JPS62297267A - Manufacture of sliding material for sliding seal - Google Patents

Manufacture of sliding material for sliding seal

Info

Publication number
JPS62297267A
JPS62297267A JP61138353A JP13835386A JPS62297267A JP S62297267 A JPS62297267 A JP S62297267A JP 61138353 A JP61138353 A JP 61138353A JP 13835386 A JP13835386 A JP 13835386A JP S62297267 A JPS62297267 A JP S62297267A
Authority
JP
Japan
Prior art keywords
silicon carbide
molded body
silicon
sliding
surface layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61138353A
Other languages
Japanese (ja)
Other versions
JPH0735301B2 (en
Inventor
大沢 芳夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eagle Industry Co Ltd
Original Assignee
Eagle Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eagle Industry Co Ltd filed Critical Eagle Industry Co Ltd
Priority to JP61138353A priority Critical patent/JPH0735301B2/en
Publication of JPS62297267A publication Critical patent/JPS62297267A/en
Publication of JPH0735301B2 publication Critical patent/JPH0735301B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Mechanical Sealing (AREA)
  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 3、発明の詳細な説明 産業上の利用分野 本発明は、耐食性のよいメカニカルシール用炭化ケイ素
質摺動材料を反応焼結法により製造する方法に関するも
のであ従来の技術 ポンプなどの軸封装置として用いられるメカニカルシー
ルの摺動材料には、耐摩耗性、摩擦係数、耐熱f+j撃
性、耐食性、強度などの特性が重視される。したがって
、メカニカルシール用摺動材料としては従来がら自己潤
滑性のある炭素質材料と耐摩耗性の焼入鋼、セラミック
ス、超硬合金などの硬質材料とを組合せて使用すること
が多かったが、近年、炭化ケイ素を主成分とする焼結法
からなるものが使われるようになった。これは、炭化ケ
イ素質焼結法がきわめて高い硬度、すくれた耐熱性と耐
食性、更にはセラミックスとしては異例の、高い耐熱衝
撃性を有しているからである。
Detailed Description of the Invention 3. Detailed Description of the Invention Field of Industrial Application The present invention relates to a method for producing a silicon carbide sliding material for mechanical seals with good corrosion resistance by a reaction sintering method. Sliding materials for mechanical seals used as shaft seal devices for technical pumps and the like are focused on properties such as wear resistance, friction coefficient, heat resistance, corrosion resistance, and strength. Therefore, as sliding materials for mechanical seals, a combination of self-lubricating carbonaceous materials and wear-resistant hard materials such as hardened steel, ceramics, and cemented carbide has traditionally been used. In recent years, sintering methods using silicon carbide as the main component have come into use. This is because the silicon carbide sintering method has extremely high hardness, excellent heat resistance and corrosion resistance, and also high thermal shock resistance, which is unusual for ceramics.

炭化ケイ素質焼結体を製造する方法の代表的なものとし
ては、特殊な焼結助剤を添加して炭化ケイ素をホットプ
レス焼結する方法(例:特開昭5o−34608号)、
無加圧で焼結する方法(例:特開昭50−78609号
)J3よび炭化ケイ素と炭素の混合粉末成形体中に外部
からケイ素の融液または蒸気を浸透させて炭素粒子を炭
化ケイ素に変換する反応焼結法(例:特公昭45−38
061号)などがあるが、それぞれ一長一短あることは
周知のとおりである。
Typical methods for producing silicon carbide sintered bodies include hot press sintering of silicon carbide with the addition of a special sintering aid (e.g., Japanese Patent Application Laid-open No. 5O-34608);
A method of sintering without pressure (e.g., JP-A-50-78609) J3 and a method of infiltrating silicon melt or steam from the outside into a mixed powder compact of silicon carbide and carbon to convert carbon particles into silicon carbide. Reaction sintering method to convert
No. 061), but it is well known that each has its advantages and disadvantages.

これを反応焼結法についてみると、反応焼結法は焼結工
程における寸法収縮がきわめて僅かであるから製品の寸
法精度がよく、また強・度等の物性のバラツキが少なく
、耐熱性、耐摩耗性等もすぐれた製品が得られるという
特長があるが、耐食性の点では、無加圧焼結法など池の
製法による炭化ケイ素質焼結体と比べてやや劣るものし
か得られないことが問題点として指+Xlされている。
Looking at this with respect to the reaction sintering method, the reaction sintering method has very little dimensional shrinkage during the sintering process, so the dimensional accuracy of the product is good, and there is little variation in physical properties such as strength and strength, and it has excellent heat resistance and durability. It has the advantage of producing products with excellent wear resistance, but in terms of corrosion resistance, it is only slightly inferior to silicon carbide sintered bodies produced by Ike's manufacturing methods, such as pressureless sintering. The problem is that the finger is +Xl.

すなわち、反応焼結法による炭化ケイ素質焼結体は酸や
アルカリなど化学作用の強い薬液と接触する苛酷な条件
で使われるメカニカルシールの摺動材料に用いると、や
や不充分な耐食性を示す。これは、製品中に未反応のケ
イ素が10〜30%程度残ることによるものである。
That is, silicon carbide sintered bodies produced by the reaction sintering method exhibit somewhat insufficient corrosion resistance when used as sliding materials for mechanical seals used under severe conditions in which they come into contact with strong chemical solutions such as acids and alkalis. This is because about 10 to 30% of unreacted silicon remains in the product.

したがって、未反応ケイ素の量がより少なくなるように
製造条件を選べば耐食性が改善されることは明らかであ
るが、それは決して容易なことではない。たとえばケイ
素の溶浸処理を行う成形体をより緻密なものにして過剰
量のケイ素が浸透しないようにする方法は、ケイ素融液
を成形体の芯部まで均一に浸透させることが難しく、製
品強度の低下を招き易い。
Therefore, it is clear that corrosion resistance can be improved by selecting manufacturing conditions such that the amount of unreacted silicon is reduced, but this is by no means easy. For example, the method of making the molded object subjected to silicon infiltration treatment more dense to prevent an excessive amount of silicon from penetrating makes it difficult to uniformly penetrate the silicon melt to the core of the molded object, resulting in product strength. This tends to lead to a decrease in

2明が解決しようとする問題点 本発明は、反応焼結法によってメカニカルシール用炭化
ケイ素質摺動材料を製造する場合における上記問題点を
解決し、耐食性の点でも池の製法によるもののそれに匹
敵する性能を有する摺動材料を製造する方法を提供しよ
うとするものである。
2. Problems to be Solved by Meiji The present invention solves the above-mentioned problems when producing silicon carbide sliding materials for mechanical seals by the reaction sintering method, and is comparable to that produced by Ike's method in terms of corrosion resistance. The purpose of the present invention is to provide a method for manufacturing a sliding material that has the following properties.

問題点を解決するだめの手段 本発明によるメカニカルシール用炭化ケイ素質摺動材料
の製造法は、ケイ素融液が芯部まで浸透可能な程度の密
度を有する成形体を炭化ケイ素粉末および炭素粉末より
製造し、その表層部に熱硬化性樹脂を含浸させたのち非
酸化性雰囲気で焼成して熱硬化性樹脂を炭化させ、熱硬
化性樹脂炭化物が存在する成形体表層部をメカニカルシ
ール用摺動材料の接液部とする部分以外の部分(その全
部でなくてもよい)において削除し、次いで成形体中に
ケイ素融液を浸透させてこれを成形体中の炭素と反応さ
せ炭化ケイ素を生成させることを特徴とするものである
Means for Solving the Problems The method of manufacturing a silicon carbide sliding material for mechanical seals according to the present invention involves forming a molded body from silicon carbide powder and carbon powder into a molded body having a density that allows silicon melt to penetrate to the core. The surface layer of the molded product is impregnated with a thermosetting resin, and then fired in a non-oxidizing atmosphere to carbonize the thermosetting resin. Remove the parts of the material other than those that will be in contact with the liquid (not all of them), then infiltrate silicon melt into the molded body and react with the carbon in the molded body to produce silicon carbide. It is characterized by allowing

以下、第1図に示したような断面形状を有し摺動面1よ
り外周側の表面(位置XからYまでの領域)が接液部2
どなる環状のメカニカルシール用摺動材料を製造する具
体例について、図面を示しながら本発明の詳細な説明す
る。
Below, the surface (area from position X to Y) on the outer peripheral side of the sliding surface 1 has a cross-sectional shape as shown in FIG.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail with reference to the drawings regarding a specific example of manufacturing a sliding material for mechanical seals having a circular ring shape.

最初に、反応焼結法の常法に従い炭化ケイ素粉末および
炭素粉末を適量の有磯貿結合剤(たとえばフェノール樹
脂のような熱硬化性樹脂)を用いて成形する。各成分の
配合比は、炭化ケイ素粉末60〜90重量%、炭素粉末
10〜40重量%、有機質結合剤5〜40重1%程度と
する。炭素粉末および有機質結合剤が多すぎると焼結体
中の未反応炭素量が多くなり、また少なすぎると焼結体
中の未反応ケイ素置が増え、いずれも好ましくない。
First, silicon carbide powder and carbon powder are molded using a suitable amount of a binder (for example, a thermosetting resin such as a phenolic resin) according to a conventional reaction sintering method. The blending ratio of each component is approximately 60 to 90% by weight of silicon carbide powder, 10 to 40% by weight of carbon powder, and 5 to 40% by weight of organic binder. Too much carbon powder and organic binder will increase the amount of unreacted carbon in the sintered body, and too little will increase the amount of unreacted silicon in the sintered body, both of which are undesirable.

成形圧は、後のケイ素溶浸工程でケイ素融液が成形体芯
部まで浸透し得るよう、成形後仮焼成して得られる成形
体の密度力弓、4〜2 、 G g/c+n”程度(こ
の密度範囲は従来の常法による反応焼結法におけるもの
と同じである)になるように選ぶことが望ましい。
The molding pressure is approximately 4 to 2 G g/c + n'', which is the density force of the molded body obtained by pre-firing after molding, so that the silicon melt can penetrate into the core of the molded body in the subsequent silicon infiltration step. (This density range is the same as that in the conventional reaction sintering method).

成形形状は、製造しようとするメカニカルシールm摺動
材料の形状にほぼ合致させるが、後に削除することにな
る部分には、“削りしろ3を用意する(第2閏の状態)
The molded shape should almost match the shape of the sliding material of the mechanical seal m to be manufactured, but in the parts that will be removed later, prepare a cutting allowance 3 (second leap state).
.

成形後、約800〜1000’Cで仮焼成して結合剤を
炭化させ、切削加工に耐える成形体とする。次いで、メ
カニカルシール用摺動材料の接液部2とする部分に、そ
の形状を整えるための切削加工を施し、第3図の状態に
する(但し、この部分の形状が成形段階ですでに仕上げ
られている場合には、7の七月肖11加−r1士不萼て
・ふ7.−1得られた成形体の表層部に熱硬化性13(
脂を含浸させるが、樹脂としては、7エ/−ル樹脂、7
ラン樹脂、エポキシ(」(脂など、炭化収率の高いもの
が適当である。含浸処理は、たとえば真空含浸装置を用
いて真空中で脱気してから含浸する方法により行うこと
ができる。す(脂含浸は、成形体の表層部のみに、望ま
しくは表面から約0.5〜3■の深さまで、施すことが
必要である(この樹脂含浸層は最終的には未反応ケイ素
含有率の低い高耐食性層となるものであるから、充分な
効果を挙げるには約0.5mm以上とすることが必要で
ある。しかしながら、あまり深くまで含浸させても、そ
の炭化物をケイ素融液と反応させることが難しいだけで
なく、メカニカルシール用摺動材料の接液部とする部分
以外の部分の削除量が増えるという無駄を生じるので、
通常約3n+n+が上限となる。)。
After molding, it is pre-fired at about 800 to 1000'C to carbonize the binder and form a molded body that can withstand cutting. Next, the part of the mechanical seal sliding material that will become the liquid contact part 2 is cut to adjust its shape to the state shown in Figure 3 (however, the shape of this part has already been finished at the molding stage). 7.-1 The surface layer of the obtained molded product is coated with thermosetting 13 (
It is impregnated with fat, but the resin is 7 el resin, 7
Materials with a high carbonization yield, such as orchid resins and epoxy resins, are suitable. The impregnation treatment can be performed, for example, by degassing in a vacuum using a vacuum impregnation device and then impregnating. (It is necessary to apply fat impregnation only to the surface layer of the molded body, preferably to a depth of about 0.5 to 3 cm from the surface. (This resin-impregnated layer should ultimately reduce the unreacted silicon content.) Since it becomes a layer with low and high corrosion resistance, it is necessary to have a thickness of about 0.5 mm or more to achieve a sufficient effect.However, even if it is impregnated too deeply, the carbide will react with the silicon melt. Not only is it difficult to do so, but it also results in unnecessary removal of more parts of the sliding material for mechanical seals than those that will be in contact with liquid.
The upper limit is usually about 3n+n+. ).

含浸処理済み成形体(第4図)の焼成は、非酸化性雰囲
気で、熱硬化性樹脂の炭化が完了するまで800〜16
 i)0 ’Cに加熱することにより行う。これにより
、成形体の表層部・tは、熱硬化性樹脂炭化物が池の部
分よりも高率で存在し、且つそれにより他の部分よりも
緻密な組織のものになる。
The impregnated molded body (Fig. 4) is fired in a non-oxidizing atmosphere at a temperature of 800 to 160 ml until carbonization of the thermosetting resin is completed.
i) By heating to 0'C. As a result, the thermosetting resin carbide exists in the surface layer t of the molded body at a higher rate than in the pond portion, and as a result, the surface layer t has a denser structure than other portions.

この後、成形体のうち接液部2とする部分以外の部分の
うち回転軸挿通孔となる部分5の表層部4を削除する。
After this, the surface layer 4 of the portion 5 that will become the rotating shaft insertion hole among the parts of the molded body other than the part that will become the liquid contacting part 2 is removed.

この削除のための切削とあわせて、接液部2とする部分
以外の部分の形状の仕上加工を行い、第5図の状態とす
る。
In addition to this cutting for deletion, finishing machining of the shape of the portion other than the portion to be the liquid contact portion 2 is performed to obtain the state shown in FIG. 5.

以上の処理を終わった成形体中にケイ素融液な浸透させ
る処理は、反応焼結法の常法に従って行えばよい。すな
わち、成形体を真空中または不活性〃ス中で約1450
〜2100°Cに加熱し、成形体の全表面にケイ素融液
を接触させる。不活性〃スとしては、アルゴン、ヘリウ
ム、水素などが利用できる。この処理により成形体中に
浸透したケイ素融液は、成形体中の炭素と反応して炭化
ケイ素を生じる。反応する炭素としては、原料の炭素、
有機質結合剤の炭化により生じた炭素、および表層部に
含浸された熱硬化性?、4(脂の炭化により生じた炭素
の三種類があるが、これらのうち最後のものがある未削
除の表層部l[は池の部分よりも炭素の比率が高く且つ
緻密であるから、反応せずに残る過剰のケイ素は少なく
なり、通常、10重量%以下にとどまる。池の部分6に
は、さきに表層部を削除しておいた部分からケイ素融液
が浸透上従来の反応焼結法の常法による場合と同様の焼
結体がそこに形成される。
The treatment of infiltrating the silicon melt into the molded body after the above treatment may be carried out according to the conventional reaction sintering method. That is, the molded body is heated in vacuum or in an inert gas for about 1450 min.
The molded body is heated to ~2100°C and the entire surface of the molded body is brought into contact with the silicon melt. Argon, helium, hydrogen, etc. can be used as the inert gas. The silicon melt that permeates into the molded body through this treatment reacts with carbon in the molded body to produce silicon carbide. The reacting carbon includes raw material carbon,
Carbon generated by carbonization of organic binder and thermosetting impregnated in the surface layer? , 4 (There are three types of carbon produced by carbonization of fat, but the last of these is the undeleted surface layer l[, which has a higher carbon ratio and is denser than the pond part, so it is difficult to react. The amount of excess silicon remaining without oxidation is reduced and usually remains below 10% by weight.In the pond section 6, the silicon melt penetrates from the area where the surface layer has been removed and is then subjected to conventional reaction sintering. A sintered body is formed there as in the conventional method.

以上のようにして、摺動面1を含む接液部2がケイ素含
有率の低い、高度の耐食性を有する焼結体層で覆われた
摺動材料を得る。
In the manner described above, a sliding material is obtained in which the liquid contact portion 2 including the sliding surface 1 is covered with a sintered body layer having a low silicon content and having a high degree of corrosion resistance.

z1倒 以下、実施例および比較例を示して本発明をさらに兵庫
的に説明する。
Below, the present invention will be further explained with reference to Examples and Comparative Examples.

実施例 図面を示して説明した前記メカニカルシール用摺動材料
の製法において、成形原料として平均粒径釣7μのα型
炭化ケイ素粉末70重量%、平均粒径6μの人造黒鉛粉
末25重量%、フェノール樹脂5重量%およびパラフィ
ン1重量%からなるものを用い、これにメタノールを加
えて混合し、乾燥後、金型に移して1 、S Lon/
 em”の圧力で加圧成形した。次いで非酸化性雰囲気
で一1200℃に加熱する仮焼成を行い、得られた成形
体(密度1 、95 g/cm’)に、接液部となる部
分の整形加工を施した。
In the manufacturing method of the sliding material for mechanical seals described with reference to the drawings, the forming raw materials include 70% by weight of α-type silicon carbide powder with an average particle size of 7 μm, 25% by weight of artificial graphite powder with an average particle size of 6 μm, and phenol. Using a material consisting of 5% by weight of resin and 1% by weight of paraffin, methanol was added and mixed, and after drying, it was transferred to a mold and 1, S Lon/
The molded body was press-molded at a pressure of 1.5 mm.Then, it was pre-fired at a temperature of -1200°C in a non-oxidizing atmosphere. It has undergone some plastic surgery.

この後、成形体を真空含浸装置に入れて真空脱気してか
ら、液状のフラン樹脂を含浸した。樹脂含浸層の厚さは
、平均201111であった。次いで非酸化性雰囲気で
1200 ’Cに加熱して樹脂を炭化させてから、熱硬
化性用脂炭化物が存在する成形体表層部4の一部(密封
流体と接触しない、回転柚挿通孔5の部分)の削除を行
なった。この後、1600 ’Cて・ケイ素融液と接触
させて反応焼結を生じさせた。
Thereafter, the molded body was placed in a vacuum impregnating device, vacuum degassed, and then impregnated with liquid furan resin. The average thickness of the resin-impregnated layer was 201,111 mm. Next, the resin is heated to 1200'C in a non-oxidizing atmosphere to carbonize the resin, and then a part of the molded body surface layer 4 where the thermosetting fat carbide is present (a part of the rotary yuzu insertion hole 5 that does not come into contact with the sealing fluid) (part) was deleted. This was followed by contact with a silicon melt at 1600'C to cause reactive sintering.

得られた炭化ケイ素質摺動材料の接液部2における表層
部4(深さ2++onまで)および芯部6について、平
均的な組成および密度を′:IA]べた結果は第1表の
とおりであった。
Table 1 shows the average composition and density of the surface layer 4 (up to a depth of 2++ on) and core 6 in the liquid contact area 2 of the silicon carbide sliding material obtained. there were.

第1表 表層部  芯部 5iC(重量%)    90     82Si(重
量%)     8    16C(重量%)22 密度 (g/cmコ)          3.08 
        2.99比較例 7ラン樹脂含浸を行わないほかは実施例と同様にして、
メカニカルシール−用摺動材料を製造した。得られた摺
動材料の表層部は、5iC81重景%、S; 17重量
%、C2重量%、密度2.98g/c+++コであった
First surface layer core 5iC (weight%) 90 82Si (weight%) 8 16C (weight%) 22 Density (g/cm) 3.08
2.99 Comparative Example 7 Same as Example except that orchid resin impregnation was not performed.
A sliding material for mechanical seals was manufactured. The surface layer of the obtained sliding material had 5iC81% by weight, S: 17% by weight, C2% by weight, and a density of 2.98 g/c+++.

次に上記2例による摺動材料の接液部2の耐食性を、下
記の方法により調べた。その結果を第2表に示す。
Next, the corrosion resistance of the liquid contact parts 2 of the sliding materials according to the above two examples was investigated by the following method. The results are shown in Table 2.

試験方法:実施例製品において低ケイ素含有率の表面層
4を持たない部分を耐食性の治具で覆い、70°Cの腐
食性試験液中に100時間浸漬する。比較例製品につい
ても同ヒ冶只。
Test method: The part of the example product that does not have the low silicon content surface layer 4 is covered with a corrosion-resistant jig and immersed in a corrosive test liquid at 70°C for 100 hours. The same applies to comparative products.

を装着して、同様の浸漬試験を行う。浸漬前後の試料重
量を測定し、重量減少率の大小がら耐食性の良否を4’
l定する。
Attach it and perform a similar immersion test. Measure the weight of the sample before and after immersion, and evaluate the corrosion resistance based on the weight loss rate.
Determine.

第2表 浸漬試験重量減少率(%) 試 験 液    実施例閃褐−比較例製品50%Na
OH00f) 32   0.7150%KOHO,0
41f)、 78 8N○3(20%)斗II’(5%)   1,133
   12.9発明の効果 本発明の製法によれば、従来の反応焼結法による場合よ
りら接液部の耐食性が向上するだけでなく、接液部表層
部が緻密になることにより機械的な強度も増すという効
果がもたらされる。したがって本発明によれば、高温の
酸やアルカリなど腐食性の強い密封流体と接する苛酷な
条件で・使用する摺動材料ら反応焼結法によって製造す
ることが可能になり、前述のような反応焼結法の利点を
従来よりも広い範囲て゛活用することができるようにな
る。
Table 2 Immersion test weight loss rate (%) Test liquid Example bright brown - Comparative example product 50% Na
OH00f) 32 0.7150%KOHO,0
41f), 78 8N○3 (20%) Dou II' (5%) 1,133
12.9 Effects of the Invention According to the manufacturing method of the present invention, not only the corrosion resistance of the wetted parts is improved compared to the conventional reaction sintering method, but also mechanical resistance is improved by making the surface layer of the wetted parts denser. This has the effect of increasing strength. Therefore, according to the present invention, it is possible to manufacture sliding materials used under severe conditions in contact with highly corrosive sealed fluids such as high-temperature acids and alkalis by the reaction sintering method. The advantages of the sintering method can now be utilized in a wider range than before.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第5図二本発明の詳細な説明図(断面図)1 
:摺動面        2:接液部第1図 第5図
Figures 1 to 5 2 Detailed explanatory diagrams (cross-sectional views) of the present invention 1
:Sliding surface 2:Wetted part Fig. 1 Fig. 5

Claims (2)

【特許請求の範囲】[Claims] (1)ケイ素融液が芯部まで浸透可能な程度の密度を有
する成形体を炭化ケイ素粉末および炭素粉末より製造し
、その表層部に熱硬化性樹脂を含浸させたのち非酸化性
雰囲気で焼成して熱硬化性樹脂を炭化させ、熱硬化性樹
脂炭化物が存在する成形体表層部をメカニカルシール用
摺動材料の接液部とする部分以外の部分において削除し
、次いで成形体中にケイ素融液を浸透させてこれを成形
体中の炭素と反応させ炭化ケイ素を生成させることを特
徴とする反応焼結法によるメカニカルシール用炭化ケイ
素質摺動材料の製造法。
(1) A molded body having a density that allows the silicon melt to penetrate to the core is manufactured from silicon carbide powder and carbon powder, the surface layer of which is impregnated with a thermosetting resin, and then fired in a non-oxidizing atmosphere. The thermosetting resin is carbonized, and the surface layer of the molded object where the thermosetting resin carbide is present is removed except for the part that will be in contact with the sliding material for mechanical seals, and then silicon melt is added into the molded object. A method for producing a silicon carbide sliding material for mechanical seals by a reactive sintering method, which comprises permeating a liquid and reacting with carbon in a molded body to produce silicon carbide.
(2)炭化ケイ素粉末および炭素粉末より製造する成形
体を、炭化ケイ素含有率60〜90重量%、密度1.4
〜2.6g/cm^3のものとする特許請求の範囲第1
項記載の製造法。
(2) A molded body manufactured from silicon carbide powder and carbon powder has a silicon carbide content of 60 to 90% by weight and a density of 1.4.
~2.6g/cm^3 Claim 1
Manufacturing method described in section.
JP61138353A 1986-06-16 1986-06-16 Manufacturing method of sliding material for mechanical seal Expired - Fee Related JPH0735301B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61138353A JPH0735301B2 (en) 1986-06-16 1986-06-16 Manufacturing method of sliding material for mechanical seal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61138353A JPH0735301B2 (en) 1986-06-16 1986-06-16 Manufacturing method of sliding material for mechanical seal

Publications (2)

Publication Number Publication Date
JPS62297267A true JPS62297267A (en) 1987-12-24
JPH0735301B2 JPH0735301B2 (en) 1995-04-19

Family

ID=15219948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61138353A Expired - Fee Related JPH0735301B2 (en) 1986-06-16 1986-06-16 Manufacturing method of sliding material for mechanical seal

Country Status (1)

Country Link
JP (1) JPH0735301B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0361326A2 (en) * 1988-09-28 1990-04-04 Hoechst CeramTec Aktiengesellschaft Silicon-infiltrated silicon carbide parts with a porous surface, and method of making them
JPH05279123A (en) * 1992-02-04 1993-10-26 Shin Etsu Chem Co Ltd Siliceous carbide member for producing semiconductor
US5273941A (en) * 1988-01-30 1993-12-28 Ibiden Co., Ltd. Fiber reinforced silicon carbide ceramics and method of producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5273941A (en) * 1988-01-30 1993-12-28 Ibiden Co., Ltd. Fiber reinforced silicon carbide ceramics and method of producing the same
EP0361326A2 (en) * 1988-09-28 1990-04-04 Hoechst CeramTec Aktiengesellschaft Silicon-infiltrated silicon carbide parts with a porous surface, and method of making them
JPH05279123A (en) * 1992-02-04 1993-10-26 Shin Etsu Chem Co Ltd Siliceous carbide member for producing semiconductor

Also Published As

Publication number Publication date
JPH0735301B2 (en) 1995-04-19

Similar Documents

Publication Publication Date Title
CN108658613B (en) Method for preparing automobile brake disc by short fiber die pressing
US5707567A (en) Process for producing a self-sintered silicon carbide/carbon graphite composite material having interconnected pores which maybe impregnated
US4419161A (en) Method of producing composite ceramic articles
US4019913A (en) Process for fabricating silicon carbide articles
JP2003238265A (en) Method of manufacturing hollow body made from fiber- reinforced ceramic material
US5236638A (en) Process for producing a shaped body of graphite
RU2718682C2 (en) Method of making ceramics based on silicon carbide, reinforced with silicon carbide fibres
JPS62297267A (en) Manufacture of sliding material for sliding seal
US4929472A (en) Surface-coated SiC whiskers, processes for preparing the same, ceramic reinforced with the same, and process for preparing said reinforced ceramic
JPS5891061A (en) Silicon carbide ceramics
JPH10212182A (en) Carbon-silicon carbide composite material and its production
JP2000052461A (en) Kiln tool excellent in processability
JP3142892B2 (en) Manufacturing method of reaction sintered composite ceramics and manufacturing method of sliding member using it
US4975302A (en) Surface-coated SiC whiskers, processes for preparing the same, ceramic reinforced with the same, and process for preparing said reinforced ceramic
JPS6136176A (en) Sic-si3n4-si sintered body and manufacture
JPS6158861A (en) Silicon carbide material and manufacture
JPS63147880A (en) Silicon carbide-carbon composite material
JPS61163180A (en) High size precision and anti-abrasivity silicon carbide composite body and manufacture
JPH01320254A (en) Ceramic-carbon based composite material and its production
JPH02129071A (en) Production of silicon carbide ceramics
CN117125999A (en) Antioxidant coating applicable to carbon-ceramic composite material and preparation method thereof
JPS60131884A (en) Manufacture of b4c-graphite composite material
JPH0812436A (en) Production of sintered silicon carbide
JPS6210956B2 (en)
JPH0510304B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees