JP2004216201A - Method and apparatus for removing black smoke of combustion exhaust gas, incomplete combustion product and nox - Google Patents

Method and apparatus for removing black smoke of combustion exhaust gas, incomplete combustion product and nox Download PDF

Info

Publication number
JP2004216201A
JP2004216201A JP2002355174A JP2002355174A JP2004216201A JP 2004216201 A JP2004216201 A JP 2004216201A JP 2002355174 A JP2002355174 A JP 2002355174A JP 2002355174 A JP2002355174 A JP 2002355174A JP 2004216201 A JP2004216201 A JP 2004216201A
Authority
JP
Japan
Prior art keywords
exhaust gas
black smoke
dielectric
pulse voltage
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002355174A
Other languages
Japanese (ja)
Inventor
Suiryo Yo
水良 姚
Mamoru Okumoto
衛 奥本
Eiji Suzuki
栄二 鈴木
Tateaki Yashima
建明 八嶋
Jun Shimogami
純 霜上
Taketoshi Yonezawa
武敏 米澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Institute of Innovative Technology for the Earth RITE
Original Assignee
Research Institute of Innovative Technology for the Earth RITE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Institute of Innovative Technology for the Earth RITE filed Critical Research Institute of Innovative Technology for the Earth RITE
Priority to JP2002355174A priority Critical patent/JP2004216201A/en
Publication of JP2004216201A publication Critical patent/JP2004216201A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Treating Waste Gases (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for economically removing black smoke or/and incomplete combustion products generated by combustion of carbon-based fuel or NOx when the exhaust gas further contains NOx in high efficiency, and an apparatus capable of applying the removal method and for removing the black smoke or/and incomplete combustion products generated by combustion of the carbon-based fuel or NOx when the exhaust gas further contains NOx. <P>SOLUTION: The exhaust gas generated by the combustion of the carbon-based fuel is brought into contact with the pulsative corona discharge generated along the surface of a dielectric by impressing pulsative voltage between metallic electrodes arranged on the surface of the dielectric so as to remove the black smoke or/and incomplete combustion products in the exhaust gas or NOx when the exhaust gas further contains NOx. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、炭素系燃料の燃焼により発生する環境有害化学物質である黒煙(ディーゼルエンジン排ガス中に含まれる粒子状物質、主な構成成分:カーボン、炭化水素)、気体状あるいは液体状不完全燃焼物(以下、不完全燃焼物と略称)、NO等の除去方法、特に移動式燃焼機器、例えば自動車、バイク、船舶、および航空機等から排出される上記黒煙、不完全燃焼物、NO等の有効且つ経済的な処理方法に関する。さらに詳しくは、人体および/または地球環境にとっての有害化学物質である、炭素系燃料の燃焼により発生する黒煙、不完全燃焼物、NO等を、これらの排出量に応じてパルスコロナ沿面放電技術を利用して無害化するための処理方法および処理装置に関する。
【0002】
【従来の技術】
炭素系燃料である、例えばガソリン燃料、ディーゼル軽油燃料、LPG燃料の燃焼により排出されるガスは主に一酸化窒素や二酸化窒素等の窒素酸化物(NOx)、粒子状物質など大気汚染物質を含んでいる。特にディーゼル軽油燃料が用いられるディーゼルエンジン車からは、ガソリン燃料が用いられるガソリン車などから排出される量の約3倍もの多量の窒素酸化物とならんで、それとは比較にならない大量の、しかも粒子径2.5μm以下の粒子状物質が排出され、呼吸器系の病気や喘息などの健康被害を引き起こしており社会問題化している。しかしながら、窒素酸化物については排出規制が設けられ対策が進んでいるものの、粒子状物質についてはディーゼルエンジン車の大部分にいかなる排出規制も設置されていないなど、粒子状物質の対策は今だ不十分なままである。とりわけ、ディーゼルエンジン排ガス中に含まれる粒子状物質を規制する根拠としての環境基準は“PM2.5環境基準”とも称されて、その立法化が重要な懸案となっている。粒子状物質は黒煙或いは煤煙(黒色無定形炭素粒子分)、道路の粉塵、硫黄酸化物(SOx)、発癌性のベンツピレンなどの炭化水素類等、一次粒子のみならず二次粒子をも含み、微粒子の故に人体の気道や肺に一層入り込み易く我が国の国民の健康を阻害する厄介な存在である。
【0003】
窒素酸化物と粒子状物質の両方を除去する方法としては、従来から脱硝触媒を含む脱硝装置(窒素酸化物除去装置)とバグフィルターまたは電気集塵機等の集塵装置とを併設する方法が提案されている。後者については、高濃度粉塵をろ過分離、捕集する集塵方式の各種バグフィルターが開発されている。そしてディーゼル車については、粒子状物質の除去をより強力に推進しうる粒子状物質のろ過フィルターと目詰まりを防ぐ再生装置とを含むタイプのディーゼル黒煙除去装置(DPF)が開発され、様々な種類の装置が実用化のために検討されている。しかしながら、いずれも技術的問題点を抱えており、現状ではディーゼル排ガス中に含まれる粒子状物質の量的規制・対策を可能にする程の決定的な装置は未だ開発されていない。
【0004】
またディーゼル車に用いられる炭素系燃料の燃焼により排出される黒煙をフィルターで捕集した後、酸化させる方法が開発されているが、フィルターが高価なため実用化が難しい(非特許文献1〜4、特許文献1)。一方、プラズマを用いる黒煙、不完全燃焼物およびNOの処理方法の開発が進められているが、これらの処理方法は使用する電源および電極構造等に制約があり、黒煙およびNO除去効果が小さく、高コストであり、プラズマ制御が困難であるのみならず、他の有害物質を新たに産出する恐れさえある。例えば、SO,NO等のガスはコロナ放電とアンモニアとの併用で除去されるが、黒煙などの固形物質の除去には顕著な効果が見られない(特許文献2〜3)。また交流電源を用いて発生させた低温プラズマと触媒との併用でNOおよび粒子状物質を低減させる方法(特許文献4)が開発されているが、この方法は交流電源による低温プラズマの制御が困難であることに加えて、NOが逆に生成するおそれがある。直流あるいは交流高圧電場を用いて、処理しようとするガスを二つの金属電極間に導入し、放電させることによって黒煙およびNO を除去する方法(特許文献5)、あるいは黒煙をフィルターで捕集し、プラズマ処理により生成したNOを用いて黒煙を処理する方法(特許文献6)、また排気ガス中のNOをプラズマおよび炭化水素接触還元触媒を用いて除去する方法(特許文献7〜8)等が開発されているが、これらの方法はプラズマ放電自体の制御が難しい。活性酸素による窒素ガス処理(非特許文献5)の場合には有害物質であるNOの新たな生成の恐れがあり、且つ他の還元ガス添加、フィルターおよび触媒の使用が必要となり、これがコスト高につながり、またこの方法は自動車の排ガス処理には適用できない。従って、高効率且つ経済的に実用化可能な、例えばディーゼル車などに用いられる炭素系燃料の燃焼により排出される黒煙、不完全燃焼物およびNOの実用可能な除去技術は今だ開発されていない。
【0005】
【特許文献1】
特開平11−324652号公報(請求項2)
【特許文献2】
特開平03−267113号公報(請求項1)
【特許文献3】
特許第3101744号公報(請求項1)
【特許文献4】
特開平08−105317号公報(請求項1)
【特許文献5】
特表平11−512651号公報(要約)
【特許文献6】
特開2001−123823号公報(請求項1)
【特許文献7】
特開平06−106025号公報(要約)
【特許文献8】
特開平07−247827号公報(要約)
【非特許文献1】
松浦隆幸、「(DPF)ディーゼル微粒子除去フィルター、ディーゼル車の排ガス対策で注目低コスト化が普及へのカギ」、日経エコロジー、日経BP社、2000年6月号、p.39〜43
【非特許文献2】
猪俣誠、「ディーゼル排ガスの浄化触媒」、Eco Industry、(株)シーエムシー、2001年2月号、Vol.6, No.2, p.27〜37
【非特許文献3】
編集部、「ディーゼルエンジン排ガス対策と市場」、Eco Industry, (株)シーエムシー、2001年6月号、Vol.6, No.4, p.46〜51
【非特許文献4】
片岡勲、「ディーゼルエンジンからの浮遊性粒子状物質(SPM)除去フィルター技術開発の現状と展望」、Eco Industry, (株)シーエムシー、2001年9月号、Vol.6, No.9, p.24〜30
【非特許文献5】
藤原正純、他、「放電脱硝法における酸素・水蒸気の影響」、http://www.etl.go.jp/jp/results/bulletin/pdf/62−5/Fujiwara150.pdf, 2002年8月29日.
【0006】
【発明が解決しようとする課題】
本発明は、炭素系燃料の燃焼により発生する黒煙、不完全燃焼物、NO等有害物質の高効率且つ経済的に実用化可能な処理方法および処理装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明によって、特に炭素系燃料の燃焼により発生する排気ガスの黒煙または/および不完全燃焼物が効率よく除去される。本発明において、黒煙は、例えばディーゼルエンジン排ガス中に含まれる粒子状物質であって主成分としてカーボンや炭化水素を含む。本発明者らは、炭素系燃料の燃焼により発生する排気ガス中の黒煙または/および不完全燃焼物を、あるいは排気ガス中にさらにNOが含まれる場合はNOをも除去する方法に関して、これまでに開発された方法が有する上記した種々の問題点を解決すべく鋭意検討を行った結果、炭素系燃料の燃焼により発生する排気ガス中の黒煙または/および不完全燃焼物、特に黒煙が誘電体表面に効率よく付着あるいは吸着されることを知見した。さらに本発明者らは排気ガス中の黒煙または/および不完全燃焼物を誘導体表面に付着あるいは吸着させながら、誘電体表面に設置した金属電極にパルス電圧を印加して該誘電体表面に沿って発生するパルスコロナ沿面放電と接触させることによって排気ガス中の黒煙または/および不完全燃焼物を、あるいは排気ガス中にさらにNOが含まれる場合はNOをも除去することができ、もって上記問題点を解決し得ることを見出した。さらに検討を重ねて本発明を完成させるに至った。
【0008】
すなわち、本発明は、
(1)炭素系燃料の燃焼により発生する排気ガスを、誘電体表面に設置した金属電極にパルス電圧を印加して該誘電体表面に沿って発生するパルスコロナ放電と接触させて、排気ガス中の黒煙または/および不完全燃焼物を、あるいは排気ガス中にさらにNOが含まれる場合はNOをも除去することを特徴とする排気ガス中の有害物質の除去方法、
(2)誘電体が少なくとも一つ以上の処理表面を持ち、該誘電体の厚さが0.1〜50mmの範囲にあることを特徴とする(1)に記載の方法、
(3)誘電体表面に設置した金属電極が四角形、円形あるいは任意の形の穴を有し、該金属電極が該誘電体表面に設置または埋められていることを特徴とする(1)または(2)のいずれかに記載の方法、
(4)金属電極が網状であることを特徴とする(1)〜(3)のいずれかに記載の方法、
(5)パルス電圧が常時正、常時負または正と負が交互に印加され、該パルス電圧のピーク絶対値が100V〜50kVで、該パルス電圧の立ち上がり時間が10ns〜0.01s、該パルス電圧の半値幅が0.01μs〜0.01s、および該パルス電圧の周波数が1Hz〜500kHzの範囲にあることを特徴とする(1)〜(4)のいずれかに記載の方法、
(6)誘電体と、誘電体表面に設置または埋められている金属電極、パルス電圧供給源およびパルス周波数制御装置とを具備することを特徴とする炭素系燃料の燃焼により発生する排気ガスから排気ガス中の黒煙または/および不完全燃焼物を、あるいは排気ガス中にさらにNOが含まれる場合はNOをも除去する装置、
に関する。
【0009】
【発明の実施の形態】
以下、本発明の実施の形態を説明する。
【0010】
本発明は、炭素系燃料の燃焼により発生する排気ガス中の黒煙または/および不完全燃焼物を誘電体表面に付着あるいは吸着させながら、炭素系燃料の燃焼により発生する排気ガスを、誘電体表面に設置した金属電極にパルス電圧を印加して該誘電体表面に沿って発生するパルスコロナ放電と接触させて排気ガス中の黒煙または/および不完全燃焼物を、あるいは排気ガス中にさらにNOが含まれる場合はNOをも除去することを特徴とするパルスコロナ処理方法である。
【0011】
次に、本発明の実施の一態様を図1を用いて具体的に説明する。すなわち、炭素系燃料の燃焼により発生する排気ガスをガス導入口8へ導き、排気ガス中の粒子状形態である黒煙または/および不完全燃焼物(以下実施例に至るまで単に黒煙と略称する)が、パルスコロナ沿面放電の発生がない状態において、誘導体(アルミナ管4)表面に効率よく付着する特性を利用して、排気ガス流路(ガラス管3およびアルミナ管4との間隙部)中に位置する誘導体(アルミナ管4)表面に黒煙を吸着あるいは付着させることによって捕集する。次いで誘電体(アルミナ管4)表面に巻付けた金属電極である銀線5とステンレススティール棒6との間、すなわち陽極1と陰極7の間にパルス電圧を印加して該誘電体(アルミナ管4)表面に沿ってパルスコロナ沿面放電を発生させる。パルスコロナ沿面放電によって、黒煙は主としてCOとCOに変化する。さらにNOがある場合はより複雑である。パルスコロナ沿面放電の発生により、排気ガス中にNOが含まれる場合窒素酸化物(NO)、および酸素(O)等から、排気ガス中にNOが含まれる場合二酸化窒素(NO),および酸素原子(O),オゾン(O)およびOHの形の反応性に富む酸素活性種が生成する。
NO+O→NO・・・(1)
生成したNOは誘電体(アルミナ管4)表面に捕集された黒煙等の酸化を促進するために使用される。ここで経過する反応は、例えばC+2NOがCO+CO+2NOとなる。更に、他の反応性物質によりO+C=CO,O+C→CO+CO+O,2OH+C=CO+HOとなる炭素の酸化が行われる。次いで、例えば発生したCOがNO,NOを還元して、2CO+2NO=N+2CO、4CO+2NO=N+4COとなる。パルスコロナ発生場内において、パルスコロナ発生場およびその周囲の空間を流れる排ガス中にNOがある場合、NOは酸化(反応(1))または分解(反応(2))される。
2NO→N+O・・・(2)
このようにして、パルスコロナ沿面放電が発生していない時には誘電体(アルミナ管4)表面に黒煙が付着あるいは吸着によって捕集され、誘電体を挟む陽極1と陰極7の間にパルス電圧が印加されて誘導体(アルミナ管4)表面と銀線5の周辺にパルスコロナ沿面放電を発生させると誘導体(アルミナ管4)表面に付着あるいは吸着された黒煙が上記のように酸化分解され、同時にパルスコロナ発生場およびその周囲の空間を流れるNOがある場合、上記のように還元分解されて、例えばC、CO、NO、NOがCO、N、Oなどに無害化処理されてガス流出口9から排出される。またパルスコロナ発生場内およびその周囲の空間を流れる不完全燃焼物である,例えば炭化水素であるCがCO,CO,HOに、さらにCOはCOに酸化されて同様にガス流出口9から排出される。
【0012】
誘電体表面と電極間に発生するパルスコロナ沿面放電は誘電体の厚さと深い関係にあり、誘電体の厚さが大きくなるに従って印加するパルス電圧を高くする必要があり、その結果パルス電源の効率が悪くなる。誘電体を余りに薄くすると誘電体に印加された電圧と高温排気ガスにより誘電体が破損することがある。通常誘電体の厚さは約0.1〜約50mmが好ましく、より好ましくは約1〜約30mmである。
【0013】
誘電体を用いた場合のコロナ沿面放電は主として金属電極と誘電体表面との間に発生する。従って通電する金属電極と誘導体表面が不可欠となる。電極の材質としては、抵抗の少ない金属、例えば鉄、ステンレス、銅およびアルミニウム等を使用することが出来る。電極の形状は本発明の目的を達成する限りどのような物でもよく、例えば線状、網状、棒状または板状等が挙げられる。好ましくは網状である。板状の場合は、例えば四角形、円形あるいは任意の形状の穴を有するのが好ましい。電極と誘電体との間でパルスコロナ沿面放電を発生させて黒煙等を上記のように除去することが可能となるものならどのようなものでもよい。この場合、金属電極を誘電体表面に設置してもよいし、あるいは金属電極の一部分を誘電体表面に埋め込むこともできる。金属電極を誘電体表面に設置するのが好ましい。
【0014】
誘電体の材質としては、強度のある物、例えばアルミナ、酸化チタン等、ガラス、石英、セラミックス等を使用することができる。誘電体の形状としては、板状、管状等の形状を取ることができ、板状が好ましい。誘電体の表面形状は放電発生の確保と放電スペース拡大のために凹凸状にするのが好ましい。
【0015】
パルス電源は電気エネルギーをコンデンサーあるいはコイルに蓄えた後、パルスコロナ放電に用いられる。従って、パルス電圧の充電時間、立ち上がり時間、パルスコロナ放電の時間幅を調整する必要がある。パルス周波数を約1Hz〜約500kHzの範囲に設定した場合、パルス電圧の半値幅は約1ns〜約0.01sに設定される。誘電体の特性を考慮して、パルス電圧の半値幅は約0.01μs〜約0.01sが好ましい。パルス電圧が常時正、または常時負、あるいは正と負とが交互のいずれの場合もパルスコロナ沿面放電が発生する。パルス電圧のピーク絶対値が誘電体の厚さと単位パルス当たりのエネルギー投入量とに関係し、パルス電圧のピーク絶対値は約100V〜50kVの範囲が好ましい。
【0016】
燃焼排気中の黒煙NO等の有害物質の排出量は、例えば車などの燃焼エンジンの場合、エンジンの回転数、燃料噴射速度、車走行速度、エンジンの回転数と関係する発電機の回転数、エンジンの負荷を含むエンジン運転特性および内燃機関の燃焼特性と関係する。一回転当たりの燃料消費量に比例して黒煙の排出量がポテンシャル的に増加する特性を利用して、燃料噴射速度あるいは燃料噴射速度と関係するエンジン回転数、負荷大小、走行速度、発電機の回転数・発電能力を基にして、パルス電圧を固定して、パルス周波数制御装置を用いてパルス周波数を調整し、黒煙等を処理することができる。燃焼排気は、直接本発明の除去方法に付してもよいし、適当な気体(例えば空気)で希釈して本発明の除去方法に付してもよい。希釈倍率は通常約1.5〜400容量倍程度でよい。黒煙等の排出量が多い場合、パルス周波数を大きくしたり、黒煙等の排出量が少ない場合にはパルス周波数を小さくすることによって、黒煙等を、あるいは排気ガス中にさらにNOが含まれる場合は効率的且つ経済的に排出基準を満たしたNOをも安全に排出することができる。
【0017】
【実施例】
本発明を実施例を用いて説明するが、本発明はこれらの実施例により限定されるものではない。
ディーゼルエンジンについて;
ディーゼル軽油燃料を用いたディーゼルエンジン(総排気量:2L)からの排気ガスを空気で希釈し、黒煙排出量を測定〔測定方法:連続フィルター式、使用機器:TEOM 1105, 機器メーカー:Rupprecht & Patashick Co.,Inc.〕し、これと軸出力との関係を図2(ここでエンジンの各回転数における、測定に供した排気ガスの空気による希釈倍率は、1.0krpm:141容量倍、1.5krpm:154容量倍、2.0krpm:82容量倍、 3.0krpm:347容量倍であった)に示した。回転数の変化にかかわらず黒煙の時間当たりの排出量はポテンシャル的に増加した。なお、この種のエンジンは平成5年の黒煙排出規制には適応できるが、平成9年以降の新しい排出規制には適応できない(ここで、排出規制とは環境庁大気保全局による黒煙(粒子状物質「PM」)の排出規制のことを意味する)。一方、NO濃度と軸出力との関係を図3(ここでエンジンの各回転数における、測定に供した排気ガスの空気による希釈倍率は、2.5krpm:347容量倍、他の回転数2krpm、3krpmについては図2の場合と同一であった)に示した。図から明らかなように、2krpm以上の場合NOの排出濃度が約90ppm以上でありエンジンの負荷に比例して増加し、また、NOの大部分はNOであり、特に高負荷の場合、NOのレベルが約10ppmであることが分かった。(NOの分析方法:化学発光法、使用機器:NO・NO・NOアナライザーECL−880 US、機器メーカー:アナテック・ヤナコ(株))
【0018】
〔実施例1〕
ディーゼルエンジンの排気管から図1のパルスコロナ沿面放電反応器のアルミナ管4(外径:10mm、内径:6mm、長さ:200mm)表面に巻き付けた銀線5(直径:0.5mm、巻き回数:14回、巻き長さ(銀線が巻かれている部分のアルミナ管4の長さ):50mm)部分に予め捕集した黒煙に対して、ガス導入口8を通じて酸素(10%)および窒素(90%)の混合ガスを流しながら、陽極1と陰極7の間にパルス電源(DP−10K10、立ち上がり時間:約25ns、パルス電圧の半値幅:約700ns,パルス電子技術(株)製)を用いてパルス電圧(ピーク電圧:7kV)を印加し、周波数を1kHz、2kHz、3kHzと変えてパルスコロナ沿面放電を発生させて生成するガスを分析した。酸素:窒素=1:9の混合割合にしたのはディーゼルエンジンの排気ガスの分析結果に基づいて決定した(図4)(N2、の分析方法:ガスクロマトグラフィーにより分析、使用機器:AGC280、機器メーカー:大倉理研(株))。その結果、図5から明らかなように黒煙は主としてCOおよびCOに変化した(COおよびCOの分析方法:ガスクロマトグラフィーにより分析、使用機器:GC103、機器メーカー:大倉理研(株))。還元反応能力を有するCOが生成していることからパルスコロナ放電場において酸化反応と還元反応が同時に起こっていると考えられる。なお、新たにNOの生成は認められなかった。黒煙除去の能力が最大1mg/時間を有することから、好ましくは反応面積の拡大と反応器形状の改良を行うことによってエンジンの排気黒煙処理の実用化が充分に可能であると考えられる。
【0019】
〔実施例2〕
ディーゼルエンジンの0.36L/分の排気ガスを空気で2.9倍に希釈した後、ガス導入口8を通じて図1のパルスコロナ沿面放電反応器〔この場合アルミニウム線5(直径:0.5mm, 巻き回数:68回、巻き長さ(アルミニウム線が巻かれている部分のアルミナ管4の長さ):85mm)を使用〕に導入しながら陽極1と陰極7の間にパルス電圧を印加してパルスコロナ沿面放電を発生させて黒煙の処理効果を分析した結果、周波数1kHz、パルス電圧7.2kV(ピーク)の場合、黒煙の処理能力は0.45mg/時間であり、黒煙の除去率は89重量%、およびNOの除去率は40重量%であった(図6)。
【0020】
〔実施例3〕
ディーゼルエンジンの0.15L/分排気ガスを空気で20倍に希釈した後、実施例2と同様に図1のパルスコロナ沿面放電反応器(この場合アルミニウム線5を使用)に導入しながらパルスコロナ放電を発生させて黒煙の処理効果を分析した結果、パルスピーク電圧が5kV, パルス周波数が1kHz,2kHzおよび4kHzの場合、黒煙の処理能力はそれぞれ0.11、0.13、および0.11mg/時間であり、黒煙の除去率はそれぞれ28重量%、19重量%および31重量%であった。NOの除去率はそれぞれ68重量%、86重量%および90重量%であった。
【0021】
〔実施例4〕
ディーゼルエンジンの0.015L/分の排気ガスを空気で200倍に希釈したガスを、実施例2と同様に図1のパルスコロナ沿面放電反応器(この場合アルミニウム線5を使用)に導入しながら、パルスコロナ放電(パルスピーク電圧:5.5kV, 周波数:2kHz)を発生させて黒煙処理効果を分析した結果、黒煙の処理能力は最大で0.04mg/時間で、黒煙の除去率は50重量%であった。また、黒煙の濃度は最低0.2mg/mまで処理できた。NOの除去率は50〜60重量%であった。
【0022】
【発明の効果】
本発明により、炭素系燃料の燃焼により発生する黒煙または/および不完全燃焼物を、あるいは排気ガス中にさらにNOが含まれる場合はNOをも高効率且つ経済的に除去する方法および除去するための装置を提供することができる。
【図面の簡単な説明】
【図1】パルスコロナ沿面放電反応器の断面図を示す。
【図2】黒煙(粒子状物質「PM」)排出速度(g/h)と軸出力(kW)との関係を示す。
【図3】NO濃度(ppm)と軸出力(kW)との関係を示す。
【図4】排気成分の濃度(%)と実験時間(秒)との関係を示す。
【図5】CO/COの選択率(%)と時間(分)との関係を示す。
【図6】黒煙(粒子状物質「PM」)排出速度(g/h)およびNO濃度(ppm)と時間(分)との関係を示す。
【符号の説明】
1 陽極
2 ステンレススティール接合管
3 ガラス管
4 アルミナ管
5 銀線またはアルミニウム線
6 ステンレススティール棒
7 陰極
8 ガス導入口
9 ガス流出口
10 絶縁物
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to black smoke (particulate matter contained in exhaust gas of diesel engine, main constituents: carbon and hydrocarbon), which is an environmentally harmful chemical substance generated by combustion of carbon-based fuel, gaseous or liquid imperfections combustion product (hereinafter, incomplete combustion products and abbreviation), method of removing such NO X, in particular mobile combustion device, for example an automobile, motorcycle, ship, and the black smoke discharged from the aircraft or the like, incomplete combustion products, NO The present invention relates to an effective and economical processing method for X and the like. More particularly, a hazardous chemical substance for the human body and / or the global environment, the black smoke generated by combustion of carbonaceous fuel, incomplete combustion products, the NO X etc., pulsed corona surface discharge in response to these emissions TECHNICAL FIELD The present invention relates to a processing method and a processing apparatus for detoxification using technology.
[0002]
[Prior art]
Gases emitted by the combustion of carbon-based fuels such as gasoline fuel, diesel light oil fuel, and LPG fuel mainly contain air pollutants such as nitrogen oxides (NOx) such as nitric oxide and nitrogen dioxide, and particulate matter. In. In particular, from diesel engine vehicles using diesel fuel, the amount of nitrogen oxides is about three times as large as that emitted from gasoline vehicles using gasoline fuel. Particulate matter having a diameter of 2.5 μm or less is discharged, causing health problems such as respiratory diseases and asthma, and has become a social problem. However, although emission regulations have been set for nitrogen oxides and measures have been taken, measures for particulate matter have not yet been implemented, such as the absence of any emission regulations for most diesel engine vehicles. Remains enough. In particular, the environmental standard as a basis for controlling particulate matter contained in diesel engine exhaust gas is also referred to as “PM2.5 environmental standard”, and legislation is an important issue. Particulate matter includes not only primary particles but also secondary particles such as black smoke or soot (black amorphous carbon particles), road dust, sulfur oxides (SOx), carcinogenic hydrocarbons such as benzopyrene, etc. Because of the fine particles, they are more easily penetrated into the respiratory tract and lungs of the human body, and are annoying entities that hinder the health of the Japanese people.
[0003]
As a method for removing both nitrogen oxides and particulate matter, a method has conventionally been proposed in which a denitration device (nitrogen oxide removal device) including a denitration catalyst and a dust collector such as a bag filter or an electric dust collector are provided. ing. Regarding the latter, various bag filters of a dust collection system for filtering and separating high concentration dusts have been developed. For diesel vehicles, a type of diesel black smoke filter (DPF) has been developed that includes a particulate filter and a regenerator to prevent clogging, which can promote particulate matter removal more strongly. Various types of devices are being considered for practical use. However, all of them have technical problems, and at present, a definitive device capable of quantitatively controlling and taking measures against particulate matter contained in diesel exhaust gas has not yet been developed.
[0004]
In addition, a method has been developed in which black smoke emitted by the combustion of carbon-based fuel used in diesel vehicles is collected by a filter and then oxidized, but practical use is difficult because the filter is expensive (Non-Patent Documents 1 to 3). 4, Patent Document 1). On the other hand, black smoke using plasma, although the development processing method of incomplete combustion products and NO X are underway, these processing methods is limited to the power supply used and the electrode structure, etc., black smoke and NO X removal Not only are they less effective, costly and difficult to control the plasma, they can even produce other harmful substances. For example, gases such as SO X and NO X are removed by a combination of corona discharge and ammonia, but have no remarkable effect on removing solid substances such as black smoke (Patent Documents 2 and 3). The method for reducing NO X and particulate matter in combination with low-temperature plasma and the catalyst which is generated by using an AC power source (Patent Document 4) have been developed, but this method is to control the low temperature plasma by the AC power source In addition to the difficulty, NO X can be produced in reverse. DC or with an alternating pressure field, the gas to be treated is introduced between two metal electrodes, black smoke by discharging and NO X (Patent Document 5), a method of collecting black smoke with a filter and treating the black smoke with NO 2 generated by plasma treatment (Patent Document 6), and a method of removing NO X in exhaust gas. Methods have been developed for removal using plasma and a catalytic reduction catalyst for hydrocarbons (Patent Documents 7 and 8), but these methods have difficulty in controlling the plasma discharge itself. Nitrogen gas treatment with the active oxygen in the case of (non-patent document 5) there is a possibility of a new generation of detrimental substances NO X, and other reducing gas addition, use of filters and catalyst is required, which is costly This method is not applicable to exhaust gas treatment of automobiles. Therefore, high efficiency and economically practical possible, for example, black smoke exhausted by the combustion of carbon-based fuels used in such diesel, practical removal techniques incomplete combustion products and NO X was developed but now Not.
[0005]
[Patent Document 1]
JP-A-11-324652 (Claim 2)
[Patent Document 2]
Japanese Patent Application Laid-Open No. 03-267113 (Claim 1)
[Patent Document 3]
Japanese Patent No. 3101744 (Claim 1)
[Patent Document 4]
JP-A-08-105317 (Claim 1)
[Patent Document 5]
Japanese Unexamined Patent Publication No. Hei 11-512652 (abstract)
[Patent Document 6]
JP 2001-123823 A (Claim 1)
[Patent Document 7]
JP-A-06-106025 (abstract)
[Patent Document 8]
JP 07-247827 A (abstract)
[Non-patent document 1]
Takayuki Matsuura, “(DPF) Diesel Particulate Removal Filter, Key to Promotion of Low-Cost Attention in Diesel Vehicle Emission Control,” Nikkei Ecology, Nikkei BP, June 2000, p. 39-43
[Non-patent document 2]
Makoto Inomata, "Purification Catalyst for Diesel Exhaust Gas", Eco Industry, CMC Co., Ltd., February 2001, Vol. 6, No. 2, p. 27-37
[Non-Patent Document 3]
Editorial Department, "Diesel Engine Exhaust Gas Countermeasures and Market", Eco Industry, CMC Co., Ltd., June 2001, Vol. 6, No. 4, p. 46-51
[Non-patent document 4]
Isao Kataoka, "Current Status and Future Prospects of Filter Technology for Removal of Suspended Particulate Matter (SPM) from Diesel Engines", Eco Industry, CMC Corporation, September 2001, Vol. 6, No. 9, p. 24-30
[Non-Patent Document 5]
Masazumi Fujiwara, et al., "Effects of oxygen and water vapor on discharge denitration method", http: // www. etl. go. jp / jp / results / bulletin / pdf / 62-5 / Fujiwara150. pdf, August 29, 2002.
[0006]
[Problems to be solved by the invention]
The present invention aims at providing black smoke generated by the combustion of the carbon-based fuel, incomplete combustion products, a highly efficient and economically practical possible processing methods and apparatus of the NO X hazardous substances.
[0007]
[Means for Solving the Problems]
According to the present invention, particularly, black smoke and / or incompletely combusted matters of exhaust gas generated by combustion of carbon-based fuel are efficiently removed. In the present invention, black smoke is, for example, a particulate matter contained in exhaust gas of a diesel engine and contains carbon and hydrocarbon as main components. The present inventors have, on how to be removed NO X if it contains more NO X black smoke and / or incomplete combustion products, or in the exhaust gas in the exhaust gas generated by the combustion of carbon-based fuels As a result of intensive studies to solve the above-mentioned various problems of the methods developed so far, black smoke or / and incompletely combusted substances in exhaust gas generated by combustion of carbon-based fuel, particularly It was found that black smoke was efficiently attached or adsorbed on the dielectric surface. Further, the present inventors apply a pulse voltage to a metal electrode provided on a dielectric surface while adhering or adsorbing black smoke or / and incompletely combusted substances in exhaust gas on the surface of the dielectric material, and apply the pulse voltage along the dielectric surface. If further contains NO X black smoke and / or incomplete combustion products in the exhaust gases, or in the exhaust gas by contacting with a pulse corona creeping discharge generated Te can also be removed NO X, It has been found that the above problem can be solved. Further studies have led to the completion of the present invention.
[0008]
That is, the present invention
(1) The exhaust gas generated by the combustion of the carbon-based fuel is brought into contact with a pulse corona discharge generated along the dielectric surface by applying a pulse voltage to a metal electrode provided on the dielectric surface. method for removing harmful substances in the exhaust gas, characterized by also removing NO X If the black smoke and / or incomplete combustion products, or include further NO X in the exhaust gas,
(2) The method according to (1), wherein the dielectric has at least one or more treated surfaces, and the thickness of the dielectric is in a range of 0.1 to 50 mm.
(3) The metal electrode provided on the dielectric surface has a square, circular or arbitrary shaped hole, and the metal electrode is provided or buried on the dielectric surface. 2) The method according to any of the above,
(4) The method according to any one of (1) to (3), wherein the metal electrode has a mesh shape.
(5) The pulse voltage is always positive, always negative or positive and negative are alternately applied, the peak absolute value of the pulse voltage is 100 V to 50 kV, the rise time of the pulse voltage is 10 ns to 0.01 s, and the pulse voltage is The method according to any one of (1) to (4), wherein the half width of the pulse voltage is 0.01 μs to 0.01 s, and the frequency of the pulse voltage is in the range of 1 Hz to 500 kHz.
(6) Exhaust gas generated by combustion of carbon-based fuel, comprising: a dielectric; a metal electrode provided or embedded on the dielectric surface; a pulse voltage supply; and a pulse frequency controller. device also remove NO X when the black smoke and / or incomplete combustion of gas, or include further NO X in the exhaust gas,
About.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described.
[0010]
The present invention relates to a method for removing exhaust gas generated by the combustion of carbon-based fuel while adhering or adsorbing black smoke or / and incompletely combusted substances in the exhaust gas generated by combustion of the carbon-based fuel on the dielectric surface. A pulse voltage is applied to a metal electrode provided on the surface to make contact with a pulse corona discharge generated along the surface of the dielectric, thereby causing black smoke and / or incompletely combusted substances in the exhaust gas or further into the exhaust gas. A pulse corona treatment method characterized by removing NO X when NO X is included.
[0011]
Next, an embodiment of the present invention will be specifically described with reference to FIG. That is, the exhaust gas generated by the combustion of the carbon-based fuel is guided to the gas inlet 8, and black smoke or / and incompletely combusted matter (hereinafter simply referred to as black smoke in the following examples) is included in the exhaust gas. However, in a state where no pulse corona surface discharge occurs, the exhaust gas flow path (gap between the glass tube 3 and the alumina tube 4) is utilized by utilizing the characteristic of efficiently adhering to the surface of the derivative (alumina tube 4). The smoke is collected by adsorbing or adhering black smoke on the surface of the derivative (alumina tube 4) located inside. Next, a pulse voltage is applied between the silver wire 5 which is a metal electrode wound around the surface of the dielectric (alumina tube 4) and the stainless steel rod 6, that is, between the anode 1 and the cathode 7 to apply the pulse voltage to the dielectric (alumina tube 4). 4) Generate a pulse corona creeping discharge along the surface. Due to the pulse corona surface discharge, black smoke mainly changes into CO 2 and CO. It is more complicated if there are more NO X. The generation of the pulse corona surface discharge, nitrogen oxides if they contain NO X in the exhaust gas (NO), and oxygen from the (O 2) or the like, when the nitrogen dioxide NO X is contained in the exhaust gas (NO 2) , And reactive oxygen active species in the form of oxygen atoms (O * ), ozone (O 3 ) and OH are produced.
NO + O * → NO 2 ... (1)
The generated NO 2 is used to promote the oxidation of black smoke and the like collected on the surface of the dielectric (alumina tube 4). The reaction that proceeds here is, for example, C + 2NO 2 becomes CO 2 + CO + 2NO. Furthermore, O * + C = CO, the oxidation of O 3 + C → CO + CO 2 + O 2, 2OH + C = CO + H 2 O and made of carbon is carried out by other reactive substances. Next, for example, the generated CO reduces NO and NO 2 to become 2CO + 2NO = N 2 + 2CO 2 and 4CO + 2NO 2 = N 2 + 4CO 2 . When NO X is present in the exhaust gas flowing through the pulse corona generation field and the space around the pulse corona generation field, the NO X is oxidized (reaction (1)) or decomposed (reaction (2)).
2NO → N 2 + O 2 (2)
In this way, when the pulse corona surface discharge is not generated, the black smoke is trapped on the surface of the dielectric (alumina tube 4) by adhesion or adsorption, and the pulse voltage is applied between the anode 1 and the cathode 7 sandwiching the dielectric. When a pulse corona creeping discharge is generated around the surface of the derivative (alumina tube 4) and around the silver wire 5 when applied, the black smoke adhering or adsorbed on the surface of the derivative (alumina tube 4) is oxidized and decomposed as described above. If there is NO X flowing in the pulse corona generation field and the space around it, it is reduced and decomposed as described above, and for example, C, CO, NO, NO 2 is detoxified into CO 2 , N 2 , O 2, etc. From the gas outlet 9. The incomplete combustion products flowing through the pulse corona generating hall and the space around them, for example a hydrocarbon C m H n is CO 2, CO, the H 2 O, in a similar manner further CO is oxidized to CO 2 The gas is discharged from the gas outlet 9.
[0012]
The pulse corona creeping discharge that occurs between the dielectric surface and the electrode has a deep relationship with the thickness of the dielectric, and the applied pulse voltage must be increased as the thickness of the dielectric increases, resulting in the efficiency of the pulse power supply. Gets worse. If the dielectric is too thin, the dielectric may be damaged by the voltage applied to the dielectric and the high temperature exhaust gas. Generally, the thickness of the dielectric is preferably about 0.1 to about 50 mm, more preferably about 1 to about 30 mm.
[0013]
Corona creeping discharge in the case of using a dielectric mainly occurs between the metal electrode and the dielectric surface. Therefore, a conductive metal electrode and a dielectric surface are indispensable. As a material of the electrode, a metal having low resistance, such as iron, stainless steel, copper, and aluminum, can be used. The shape of the electrode may be any as long as the object of the present invention is achieved, and examples thereof include a linear shape, a net shape, a rod shape, and a plate shape. Preferably it is a mesh. In the case of a plate shape, it is preferable to have a hole of, for example, a square, a circle or an arbitrary shape. Any material that can generate a pulse corona surface discharge between the electrode and the dielectric to remove black smoke and the like as described above may be used. In this case, the metal electrode may be provided on the dielectric surface, or a part of the metal electrode may be embedded in the dielectric surface. Preferably, a metal electrode is provided on the dielectric surface.
[0014]
As a material of the dielectric, a strong material, for example, alumina, titanium oxide, glass, quartz, ceramics or the like can be used. The shape of the dielectric can be a plate shape, a tubular shape, or the like, and a plate shape is preferable. It is preferable that the surface shape of the dielectric is made uneven to secure the occurrence of discharge and to enlarge the discharge space.
[0015]
The pulse power supply is used for pulse corona discharge after storing electric energy in a capacitor or a coil. Therefore, it is necessary to adjust the charging time of the pulse voltage, the rising time, and the time width of the pulse corona discharge. When the pulse frequency is set in the range of about 1 Hz to about 500 kHz, the half width of the pulse voltage is set to about 1 ns to about 0.01 s. Considering the characteristics of the dielectric, the half width of the pulse voltage is preferably about 0.01 μs to about 0.01 s. Irrespective of whether the pulse voltage is always positive, always negative, or both positive and negative, a pulse corona surface discharge occurs. The peak absolute value of the pulse voltage is related to the thickness of the dielectric and the energy input per unit pulse, and the peak absolute value of the pulse voltage is preferably in the range of about 100 V to 50 kV.
[0016]
For example, in the case of a combustion engine such as a car, the emission amount of harmful substances such as black smoke NO X in the combustion exhaust gas is determined by the engine speed, the fuel injection speed, the vehicle running speed, and the generator speed related to the engine speed. Number, engine operating characteristics including engine load, and combustion characteristics of the internal combustion engine. Utilizing the characteristic that the amount of black smoke emitted increases in proportion to the fuel consumption per revolution, the fuel injection speed or the engine speed, load magnitude, running speed, generator related to the fuel injection speed The pulse voltage is fixed on the basis of the rotation speed and the power generation capacity of the device, and the pulse frequency is adjusted by using a pulse frequency control device, so that black smoke or the like can be processed. The combustion exhaust gas may be directly subjected to the removal method of the present invention, or may be diluted with an appropriate gas (for example, air) and subjected to the removal method of the present invention. The dilution ratio may usually be about 1.5 to 400 times by volume. If the amount of discharge of black smoke is large, or increasing the pulse frequency, by reducing the pulse frequency when a small amount discharge of black smoke, further NO X black smoke or the like, or in the exhaust gas If it is included, it is possible to efficiently and economically safely discharge NO X that satisfies the emission standard.
[0017]
【Example】
The present invention will be described with reference to examples, but the present invention is not limited to these examples.
About diesel engines;
Exhaust gas from a diesel engine (total displacement: 2L) using diesel light oil fuel is diluted with air to measure black smoke emission [Measurement method: continuous filter type, equipment used: TEOM 1105, equipment manufacturer: Rupprecht & Patashick Co. , Inc. The relationship between this and the shaft output is shown in FIG. 2 (where the dilution ratio of the exhaust gas used for measurement at each engine speed with air is 1.0 krpm: 141 volumes, 1.5 krpm: 154 volumes). 2.0 krpm: 82 times the volume, 3.0 krpm: 347 times the volume). Irrespective of the rotation speed, the emission of black smoke per hour increased potential. It should be noted that this type of engine can comply with the black smoke emission regulations of 1993, but cannot comply with the new emission regulations of 1997 or later. Particulate matter (PM)). On the other hand, the relationship between the NO X concentration and the shaft output is shown in FIG. 3 (where the dilution ratio of the exhaust gas used for measurement at each engine speed is 2.5 krpm: 347 volume times, and the other engine speed is 2 krpm. , 3 krpm was the same as in FIG. 2). As is clear from the figure, the emission concentration of NO is about 90 ppm or more in the case of 2 krpm or more and increases in proportion to the load of the engine. In addition, most of the NO X is NO. 2 was found to be about 10 ppm. (Analysis method of NO X : chemiluminescence method, equipment used: NO · NO 2 · NO X analyzer ECL-880 US, equipment maker: Anatech Yanaco Co., Ltd.)
[0018]
[Example 1]
A silver wire 5 (diameter: 0.5 mm, number of turns) wound from the exhaust pipe of a diesel engine to the surface of an alumina tube 4 (outer diameter: 10 mm, inner diameter: 6 mm, length: 200 mm) of the pulse corona surface discharge reactor in FIG. : 14 times, the black smoke previously collected in the winding length (the length of the alumina tube 4 where the silver wire is wound: 50 mm) was oxygen (10%) and While flowing a mixed gas of nitrogen (90%), a pulse power supply (DP-10K10, rise time: about 25 ns, half-width of pulse voltage: about 700 ns, manufactured by Pulse Electronics Technology Co., Ltd.) between the anode 1 and the cathode 7 Was used to apply a pulse voltage (peak voltage: 7 kV), the frequency was changed to 1 kHz, 2 kHz, and 3 kHz, and a gas generated by generating a pulse corona surface discharge was analyzed. Oxygen: Nitrogen = 1: was the mixing ratio of 9 was determined based on the analysis of exhaust gas of a diesel engine (Fig. 4) (N 2, O 2 analytical methods: analysis by gas chromatography, using equipment: AGC280, equipment manufacturer: Okura Riken Co., Ltd.). As a result, black smoke as is clear from FIG. 5 is changed mainly to CO and CO 2 (CO and CO 2 Analysis method: Analysis by gas chromatography, using equipment: GC103, equipment manufacturers: Riken Okura Co.) . It is considered that the oxidation reaction and the reduction reaction are simultaneously occurring in the pulse corona discharge field since CO having the reduction reaction ability is generated. No new NO X was found. Since the ability to remove black smoke has a maximum of 1 mg / hour, it is considered that practical application of black smoke treatment for exhaust gas from an engine is preferably possible by preferably increasing the reaction area and improving the shape of the reactor.
[0019]
[Example 2]
After diluting 0.36 L / min exhaust gas of a diesel engine 2.9 times with air, the pulse corona surface discharge reactor [in this case, an aluminum wire 5 (diameter: 0.5 mm, A pulse voltage is applied between the anode 1 and the cathode 7 while the winding number is 68 times and the winding length (the length of the alumina tube 4 where the aluminum wire is wound is 85 mm). As a result of analyzing the processing effect of black smoke by generating a pulse corona surface discharge, when the frequency is 1 kHz and the pulse voltage is 7.2 kV (peak), the processing capacity of black smoke is 0.45 mg / hour, and the black smoke is removed. The rate was 89% by weight, and the NO X removal rate was 40% by weight (FIG. 6).
[0020]
[Example 3]
After diluting 0.15 L / min exhaust gas of a diesel engine 20 times with air, the pulse corona was introduced into the pulse corona creeping discharge reactor (in this case, using aluminum wire 5) in FIG. As a result of analyzing the processing effect of black smoke by generating discharge, when the pulse peak voltage is 5 kV and the pulse frequency is 1 kHz, 2 kHz, and 4 kHz, the processing capacity of black smoke is 0.11, 0.13, and 0.1, respectively. The amount of black smoke was 28% by weight, 19% by weight and 31% by weight, respectively. The removal rates of NO X were 68%, 86% and 90% by weight, respectively.
[0021]
[Example 4]
A gas obtained by diluting the exhaust gas of the diesel engine at 0.015 L / min 200 times with air was introduced into the pulse corona surface discharge reactor (in this case, using the aluminum wire 5) in FIG. As a result of analyzing the black smoke treatment effect by generating a pulse corona discharge (pulse peak voltage: 5.5 kV, frequency: 2 kHz), the processing capability of black smoke was 0.04 mg / hour at maximum and the black smoke removal rate Was 50% by weight. In addition, the concentration of black smoke could be reduced to at least 0.2 mg / m 3 . The removal rate of NO X was 50 to 60% by weight.
[0022]
【The invention's effect】
The present invention, and methods also remove high efficiency and economically NO X when the black smoke and / or incomplete combustion products generated by the combustion of carbon-based fuels, or include further NO X in the exhaust gas An apparatus for removing can be provided.
[Brief description of the drawings]
FIG. 1 shows a sectional view of a pulse corona surface discharge reactor.
FIG. 2 shows the relationship between black smoke (particulate matter “PM”) emission speed (g / h) and shaft output (kW).
FIG. 3 shows the relationship between NO X concentration (ppm) and shaft output (kW).
FIG. 4 shows the relationship between the concentration of exhaust components (%) and the experiment time (second).
FIG. 5 shows the relationship between the selectivity (%) of CO / CO 2 and the time (minutes).
FIG. 6 shows a relationship between black smoke (particulate matter “PM”) emission rate (g / h), NO X concentration (ppm), and time (minute).
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Anode 2 Stainless steel joint tube 3 Glass tube 4 Alumina tube 5 Silver wire or aluminum wire 6 Stainless steel rod 7 Cathode 8 Gas inlet 9 Gas outlet 10 Insulator

Claims (6)

炭素系燃料の燃焼により発生する排気ガスを、誘電体表面に設置した金属電極にパルス電圧を印加して該誘電体表面に沿って発生するパルスコロナ放電と接触させて、排気ガス中の黒煙または/および不完全燃焼物を、あるいは排気ガス中にさらにNOが含まれる場合はNOをも除去することを特徴とする排気ガス中の有害物質の除去方法。The exhaust gas generated by the combustion of the carbon-based fuel is brought into contact with a pulse corona discharge generated along the dielectric surface by applying a pulse voltage to a metal electrode provided on the surface of the dielectric to produce black smoke in the exhaust gas. and / or method for removing harmful substances in the exhaust gas, characterized by also removing NO X when the incomplete combustion product, or further contains NO X in the exhaust gas. 誘電体が少なくとも一つ以上の処理表面を持ち、該誘電体の厚さが0.1〜50mmの範囲にあることを特徴とする請求項1に記載の方法。The method of claim 1, wherein the dielectric has at least one or more treated surfaces, and the thickness of the dielectric ranges from 0.1 to 50 mm. 誘電体表面に設置した金属電極が四角形、円形あるいは任意の形の穴を有し、該金属電極が該誘電体表面に設置または埋められていることを特徴とする請求項1または2のいずれかに記載の方法。The metal electrode provided on the dielectric surface has a square, circular or arbitrary shaped hole, and the metal electrode is provided or buried on the dielectric surface. The method described in. 金属電極が網状であることを特徴とする請求項1〜3のいずれかに記載の方法。The method according to any one of claims 1 to 3, wherein the metal electrode is reticulated. パルス電圧が常時正、常時負または正と負が交互に印加され、該パルス電圧のピーク絶対値が100V〜50kVで、該パルス電圧の立ち上がり時間が10ns〜0.01s、該パルス電圧の半値幅が0.01μs〜0.01s、および該パルス電圧の周波数が1Hz〜500kHzの範囲にあることを特徴とする請求項1〜4のいずれかに記載の方法。The pulse voltage is always positive, always negative or positive and negative are alternately applied, the peak absolute value of the pulse voltage is 100 V to 50 kV, the rise time of the pulse voltage is 10 ns to 0.01 s, and the half width of the pulse voltage 5. The method according to claim 1, wherein the pulse voltage is in the range of 0.01 μs to 0.01 s, and the frequency of the pulse voltage is in the range of 1 Hz to 500 kHz. 誘電体と、誘電体表面に設置または埋められている金属電極、パルス電圧供給源およびパルス周波数制御装置とを具備することを特徴とする炭素系燃料の燃焼により発生する排気ガスから排気ガス中の黒煙または/および不完全燃焼物を、あるいは排気ガス中にさらにNOが含まれる場合はNOをも除去する装置。Dielectric, metal electrodes installed or buried on the dielectric surface, a pulse voltage supply and a pulse frequency control device, characterized in that it comprises: A device that removes black smoke and / or incompletely combusted substances, or NO X when exhaust gas further contains NO X.
JP2002355174A 2002-11-22 2002-12-06 Method and apparatus for removing black smoke of combustion exhaust gas, incomplete combustion product and nox Pending JP2004216201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002355174A JP2004216201A (en) 2002-11-22 2002-12-06 Method and apparatus for removing black smoke of combustion exhaust gas, incomplete combustion product and nox

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002338974 2002-11-22
JP2002355174A JP2004216201A (en) 2002-11-22 2002-12-06 Method and apparatus for removing black smoke of combustion exhaust gas, incomplete combustion product and nox

Publications (1)

Publication Number Publication Date
JP2004216201A true JP2004216201A (en) 2004-08-05

Family

ID=32910826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002355174A Pending JP2004216201A (en) 2002-11-22 2002-12-06 Method and apparatus for removing black smoke of combustion exhaust gas, incomplete combustion product and nox

Country Status (1)

Country Link
JP (1) JP2004216201A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006132103A1 (en) * 2005-06-08 2006-12-14 Nissin Electric Co., Ltd. Exhaust emission control method and exhaust emission control system
JP2007021312A (en) * 2005-07-13 2007-02-01 Toshiba Corp Discharge system
JP5150482B2 (en) * 2006-03-30 2013-02-20 日本碍子株式会社 Exhaust gas purification device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04135619A (en) * 1990-09-26 1992-05-11 Agency Of Ind Science & Technol Exhaust gas purifying facility
JPH05115746A (en) * 1991-10-28 1993-05-14 Mitsubishi Heavy Ind Ltd Exhaust gas treatment apparatus
JPH09329015A (en) * 1996-06-13 1997-12-22 Shunsuke Hosokawa Corona discharge element and gas treatment device using it
JP2001276648A (en) * 2000-03-31 2001-10-09 Ohm Denki Kk Device and method for collecting dust

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04135619A (en) * 1990-09-26 1992-05-11 Agency Of Ind Science & Technol Exhaust gas purifying facility
JPH05115746A (en) * 1991-10-28 1993-05-14 Mitsubishi Heavy Ind Ltd Exhaust gas treatment apparatus
JPH09329015A (en) * 1996-06-13 1997-12-22 Shunsuke Hosokawa Corona discharge element and gas treatment device using it
JP2001276648A (en) * 2000-03-31 2001-10-09 Ohm Denki Kk Device and method for collecting dust

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006132103A1 (en) * 2005-06-08 2006-12-14 Nissin Electric Co., Ltd. Exhaust emission control method and exhaust emission control system
KR100955507B1 (en) 2005-06-08 2010-05-03 닛신덴키 가부시키 가이샤 Exhaust emission contr0l method and exhaust emission control system
JP2007021312A (en) * 2005-07-13 2007-02-01 Toshiba Corp Discharge system
JP5150482B2 (en) * 2006-03-30 2013-02-20 日本碍子株式会社 Exhaust gas purification device

Similar Documents

Publication Publication Date Title
US7521031B2 (en) Method and apparatus for treating exhaust gas
US6772584B2 (en) Apparatus for removing soot and NOx in exhaust gas from diesel engines
EP1412060B1 (en) Gasoline engine with an exhaust system for combusting particulate matter
CA2159504C (en) Emission control device and method
Okubo et al. Low-temperature soot incineration of diesel particulate filter using remote nonthermal plasma induced by a pulsed barrier discharge
Jõgi et al. Plasma and catalyst for the oxidation of NOx
Okubo et al. Continuous regeneration of ceramic particulate filter in stationary diesel engine by nonthermal-plasma-induced ozone injection
Yoshida et al. $\hbox {NO} _ {\rm x} $ Aftertreatment Using Thermal Desorption and Nitrogen Nonthermal Plasma Reduction
KR100996671B1 (en) Exhaust gas processing system
JP2004216201A (en) Method and apparatus for removing black smoke of combustion exhaust gas, incomplete combustion product and nox
JP2006132483A (en) Exhaust emission control device, exhaust emission control method and control method
JP2004204739A (en) Exhaust emission control system and exhaust emission control method
Okubo et al. Total diesel emission control system using ozone injection and plasma desorption
Nishanth et al. Plasma Catalysis of Diesel Exhaust for NO X Abatement: A Feasibility Study With Red Mud Industrial Waste
Allamsetty et al. Review of Discharge Plasma Treatment of NO X in Diesel Engine Exhaust: Progress in Stand-Alone and Cascaded Measures
JP2002213228A (en) Exhaust emission control device for internal combustion engine
JP2001162134A (en) Method and device for cleaning waste gas
Kawakami et al. Performance evaluation of PM, NOx, and hydrocarbon removal in diesel engine exhaust by surface discharge-induced plasma
JP2004092589A (en) Exhaust emission control device for internal combustion engine
Mohapatro et al. Treatment of NOX from diesel engine exhaust by dielectric barrier discharge method
JP3875571B2 (en) Exhaust gas treatment apparatus and exhaust gas treatment method
Koizumi et al. An experimental NOx treatment in diesel engine combustion exhaust gases by non-thermal plasma and activated carbon filter combinations
KR100340902B1 (en) Plasma/DPF/Catalyst System for Simultaneous Removal of NOx and Soot in Diesel Engine Exhaust Gas
Vishal et al. Recent advancements in emission reduction for diesel vehicles using non thermal plasma activation
Mohapatro et al. Studies on compact discharge plasma source for NOx treatment in engine exhaust

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100727