JPS62298157A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS62298157A
JPS62298157A JP61141924A JP14192486A JPS62298157A JP S62298157 A JPS62298157 A JP S62298157A JP 61141924 A JP61141924 A JP 61141924A JP 14192486 A JP14192486 A JP 14192486A JP S62298157 A JPS62298157 A JP S62298157A
Authority
JP
Japan
Prior art keywords
film
groove
insulating film
semiconductor
trench
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61141924A
Other languages
Japanese (ja)
Other versions
JPH0423425B2 (en
Inventor
Juro Yasui
安井 十郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61141924A priority Critical patent/JPS62298157A/en
Publication of JPS62298157A publication Critical patent/JPS62298157A/en
Publication of JPH0423425B2 publication Critical patent/JPH0423425B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate the effects of crystal defects, contamination and the like of a semiconductor substrate yielded by etching, by forming a capacitor insulating film on the surface of a semiconductor film, which is newly formed on the sidewall of a groove that is formed by etching the semiconductor substrate. CONSTITUTION:A first SiO2 film 2, which is formed as a mask for selective etching, is made to remain. A same conductivity type electric isolating impurity layer 4 is formed at the bottom surface of a groove 3, which is formed by etching. A second CVD SiO2 insulating film 5 is formed on the bottom surface of the groove. Only a P-type Si semiconductor substrate 1, which forms the sidewall of the groove, is exposed. A first Si semiconductor film 6 including opposite conductivity type impurites is selectively formed only on the sidewall of the groove. Then, a SiO2 capacitor insulating film 7 is formed on the surface of the first semiconductor film. A second polycrystalline Si semiconductor film 8 including impurities is formed, and the groove is buried. A groove capacitor comprising the first and second semiconductor films 6 and 8 and the capacitor insulating film 7 is formed.

Description

【発明の詳細な説明】 3、発明の詳細な説明 産業上の利用分野 不発明は半導体装置、特にダイナミックメモリー素子に
関する。
DETAILED DESCRIPTION OF THE INVENTION 3. Detailed Description of the Invention Field of Industrial Application The invention relates to semiconductor devices, particularly dynamic memory devices.

従来の技術 半導体装置の中でもダイナミックメモリー(DRAM)
はその容量増大のために最も微細化が要求されるものの
一つであり、そのために狭くて深い溝の側壁に電荷を蓄
える溝キャパシターが提案され、その構造、あるいは製
造方法が提案され試みられている。
Among conventional technology semiconductor devices, dynamic memory (DRAM)
is one of the things that requires the most miniaturization in order to increase its capacitance, and for this reason, trench capacitors that store charge on the side walls of narrow and deep trenches have been proposed, and their structures and manufacturing methods have been proposed and attempted. There is.

これらのなかで素子間を電気的に分離するための分離溝
の側壁をキャパシターとして利用する方法は小さなメモ
リーセル面積で大きな蓄積電荷が得られるため大容量D
RAMを実現する有効な方法である。
Among these methods, the method of using the sidewalls of isolation trenches as capacitors for electrically isolating between elements has a large capacity D because a large amount of accumulated charge can be obtained with a small memory cell area.
This is an effective way to implement RAM.

以下に分離溝の側壁にキャパシターに形成する従来の技
術を説明する。
A conventional technique for forming a capacitor on the sidewall of an isolation trench will be described below.

第2図において3はS1基板に形成した溝、10゜4は
各々n形、p形不純物層、7はsi、o、、膜である。
In FIG. 2, 3 is a groove formed in the S1 substrate, 10.degree. 4 is an n-type impurity layer and a p-type impurity layer, respectively, and 7 is an Si film, an O film, and the like.

表面に8102膜2を形成したp形S1基板1に写真蝕
刻法で形成したホトレジスト全マスクにして5i02膜
2を反応性イオンエツチング(RIE)法でエツチング
し、さらに5102膜2をマスクにしてSi基板1をエ
ツチングすることによって溝3を形成すb0適切な洗浄
の後湾3の内壁を形成する81基板にn形不純物を添加
しn形不純物層1oを形成する(第2図a)。
The 5i02 film 2 is etched by reactive ion etching (RIE) using a full photoresist mask formed by photolithography on a p-type S1 substrate 1 with an 8102 film 2 formed on its surface, and then Si is etched using the 5102 film 2 as a mask. Grooves 3 are formed by etching the substrate 1 b0 After appropriate cleaning, an n-type impurity is added to the substrate 81 forming the inner wall of the bay 3 to form an n-type impurity layer 1o (FIG. 2a).

n形不純物層1oは薄いほうが望ましいため、Sユ 中
の拡散係数の小さいムSがn形不純物として選ばれるこ
とが多く、その添加方法はたとえばAS全含む5i02
膜(Asガラス膜)を溝3内壁上に形成し熱処理によっ
てSi基板1中にムSを熱拡散させる方法、Asを含む
雰囲気中でSi基板1を加熱して直接溝3内壁の81基
板1中にASt熱拡散させる方法、あるいは溝3の側壁
に対して斜めの方向に加速したイオンを照射する等の方
法が用いられる。
Since it is desirable that the n-type impurity layer 1o be thin, S having a small diffusion coefficient in S is often selected as the n-type impurity.
A method in which a film (As glass film) is formed on the inner wall of the groove 3 and thermally diffused into the Si substrate 1 by heat treatment. A method of thermally diffusing ASt into the groove 3 or a method of irradiating the side wall of the groove 3 with accelerated ions in an oblique direction is used.

次に溝3の底面をなすsi、基板1中にBを添加してp
形不純物層4を形成し、溝3の対向する側面に形成され
たn形不純物層10間の電気的な分離を図る(第2図b
)。Bの添加方法は溝3の側面に注入されないように8
1基板1表面に垂直な方向に加速したBイオンをすでに
底面に形成されたn形不純物層10のn形不純物よりも
十分多い量だけ注入することによって溝底面にp形不純
物層4を形成する。
Next, B is added into Si, which forms the bottom of the groove 3, and the substrate 1.
A type impurity layer 4 is formed to electrically isolate the n-type impurity layers 10 formed on opposite sides of the trench 3 (see FIG. 2b).
). The method of adding B is to prevent it from being injected into the side surface of groove 3.
1 A p-type impurity layer 4 is formed on the bottom surface of the groove by implanting B ions accelerated in a direction perpendicular to the surface of the substrate 1 in an amount sufficiently larger than the n-type impurity of the n-type impurity layer 10 already formed on the bottom surface. .

続いて溝3内壁に熱酸化法によってキャパシター絶縁膜
となる薄い5i02膜7を形成する(第2図C)。
Subsequently, a thin 5i02 film 7, which will become a capacitor insulating film, is formed on the inner wall of the trench 3 by thermal oxidation (FIG. 2C).

n形不純物であるPを添加した多結晶S1膜8を形成し
エッチバック法を用いることによって溝3内に多結晶S
1膜8を埋め込み、さらに溝3の上部の多結晶si、膜
8を除去してCVD法で形成した5102膜9を埋め込
むことによって分離溝の側壁にキャパシターを形成する
(第2図d)。
By forming a polycrystalline S1 film 8 doped with P, which is an n-type impurity, and using an etch-back method, polycrystalline S1 is formed in the groove 3.
A capacitor is formed on the side wall of the isolation trench by burying the 5102 film 9 formed by the CVD method after removing the polycrystalline Si film 8 on the upper part of the trench 3 (FIG. 2d).

発明が解決しようとする問題点 上記従来の技術によυ形成したトレンチキャノ(ジター
においては、キャパシター絶縁膜了が溝3の側壁をなす
81基板表面に形成されているためエツチング時に生じ
た結晶欠陥、あるいは汚染等の影響を受けてキャパシタ
ー絶縁膜として十分良質の絶縁膜を得るのが難しいとい
う問題が生じる。
Problems to be Solved by the Invention In the trench capacitor formed by the above-mentioned conventional technique, since the capacitor insulating film is formed on the surface of the substrate 81 forming the side wall of the trench 3, crystal defects occur during etching. Otherwise, a problem arises in that it is difficult to obtain an insulating film of sufficient quality as a capacitor insulating film due to the influence of contamination and the like.

これを解決するためにエツチング後、溝3の側壁をなす
Si基板を結晶欠陥や汚染のない方法でさらに追加エツ
チングして、結晶欠陥や汚染の存在する表面層を除去す
る方法が提案されているが、一度形成した溝3の形状が
かわる恐れがあり、又溝3の幅が狭くかつ深い場合には
所望の追加エツチングが難しいなどの問題を併せもって
いる。
To solve this problem, a method has been proposed in which after etching, the Si substrate forming the sidewall of the groove 3 is further etched using a method that does not cause crystal defects or contamination, thereby removing the surface layer where crystal defects and contamination exist. However, there is a risk that the shape of the groove 3 once formed may change, and if the width of the groove 3 is narrow and deep, it is difficult to carry out the desired additional etching.

さらに溝3底面にすでに形成されたn形不純物層10よ
りも不純物濃度の大なるp形不純物層4を形成する際に
Bイオンの注入法を用いるときに、溝3のキャパシター
を形成する側壁にもBイオンが注入され、n形不純物層
10の一部がp形不純物層に変換されてしまい、所望の
キャパシター面積が得られないという問題が生じる。こ
の問題は特に溝3の側面が垂直でなく傾斜している際に
生じるもので、キャパシター面積、すなわち蓄積電荷量
が溝の形状に大きく依存する原因となる。
Furthermore, when B ion implantation is used to form the p-type impurity layer 4, which has a higher impurity concentration than the n-type impurity layer 10 already formed on the bottom surface of the trench 3, the sidewall of the trench 3 where the capacitor will be formed is If B ions are also implanted, a part of the n-type impurity layer 10 is converted into a p-type impurity layer, causing a problem that a desired capacitor area cannot be obtained. This problem occurs particularly when the side surfaces of the groove 3 are not vertical but are inclined, and this causes the capacitor area, that is, the amount of accumulated charge, to be largely dependent on the shape of the groove.

問題点を解決するだめの手段 本発明では、選択エツチングのマスクとして形成した第
1の絶縁膜を残し、エツチングにより形成した溝の底面
に同一導電型の電気的分離用不純物層を形成した後さら
に溝の底面に第2の絶縁膜を形成して溝側壁をなす半導
体基板のみ分露光させ、この溝側壁上にのみ反対導電型
の不純物を含む第1の半導体膜を選択的に形成する。続
いてこの第1の半導体膜表面にキャパシター絶縁膜を形
成し、さらに不純物を含んだ第2の半導体膜を形成して
溝を略埋め、第1.第2の半導体膜とキャパシター絶縁
膜よりなる溝キャパシターを形成する。
Means to Solve the Problem In the present invention, after leaving the first insulating film formed as a selective etching mask and forming an electrically isolating impurity layer of the same conductivity type on the bottom of the groove formed by etching, further etching is performed. A second insulating film is formed on the bottom surface of the trench, and only the semiconductor substrate forming the trench sidewalls is exposed to light, and a first semiconductor film containing impurities of the opposite conductivity type is selectively formed only on the trench sidewalls. Subsequently, a capacitor insulating film is formed on the surface of the first semiconductor film, and a second semiconductor film containing impurities is further formed to substantially fill the trench. A trench capacitor made of a second semiconductor film and a capacitor insulating film is formed.

作用 本発明によるとキャパシター絶縁膜は溝側壁に新たに形
成された半導体膜表面に形成されるため良質の絶縁膜を
得ることができる。
According to the present invention, the capacitor insulating film is formed on the surface of the semiconductor film newly formed on the trench sidewall, so that a high quality insulating film can be obtained.

さらに溝底面の電気的分離のだめの同一導電型不純物層
はキャパシター〇一方の電極となる溝側壁上の半導体膜
が形成される前にすでに形成されているため、この不純
物層形成時にたとえ溝側壁が垂直でなくて傾斜しており
加速したイオンの一部が側壁に注入されてもその上に選
択的に形成される前記半導体膜の不純物濃度への影響は
ない。
Furthermore, since the impurity layer of the same conductivity type for electrical isolation at the bottom of the trench has already been formed before the semiconductor film on the trench sidewall, which will become one electrode of the capacitor, is formed, when forming this impurity layer, even if the trench sidewall is not vertical but is inclined, and even if some of the accelerated ions are implanted into the sidewall, there is no effect on the impurity concentration of the semiconductor film selectively formed thereon.

しかも溝底面には第2の絶縁膜が形成されており対向す
る溝側壁上の前記半導体膜は電気的に完全に分離される
Furthermore, a second insulating film is formed on the bottom surface of the trench, and the semiconductor films on the opposing trench sidewalls are completely electrically isolated.

実施例 本発明の一実施例を第1図とともに説明する。Example An embodiment of the present invention will be described with reference to FIG.

第1図において、1はp形Si基板、3はエツチングに
より形成した溝、6は溝底面に形成したC V D 5
i02膜、6は溝側壁に選択的に形成したS1膜、了は
5i02膜である。
In FIG. 1, 1 is a p-type Si substrate, 3 is a groove formed by etching, and 6 is a C V D 5 formed on the bottom of the groove.
The i02 film, 6 is the S1 film selectively formed on the side wall of the groove, and the 5i02 film is shown.

p形si基板1の表面に形成されたエツチング時にマス
クとなる5i02膜2を写真蝕刻法で形成したホトレジ
ストをマスクにしてエツチングし、さらに5102膜2
をマスクにしてSi基板1を反応性イオンエツチング(
RIM)法でエツチングして、幅0.8μm、深さ4μ
mの溝3を形成する。
The 5i02 film 2 formed on the surface of the p-type Si substrate 1, which serves as a mask during etching, is etched using a photoresist formed by photolithography as a mask, and then the 5102 film 2 is etched.
Using a mask, the Si substrate 1 is subjected to reactive ion etching (
Etched using RIM) method, width 0.8μm, depth 4μm
A groove 3 of m is formed.

si基板1に垂直な方向に加速したBイオンを注入し、
溝3の底面をなすSL基板1内にp形不純物層4を形成
する。
Injecting accelerated B ions in a direction perpendicular to the Si substrate 1,
A p-type impurity layer 4 is formed in the SL substrate 1 forming the bottom surface of the groove 3.

次にsi基板1表面にcvn法で厚さ0.2μmのCV
 D 5i02膜を形成しさらにホトレジストを塗布し
て溝3内を埋めてからホトレジス)f上面からエツチン
グして溝3内の底部にのみこのホトレジス)k残してか
ら等方向なエツチング法でCVD5工02膜をエツチン
グすることによって、溝3の底面にc V D 5io
2膜5を形成する(第1図a)。
Next, a CV with a thickness of 0.2 μm was formed on the surface of the Si substrate 1 using the CVN method.
D After forming a 5i02 film and applying photoresist to fill the trench 3, etching the photoresist f from the top surface and leaving this photoresist k only at the bottom of the trench 3, then using an isodirectional etching method to perform CVD5 etching. By etching the film, a c V D 5io is formed on the bottom of the groove 3.
2 films 5 are formed (FIG. 1a).

次にn形不純物であるAsを含んだ厚さ0.15μmの
S1膜6を溝3の側壁にのみ選択的に形成する(第1図
b)。
Next, an S1 film 6 containing As as an n-type impurity and having a thickness of 0.15 μm is selectively formed only on the side walls of the groove 3 (FIG. 1b).

これには原料ガスであるSiH4と不純物ガスであるA
SH3にHGIを加えて1050’Cでの選択エピタキ
シャル法を用いると絶縁膜上には形成されず81基板が
露出している溝側壁上にのみS1膜6が形成される。
This includes SiH4, which is a raw material gas, and A, which is an impurity gas.
When HGI is added to SH3 and a selective epitaxial method is used at 1050'C, the S1 film 6 is not formed on the insulating film but is formed only on the trench sidewall where the substrate 81 is exposed.

したがって溝の対向する側壁上に形成されたSi膜6は
溝底面のG V D 5iOz膜5によって電気的に分
離されるため、S1膜6形成後には分離のだめの工程は
不要である。
Therefore, the Si films 6 formed on the opposing sidewalls of the trench are electrically isolated by the G V D 5iOz film 5 on the bottom of the trench, so that a separation step is not required after the S1 film 6 is formed.

n形Si薄膜6を形成する。An n-type Si thin film 6 is formed.

前記のsi薄膜6表面に希釈した02ガス中での熱酸化
により厚さ10nmの5102膜7をキャパシター絶縁
膜として形成する(第1図C)。
A 5102 film 7 having a thickness of 10 nm is formed as a capacitor insulating film on the surface of the Si thin film 6 by thermal oxidation in diluted 02 gas (FIG. 1C).

その後は従来の技術と同様にしてcvn法でn形不純物
であるPを含んだ多結晶Si膜を形成しエッチバック法
により溝3内に多結晶Si膜8を埋め込む。さらに溝3
内の多結晶Si膜8を上方からO,Sμmだけ除去し、
cvn法で厚さ0.5μmの5102膜を形成しエッチ
パック法により溝3の上部に5i02膜9を埋め込むこ
とによって、分離溝の側面にキャパシターを形成するこ
とができる。
Thereafter, a polycrystalline Si film containing P as an n-type impurity is formed by the CVN method in the same manner as in the conventional technique, and a polycrystalline Si film 8 is embedded in the groove 3 by an etch-back method. Further groove 3
The inner polycrystalline Si film 8 is removed by O, S μm from above,
A capacitor can be formed on the side surface of the isolation trench by forming a 5102 film with a thickness of 0.5 μm using the cvn method and embedding the 5i02 film 9 in the upper part of the trench 3 using the etch pack method.

本発明の製造方法において溝3の底面に絶縁膜を形成す
る工程は一つの重要な工程であり前述の方法の他に、I
IRデポジション法のように方向性を有する膜形成法で
絶縁膜を形成した後等方的なエツチングによって溝側面
の絶縁膜を除去する方法を選ぶこともできる。これは溝
側面にはエツチング速度が大なる絶縁膜が形成されるこ
とを利用するもので、エツチング時のマスクとなるホト
レジスト等を使う必要がなく、制御性の良い方法である
In the manufacturing method of the present invention, the step of forming an insulating film on the bottom surface of the groove 3 is one important step, and in addition to the above-mentioned method,
It is also possible to select a method in which an insulating film is formed by a directional film formation method such as an IR deposition method, and then the insulating film on the side surfaces of the trench is removed by isotropic etching. This method takes advantage of the fact that an insulating film with a high etching rate is formed on the side surfaces of the trench, and it is a method with good controllability since there is no need to use photoresist or the like as a mask during etching.

発明の効果 以上のように本発明のキャパシター絶縁膜は半導体基板
をエツチングすることにより形成した溝の側壁に新たに
形成した半導体膜表面に形成されるため、エツチングに
よって生じる半導体基板の結晶欠陥や汚染等の影響を受
けることなく電気的特性の良好な絶縁膜を得ることがで
きる。
Effects of the Invention As described above, since the capacitor insulating film of the present invention is formed on the surface of a newly formed semiconductor film on the sidewall of a groove formed by etching a semiconductor substrate, it is free from crystal defects and contamination of the semiconductor substrate caused by etching. It is possible to obtain an insulating film with good electrical characteristics without being affected by such factors.

また溝の底面に電気的分離の目的でp形不純物層を形成
するため制御性と方向性の良いイオン注入法を用いる際
に、たとえ溝の側壁をなす半導体基板中にBイオンが注
入されてもその上に形成されたS1膜6に影響を及ぼす
ことがなく、高濃度のBが添加されたp形不純物層上に
はCV DSi02膜が形成されているため、このBに
よる影響もない。
Furthermore, when using an ion implantation method with good controllability and directionality to form a p-type impurity layer on the bottom of the trench for the purpose of electrical isolation, even if B ions are implanted into the semiconductor substrate forming the sidewalls of the trench, Since the CV DSi02 film is formed on the p-type impurity layer doped with B at a high concentration, there is no effect of this B on the S1 film 6 formed thereon.

他の効果としてn形不純物を含んだS1膜6が、p形不
純物層のBの影響なく形成でき、所望の厚さと不純物濃
度のキャパシター電極を形成することができる。しかも
S1膜6への不純物の添加は膜形成時に同時に行うため
に狭くて深い溝内への不純物添加を省くことができる。
Another effect is that the S1 film 6 containing n-type impurities can be formed without being affected by the B of the p-type impurity layer, and a capacitor electrode with a desired thickness and impurity concentration can be formed. Moreover, since the impurity is added to the S1 film 6 at the same time as the film is formed, it is possible to omit adding the impurity into the narrow and deep trench.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の分離溝側壁のキャパシタ一
部分の工程断面図、第2図は従来技術の同キャパシタ一
部分の形成工程断面図である。 3・・・・・・溝、4・・・・・・p形不純物層、5・
・・・・・CVD5i02膜、6・・・・・・S1膜、
了・・・・・・5i02膜、8・・・・・・多結晶S1
膜。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
FIG. 1 is a cross-sectional view of a part of a capacitor on the side wall of an isolation trench according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view of a part of the same capacitor according to the prior art. 3... Groove, 4... P-type impurity layer, 5...
...CVD5i02 film, 6...S1 film,
Completed...5i02 film, 8...Polycrystalline S1
film. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
figure

Claims (1)

【特許請求の範囲】[Claims] 半導体基板表面に第1の絶縁膜を有し所定の領域に選択
的エッチング法により形成した溝を有する一導電型半導
体基板を用意し、前記溝の少なくとも底面をなす半導体
基板に、同一導電型不純物を添加する工程、前記溝の底
面にのみ第2の絶縁膜を形成する工程、前記溝の側面に
のみ反対導電型の不純物を含む第1の半導体膜を形成す
る工程、前記半導体膜表面に第3の絶縁膜を形成する工
程、前記第3の絶縁膜表面に反対導電型の不純物を含む
第2の半導体膜を形成する工程よりなることを特徴とす
る半導体装置の製造方法。
A semiconductor substrate of one conductivity type having a first insulating film on the surface of the semiconductor substrate and a groove formed by a selective etching method in a predetermined region is prepared, and an impurity of the same conductivity type is added to the semiconductor substrate forming at least the bottom surface of the groove. a step of forming a second insulating film only on the bottom surface of the trench, a step of forming a first semiconductor film containing an impurity of an opposite conductivity type only on the side surfaces of the trench, and a step of adding a second insulating film to the surface of the semiconductor film. 3. A method for manufacturing a semiconductor device, comprising the steps of forming an insulating film in step 3, and forming a second semiconductor film containing impurities of an opposite conductivity type on the surface of the third insulating film.
JP61141924A 1986-06-18 1986-06-18 Manufacture of semiconductor device Granted JPS62298157A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61141924A JPS62298157A (en) 1986-06-18 1986-06-18 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61141924A JPS62298157A (en) 1986-06-18 1986-06-18 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS62298157A true JPS62298157A (en) 1987-12-25
JPH0423425B2 JPH0423425B2 (en) 1992-04-22

Family

ID=15303321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61141924A Granted JPS62298157A (en) 1986-06-18 1986-06-18 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS62298157A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0951055A2 (en) * 1998-04-17 1999-10-20 Hewlett-Packard Company Epitaxial material grown laterally within a trench
EP0951076A2 (en) * 1998-04-17 1999-10-20 Hewlett-Packard Company Buried reflectors for light emitters in epitaxial material and method for producing same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0951055A2 (en) * 1998-04-17 1999-10-20 Hewlett-Packard Company Epitaxial material grown laterally within a trench
EP0951076A2 (en) * 1998-04-17 1999-10-20 Hewlett-Packard Company Buried reflectors for light emitters in epitaxial material and method for producing same
EP0951055A3 (en) * 1998-04-17 1999-12-01 Hewlett-Packard Company Epitaxial material grown laterally within a trench
EP0951076B1 (en) * 1998-04-17 2006-09-20 LumiLeds Lighting U.S., LLC Semiconductor light emitting device and method of manufacturing the same

Also Published As

Publication number Publication date
JPH0423425B2 (en) 1992-04-22

Similar Documents

Publication Publication Date Title
US5976945A (en) Method for fabricating a DRAM cell structure on an SOI wafer incorporating a two dimensional trench capacitor
JP2994239B2 (en) SOI trench structure and method of manufacturing the same
US5989978A (en) Shallow trench isolation of MOSFETS with reduced corner parasitic currents
JPH1012718A (en) Trench element isolation
JP2775194B2 (en) Semiconductor device and method of manufacturing semiconductor isolation structure
EP0276292A1 (en) Process for fabricating stacked mos structures.
KR20020043279A (en) Fabrication method of isolation region for semiconductor devices
JPH06232247A (en) Manufacturing of semiconductor layer isolated on insulation layer
JPS62298157A (en) Manufacture of semiconductor device
JP3084047B2 (en) Method of forming element isolation structure
JPH0729971A (en) Manufacture of semiconductor device
JPH01319969A (en) Manufacture of semiconductor device
KR940007389B1 (en) Method of fabricating a capacitor for semiconductor memory device
JPH0334655B2 (en)
KR100205328B1 (en) Method for forming isolation film of semiconductor device
KR100355607B1 (en) Method for fabricating a semiconductor memory device having an inverse "T"type capacitor
JPS62120040A (en) Manufacture of semiconductor device
JPS63197332A (en) Production of semiconductor device
JPH0529541A (en) Manufacture of semiconductor device
JPH01214064A (en) Insulated gate field effect transistor and its manufacture
JP3106487B2 (en) Method for manufacturing semiconductor device
JP2661357B2 (en) Method for manufacturing semiconductor device
JPH0335534A (en) Manufacture of semiconductor device
JPS594046A (en) Semiconductor device and fabrication thereof
JPS62199045A (en) Manufacture of semiconductor device