JPS62298613A - Method and device for removing soot in exhaust gas - Google Patents

Method and device for removing soot in exhaust gas

Info

Publication number
JPS62298613A
JPS62298613A JP61141891A JP14189186A JPS62298613A JP S62298613 A JPS62298613 A JP S62298613A JP 61141891 A JP61141891 A JP 61141891A JP 14189186 A JP14189186 A JP 14189186A JP S62298613 A JPS62298613 A JP S62298613A
Authority
JP
Japan
Prior art keywords
soot
exhaust gas
discharge
oxygen
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61141891A
Other languages
Japanese (ja)
Inventor
Masaki Sadakata
正毅 定方
Masayuki Sato
正之 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP61141891A priority Critical patent/JPS62298613A/en
Publication of JPS62298613A publication Critical patent/JPS62298613A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/01Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust by means of electric or electrostatic separators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PURPOSE:To remove soot contained in an exhaust gas simply and efficiently by introducing said exhaust gas containing soot into an atmosphere in which at least oxygen and/or water exists and carrying out electric discharge in this atmosphere. CONSTITUTION:When removing soot contained in an exhaust gas, the exhaust gas containing the soot is introduced into an atmosphere in which at least oxygen and/or water exists and electric discharge is carried out in this atmosphere, thereby, removing the soot contained in the exhaust gas. As for the means of electric discharge, the quantity of discharge is controlled based on the detected result of the quantity of the soot, and a pulse corona discharge is employed. For example, a combustion device 1 is formed by stretching a nichrome wire 3 on the axial line of a cylinder part 2, and a high frequency current is allowed to flow in the nichrome wire 3, to generate silent discharge over the whole tube length. Thereby, the soot in the exhaust gas can be removed simply and efficiently.

Description

【発明の詳細な説明】 3、発明の詳細な説明 [産業上の利用分野コ 本発明は、ジーゼルエンジンの排気ガス等の排ガス中の
スス除去方法および除去装置に関するものである。
Detailed Description of the Invention 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method and device for removing soot from exhaust gas such as diesel engine exhaust gas.

[従来技術及び発明が解決しようとする問題点コ今日、
ジーゼルエンジン等の排気ガス中に含まれるススが大気
汚染上の大きな間層になっているが、これらススは粒径
が微細であるため大気中に長く浮遊し、呼吸等を通じて
体内に吸収される率も高く、しかもこれらススには種々
の有害物質が付着していることもあって健康上の観点か
らも極めて問題があり、そこでこれら排ガス中のススを
効率良く除去することが強く要求されている。しかるに
従来、このススを除去する方法として、セラミックフィ
ルターを用いて濾過するようにしたもの、あるいは電気
集塵によって除去するようにしたもの等が知られている
が、これらのものは、捕集したススが再飛散しやすいう
えに、ススは見掛は比重が非常に小さいこともあって大
量のススを連続的に捕集するには装置自体がどうしても
大型化せざるを得す、このためバスや乗用車等の走行車
両に搭載することは現実的に困難である詐りでなく、フ
ィルターの交換や集塵したススの除去外の面倒かつ煩雄
なメンテナンス作業が頻繁に必要になるという欠点があ
り問題がある。
[Problems to be solved by the prior art and the invention today]
The soot contained in the exhaust gas from diesel engines is a major source of air pollution, but because the particle size of this soot is small, it remains suspended in the atmosphere for a long time and is absorbed into the body through breathing, etc. Moreover, these soots are also contaminated with various harmful substances, which is extremely problematic from a health perspective.Therefore, there is a strong demand for efficient removal of soot from exhaust gases. There is. However, conventionally known methods for removing this soot include filtration using a ceramic filter or electrostatic precipitator; Not only is soot easy to re-disperse, soot has a seemingly very low specific gravity, so the equipment itself has to be large in order to continuously collect large amounts of soot. It is not only difficult to install it in moving vehicles such as cars and passenger cars, but also the disadvantage is that it frequently requires troublesome and tedious maintenance work other than replacing filters and removing collected soot. There are some problems.

[問題を解決するための手段] 本発明は、上記の如き実情に鑑みこれらの欠点を一掃す
ることができる排ガス中のスス除去方法および除去装置
を提供することを目的として創案されたものであって、
ススを燃焼することによって除去せしめるものであり、
その手段として第一の発明は、ススを含有する排ガスを
、少なくとも酸素および/または水の存在下で放電を行
わしめてススの燃焼除去を行うようにしたことを特徴と
するものである。また第二の発明は、ススと共に少なく
とも酸素および/または水を含有する排ガスの流路中に
放電手段を設けて構成されることを特徴とするものであ
る。
[Means for Solving the Problems] In view of the above-mentioned circumstances, the present invention was devised for the purpose of providing a method and device for removing soot from exhaust gas that can eliminate these drawbacks. hand,
It removes soot by burning it,
As a means for achieving this, the first invention is characterized in that the exhaust gas containing soot is subjected to electrical discharge in the presence of at least oxygen and/or water to burn and remove the soot. Further, the second invention is characterized in that a discharge means is provided in the flow path of the exhaust gas containing at least oxygen and/or water along with soot.

そして本発明は、この構成によって、ススを効率良く除
去することができ、しかもメンテナンスが殆ど不要でか
つ装置自体も軽量小型なものにすることができるように
したものである。
According to the present invention, with this configuration, soot can be removed efficiently, almost no maintenance is required, and the device itself can be made lightweight and compact.

本発明に用いられる放電手段としては、無声放電、コロ
ナ放電等の放電方式を採用することがこ′き、コロナ放
電においては、さらに交流コロナ放電、負パルスコロナ
放電、正パルスコロナ放電等のものをさらに採用できる
ものである。さらに放電手段の放電凰はスス量を検知し
、この検知結果に対応して制御されるように構成されて
いればより効率の高いものにできることになる。
As the discharge means used in the present invention, discharge methods such as silent discharge and corona discharge can be adopted, and in corona discharge, there are further methods such as alternating current corona discharge, negative pulse corona discharge, and positive pulse corona discharge. can be further adopted. Furthermore, if the discharge screen of the discharge means is configured to detect the amount of soot and be controlled in accordance with the detection result, higher efficiency can be achieved.

[実験例1コ 放電反応器としては、第1図に示す如くワイヤーシリン
ダ型のものを用い、放電方式は無声放t1!トシてスス
の燃焼装置1を形成した。ここでシリンダ一部2は真鍮
製で、内径32■、長さ■000ffII11のものを
用い、直径0.5mmのニクロム線3をシリンダ一部2
の軸芯線上に張設し、該ニクロム線3に高周波電流をか
け、無声放電を略管長全体に亘って生ゼしめる様にした
ものである。
[Experimental Example 1] A wire cylinder type discharge reactor was used as shown in Fig. 1, and the discharge method was silent discharge t1! A combustion device 1 made of toshite soot was formed. Here, the cylinder part 2 is made of brass with an inner diameter of 32mm and a length of 000ffII11, and a nichrome wire 3 with a diameter of 0.5mm is attached to the cylinder part 2.
A high-frequency current is applied to the nichrome wire 3 to generate a silent discharge over approximately the entire length of the pipe.

さらに第2図に本実験のフローシートを示すが、これに
よると、都市ガスを低空気比で燃焼させ、これに酸素濃
度1〜5%に相当する二次空気を吹き込んで前記燃焼装
!i!1中へ導き、スス濃度を測定する。そして放電に
よるスス4度の変化を第3図に示すが、これによると、
放電しないときのスス濃度は約450mg/Nm3であ
ったが、放電によって殆ど零に近いスス濃度に減少して
いることが観測され、これによって本発明が如何に効果
があるかが判明する。そしてこれと殆ど同じ結果が放電
方式をコロナ放電とした場合においてもM21I11さ
れた。
Furthermore, Fig. 2 shows a flow sheet for this experiment, which shows that city gas is combusted at a low air ratio, and secondary air with an oxygen concentration of 1 to 5% is blown into the combustion apparatus. i! 1 and measure the soot concentration. Figure 3 shows the change in soot 4 degrees due to discharge, and according to this,
The soot concentration when not discharging was about 450 mg/Nm3, but it was observed that the soot concentration was reduced to almost zero by discharging, which shows how effective the present invention is. Almost the same results were obtained when the discharge method was corona discharge.

尚、本実験の反応温度は80℃、シリンダ一部2への排
ガス流量は2L/+ninである。
Note that the reaction temperature in this experiment was 80° C., and the flow rate of exhaust gas to the cylinder part 2 was 2 L/+nin.

尚、スス濃度の測定は、レーザー照射によりスス個数濃
度に応じた強度の散乱光を、レンズおよびフォトマルチ
プライヤ−で捕らえ、これを電圧値(mV)で表示する
ことによって計測した。またこの41測結果は、フィル
ター重量法との比較校正を行うことによって、スス濃度
に一次の関係で比例することが予め実験で求められてい
る。
The soot concentration was measured by capturing scattered light with an intensity corresponding to the soot number concentration by laser irradiation using a lens and a photomultiplier, and displaying this as a voltage value (mV). Furthermore, it has been experimentally determined in advance that the 41 measurement results are linearly proportional to the soot concentration by performing comparative calibration with the filter weight method.

[実験例2] 前記実験例1で放電によるスス濃度の著しい低減がvA
?1I11されたが、それらがガス燃焼成分によってど
の様に影響されるかを次に調べる。
[Experimental Example 2] In Experimental Example 1, the significant reduction in soot concentration due to discharge was
? 1I11, but we next examine how they are affected by the gas combustion components.

ここでは予めガラスフィルターにススを捕集しておき、
これを第4図の燃焼装置5でコロナ放電をし、供給ガス
成分によるススの燃焼状態をwl劃した。ここで燃焼装
置5は、後述する供給ガスのdε人、流出L1が形成さ
れた密閉容器6に真鍮板で形成される電極板7と放電板
8とを用いて構成されたものであり、電極板7に前記ス
スを捕集したガラスフィルター9を載置し、供給ガスの
流下のもとて無声放電をした。反応温度は80°C1供
給ガス量はIQ/min、放電電圧は23kVである。
Here, soot is collected in advance on a glass filter,
This was subjected to corona discharge in the combustion device 5 shown in FIG. 4, and the state of combustion of soot by the supplied gas components was examined. Here, the combustion device 5 is constructed by using an electrode plate 7 and a discharge plate 8 formed of brass plates in a closed container 6 in which a supply gas flow L1 and an outflow L1, which will be described later, are formed. A glass filter 9 that had collected the soot was placed on the plate 7, and a silent discharge was generated under the flow of the supplied gas. The reaction temperature was 80° C., the amount of gas supplied was IQ/min, and the discharge voltage was 23 kV.

供、給ガスとしては、アルゴンベースとし、ラン1では
アルゴンのみ゛、ラン2では1%酸索/アルゴン、ラン
3では2%水/アルゴン、ラン4では2%水/1%酸素
/アルゴンの四種類のガスとし。
The supply gas was argon-based, with run 1 being argon only, run 2 being 1% oxygen/argon, run 3 being 2% water/argon, and run 4 being 2% water/1% oxygen/argon. Four types of gas.

二時間後のガラスフィルター上のススの状況を観測した
。この結果を第5図に示した。これによると、ラン2、
ラン3、ラン4のものにススの減少が観測されるが、特
にラン4において著しいことがわかる。
The state of soot on the glass filter was observed after two hours. The results are shown in FIG. According to this, run 2,
A decrease in soot is observed in Runs 3 and 4, and it can be seen that it is particularly remarkable in Run 4.

このことから定性的ではあるが、放電においてススを燃
焼させるには少なくとも酸素、水の何れかが存在する必
要があることが判明し、特に、無酸素下でも水があれば
ススの燃焼が行われ、また水と酸素の両者の存在が最適
であるということが注目できる。
Although this is qualitative, it is clear that at least either oxygen or water must be present in order for soot to burn in an electric discharge, and in particular, soot combustion can occur even in the absence of oxygen if water is present. It can also be noted that the presence of both water and oxygen is optimal.

[実験例3] 次に、上記実施例で、水と酸素の少なくとも一方の存在
下での放電がスス燃焼に効果があることが判明したが、
これをここでは定量的に観測することにする。反応条件
は実験例2と同様とする。
[Experimental Example 3] Next, in the above example, it was found that electric discharge in the presence of at least one of water and oxygen is effective for soot combustion.
Here, we will observe this quantitatively. The reaction conditions are the same as in Experimental Example 2.

ここでは実験例2で用いたガラスフィルターに約10m
gのススを捕集して正確に計量し、供給ガス成分をラン
1〜6の条件として所定時間放電した後、残存するスス
量を計測し、その結果を表1に示す。
Here, approximately 10 m was added to the glass filter used in Experimental Example 2.
g of soot was collected and accurately weighed, and after discharging the supplied gas components for a predetermined time under the conditions of runs 1 to 6, the amount of remaining soot was measured, and the results are shown in Table 1.

表1 この表の結果から、実験例2の場合と同様、少なくとも
酸素、水の何れか一方の存在があれば放電によってスス
の燃焼が促進されていることが観測できるが、特に水の
あるものは酸素だけのものに比してススの燃焼が促進さ
れていることがわかり、両者共に供給したラン4,5に
至ってはそのスス燃焼が際立っていることがわかる。そ
してそのことは水と酸素量が増加するほど顕著であるこ
とが判明する。
Table 1 From the results in this table, it can be observed that, as in Experimental Example 2, the combustion of soot is promoted by discharge when at least either oxygen or water is present, but especially when there is water. It can be seen that the soot combustion is promoted compared to the case where only oxygen is supplied, and the soot combustion is remarkable in Runs 4 and 5, in which both were supplied. And it turns out that this becomes more pronounced as the amount of water and oxygen increases.

[実験例4] 次に、温度による燃焼性について観察する。実験条件は
供給ガス成分を実験例3のラン4と同様にし、燃焼温度
について種々変化させ、その結果を表2に示す。
[Experimental Example 4] Next, flammability depending on temperature will be observed. The experimental conditions were as follows: the supplied gas components were the same as in Run 4 of Experimental Example 3, and the combustion temperature was varied. Table 2 shows the results.

表2 この表の結果から、反応温度が高いほど効果があると訂
え、装置および条件の選択によっては瞬間的なススの燃
焼を行わしめることも可能であると判断できる。
Table 2 From the results in this table, it can be concluded that the higher the reaction temperature is, the more effective it is, and that depending on the selection of equipment and conditions, it is possible to cause instantaneous combustion of soot.

[実験例5コ 次に実際にデイゼルエンジンからの排気ガスを用いて本
発明の効果を確認する。ここで用いるスス燃焼装置は実
験例1に用いたもの(但しシリンダ一部の長さは500
+n+nとする)を用い、このものにスス量80mg/
〜m1、酸素濃度5%、二酸化炭素濃度8%、M化窒素
濃度50ppm 、水濃度10%の排気ガスを、2Q/
+++inの流量で供給する。そして30kVで、10
0Hzの周波数のパルスコロナ放電を放電して反応温度
80°Cのもとて連続的に反応させ、そしてスス濃度の
変化を計測した。その結果、スス濃度が55mg/Nm
’となり、25mg/Nm’ものススの減少が観測され
、このことから、本発明がデイゼルエンジンの排気ガス
にも有効であることが判明する。
[Experimental Example 5] Next, the effects of the present invention will be confirmed using actual exhaust gas from a diesel engine. The soot combustion device used here is the same as that used in Experimental Example 1 (however, the length of part of the cylinder is 500 mm).
+n+n), and the amount of soot is 80mg/
~ m1, exhaust gas with oxygen concentration 5%, carbon dioxide concentration 8%, nitrogen chloride concentration 50 ppm, water concentration 10%, 2Q/
Supply at a flow rate of +++in. And at 30kV, 10
A pulsed corona discharge with a frequency of 0 Hz was discharged to cause a continuous reaction at a reaction temperature of 80° C., and changes in soot concentration were measured. As a result, the soot concentration was 55 mg/Nm.
', and a reduction in soot of 25 mg/Nm' was observed, which proves that the present invention is also effective for diesel engine exhaust gas.

そしてこのものにおいて、パルスエネルギーを増加せし
める(つまり電圧周波数を増加)こと、119体的には
+30 II zとすることによって、スス誠少駁を3
5mg/Nm’と増大することが認められた。これは、
パルスコロナ放電が高周波数電圧を掛けてより強電解雰
囲気にできるという特けに基因するものであり、こうす
ることによって燃焼室での容積効率が向」ニすることに
よるものと推論できる。このことから、スス量を検知し
、これに基づいてパルスエネルギーによる放電量を制御
して、スス鼠に勾応する適正状態でのスス燃焼を行わし
めることができ、この様にすることによって、無駄な放
電を回避して、効率の良いスス燃焼が出来ることになり
都合がよい。
And in this one, by increasing the pulse energy (that is, increasing the voltage frequency), which is +30 II z, the
An increase of 5 mg/Nm' was observed. this is,
It can be inferred that this is due to the fact that the pulsed corona discharge can create a stronger electrolytic atmosphere by applying a high frequency voltage, which improves the volumetric efficiency in the combustion chamber. From this, it is possible to detect the amount of soot, control the amount of discharge by pulse energy based on this, and perform soot combustion in an appropriate state that corresponds to the soot rat. This is convenient because wasteful discharge can be avoided and efficient soot combustion can be performed.

[作用効果] 以上のことから考察するに、酸素、水の存在下で放電せ
しめることによってススが燃焼し消費されることが確認
できたが、酸素の存在では、酸素が放電エネルギーを受
けて酸素ラジカルに解離し、これがススと反応してスス
の酸化を行うものであり、また水の存在下では、同じく
水が放電エネルギーを受けて014ラジカルに解離し、
これがススを攻撃してススの酸化を行わしめるものであ
ると推論される。そして水と酸素とが共存した場合には
、 )−I、O+ e申→○r■・+H・+e○、 +)i
−→OH・十〇・ 2F工・+O・→oI(・十M の式により○Hラジカル(OH・)の発生が一層促進さ
れ、これによって著しいスス量の減少が成されるものと
推論できる。そしてこのことは○Hラジカルが発生しや
すい高温となるほど、あるいは放電エネルギーが高いほ
ど顕著であるという事実からも確証できるものである。
[Operation and Effect] Considering the above, it was confirmed that soot is burned and consumed by discharging in the presence of oxygen and water, but in the presence of oxygen, oxygen receives discharge energy and becomes oxygen It dissociates into radicals, which react with soot to oxidize the soot. Also, in the presence of water, water similarly receives discharge energy and dissociates into 014 radicals.
It is inferred that this attacks the soot and oxidizes it. When water and oxygen coexist, )-I, O+ e →○r■・+H・+e○, +)i
-→OH・10・2F Engineering・+O・→oI (・10M It can be inferred that the generation of ○H radicals (OH・) is further promoted by the formula, and this results in a significant reduction in the amount of soot. This can be confirmed by the fact that the higher the temperature or the higher the discharge energy, the more likely the generation of ○H radicals, the more pronounced this becomes.

而して本発明においては、ススを少なくとも水または酸
素の存在下で放電せしめるという極めて簡単な手段によ
ってススの燃焼を行わしめて、排ガス中のスス除去を行
うことができ、しかもこのものの装置自体も軽量小型な
ものとすることができ、かつススを酸化燃焼してしまう
ものであるから従来の捕集するもののようにメンテナン
スについて手間がかかることもなくなるものである。
Therefore, in the present invention, soot can be burned by extremely simple means of discharging soot in the presence of at least water or oxygen, and soot can be removed from exhaust gas. It can be made lightweight and compact, and because it oxidizes and burns soot, it does not require the troublesome maintenance that conventional traps require.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、本発明に係る排ガス中のスス除去方法および除
去装置の実施例を示したものであって、第1図はワイヤ
シリンダ一方式のスス燃焼装置の側面図、第2図は実験
例1のフローシート図、第3図はスス濃度の変化を示す
測定結果図、第4図は他側のスス燃焼装置の概略断面図
、第5図は実験例2の1Hll’l結果を示す写真図で
ある。 図中、1はスス燃焼装置、2はシリンダ一部、3はニク
ロム線である。
The drawings show an embodiment of the method and device for removing soot from exhaust gas according to the present invention, and FIG. 1 is a side view of a wire cylinder one-type soot combustion device, and FIG. Figure 3 is a measurement result diagram showing changes in soot concentration, Figure 4 is a schematic sectional view of the soot combustion device on the other side, and Figure 5 is a photographic diagram showing the 1Hll'l results of Experimental Example 2. It is. In the figure, 1 is a soot combustion device, 2 is a part of a cylinder, and 3 is a nichrome wire.

Claims (1)

【特許請求の範囲】 1)ススを含有する排ガスを、少なくとも酸素および/
または水の存在下で放電を行わしめてススの燃焼除去を
行うようにしたことを特徴とする排ガス中のスス除去方
法。 2)ススと共に少なくとも酸素および/または水を含有
する排ガスの流路中に放電手段を設けて構成されること
を特徴とする排ガス中のスス除去装置。 3)前記放電手段は、スス量の検知手段による検知結果
に基づいてその放電量を制御するように構成されている
ことを特徴とする特許請求の範囲第2項記載の排ガス中
のスス除去装置。 4)前記放電手段は、パルスコロナ放電であることを特
徴とする特許請求の範囲第2項記載の排ガス中のスス除
去装置。
[Claims] 1) Soot-containing exhaust gas is treated with at least oxygen and/or
Alternatively, a method for removing soot from exhaust gas, characterized in that soot is burned and removed by discharging in the presence of water. 2) An apparatus for removing soot from exhaust gas, characterized in that a discharge means is provided in a flow path of exhaust gas containing at least oxygen and/or water along with soot. 3) The device for removing soot from exhaust gas according to claim 2, wherein the discharge means is configured to control the amount of discharge based on the detection result by the soot amount detection means. . 4) The apparatus for removing soot from exhaust gas according to claim 2, wherein the discharge means is a pulse corona discharge.
JP61141891A 1986-06-18 1986-06-18 Method and device for removing soot in exhaust gas Pending JPS62298613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61141891A JPS62298613A (en) 1986-06-18 1986-06-18 Method and device for removing soot in exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61141891A JPS62298613A (en) 1986-06-18 1986-06-18 Method and device for removing soot in exhaust gas

Publications (1)

Publication Number Publication Date
JPS62298613A true JPS62298613A (en) 1987-12-25

Family

ID=15302569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61141891A Pending JPS62298613A (en) 1986-06-18 1986-06-18 Method and device for removing soot in exhaust gas

Country Status (1)

Country Link
JP (1) JPS62298613A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5150482B2 (en) * 2006-03-30 2013-02-20 日本碍子株式会社 Exhaust gas purification device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5150482B2 (en) * 2006-03-30 2013-02-20 日本碍子株式会社 Exhaust gas purification device

Similar Documents

Publication Publication Date Title
EP0695396B1 (en) Emission control device and method
KR950702670A (en) METHOD AND DEVICE FOR REMOVING PARTICLES FROM INTERNAL-COMBUSTION ENGINE EXHAUST GASES
KR20070045230A (en) Air pollution sensor system
DE59104573D1 (en) Process and device for cleaning exhaust gases containing dust and pollutants.
EP1425497A1 (en) Device and method for exhaust gas after-treatment
RU2127400C1 (en) Plasma cleaning device for gases produced in fuel combustion
JPS6089622A (en) Method of controlling combustion process
JP3632579B2 (en) Air purification device
JPS5945939B2 (en) Carbon analyzer in metal
JPS62298613A (en) Method and device for removing soot in exhaust gas
Kuroki et al. Nanoparticle removal and exhaust gas cleaning using gas-liquid interfacial nonthermal plasma
WO2003026799A1 (en) Removal of elemental mercury by photoionization
US7534401B2 (en) Arcing electron stream apparatus and method
JP2004008517A (en) Air cleaner
JPH04122417A (en) Exhaust gas treating device
KR102249085B1 (en) Rf plasma exhaust gas treatment device
JP2003236335A (en) Apparatus and method of treating waste gas
JP3491026B2 (en) Exhaust gas treatment method and exhaust gas treatment device
JP3240291B2 (en) Weathering light test equipment with exhaust treatment equipment
KR0135055Y1 (en) Ion pin for exhaust gas purifying apparatus
RU2817289C1 (en) Apparatus for investigating deposition of solid particles contained in automotive exhaust in electric field
JPH0146173B2 (en)
JPH0113891B2 (en)
JPH09113486A (en) Method for removing nonmethane hydrocarbon in exhaust gas
JP2004216201A (en) Method and apparatus for removing black smoke of combustion exhaust gas, incomplete combustion product and nox