266391B2 (en) Control device
JP3553264B2 (en) Feedback control device
JP3016521B2 (en) Motor control device
JPH09106303A (en) Automatic gain decision method for control system
JP2850076B2 (en) Control device
JP2596521Y2 (en) Motor start compensation device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090417

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090417

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100417

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100417

Year of fee payment: 12