JPS62295446A - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device

Info

Publication number
JPS62295446A
JPS62295446A JP62146610A JP14661087A JPS62295446A JP S62295446 A JPS62295446 A JP S62295446A JP 62146610 A JP62146610 A JP 62146610A JP 14661087 A JP14661087 A JP 14661087A JP S62295446 A JPS62295446 A JP S62295446A
Authority
JP
Japan
Prior art keywords
region
film
silicon
single crystal
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62146610A
Other languages
Japanese (ja)
Other versions
JPH0413862B2 (en
Inventor
Hiroshi Shiba
宏 柴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP62146610A priority Critical patent/JPS62295446A/en
Publication of JPS62295446A publication Critical patent/JPS62295446A/en
Publication of JPH0413862B2 publication Critical patent/JPH0413862B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8221Three dimensional integrated circuits stacked in different levels

Abstract

PURPOSE:To enhance the density of a semiconductor integrated circuit device and to integrate it in a large scale by connecting one conductivity type polycrystalline silicon conductor with the first and second peripheries of an emitter region to extend them on an insulating film perpendicularly to one direction. CONSTITUTION:A P-type single crystal region 12 and a silicon nitride film 14 are formed on a silicon P-type single crystal substrate 11, an N-type impurity element is implanted to form an N-type single crystal region 15, and a silicon polycrystalline film 16, a silicon oxide film 17 and a photoresist 18 are provided. Then, the film 16 is partly converted to a silicon oxide 20 to form a coupler of silicon polycrystalline film, and high density N-type impurity element is implanted to the desired part of the coupler. The region 15 is used as a collector region, a P-type single crystal region 21 is used as a base region, and a high density N-type single crystal region 22 is used as an emitter region, a metal silicide 24 is formed, it is covered with an insulating film 25, connected with the metal silicide in the hole, a metal film extended perpendicularly on the film 25 is formed to form a desired electrode wiring terminal 101...

Description

【発明の詳細な説明】 3、発明の詳細な説明 本発明はバイポーラトランジスタを有する高密度集積回
路装置に関し、特に多結晶シリコン層を用い九高密度の
バイポーラトランジスタ型半導体集積回路装置に関する
ものである。
[Detailed Description of the Invention] 3. Detailed Description of the Invention The present invention relates to a high-density integrated circuit device having bipolar transistors, and particularly relates to a high-density bipolar transistor type semiconductor integrated circuit device using a polycrystalline silicon layer. .

構成されてきた。ここで、回路素子の金属配線路への接
続はコンタクト・ホール即ち回路素子表面を覆う絶縁被
膜に設けられた開孔部を介しておこなわれた。
has been configured. Here, the connection of the circuit element to the metal wiring path was made through a contact hole, that is, an opening provided in an insulating film covering the surface of the circuit element.

しかるに、従来のこの様な構成法では、集積回路装置の
高密度かつ大規模集積化を計るとき、微細かつ美大な数
のコンタクト・ホールを設けなければならず、為にこれ
の実現には極めて高度な微細ノリーン加工技術を必要と
した。
However, with this conventional configuration method, when aiming for high-density and large-scale integration of integrated circuit devices, it is necessary to provide a large number of fine contact holes, which is difficult to achieve. This required extremely advanced fine processing technology.

本発明の目的は、高密度かつ大規模集積化に適した新規
なるバイポーラトランジスタ戯の集積回路装置の構造を
提供することにある。
An object of the present invention is to provide a new bipolar transistor integrated circuit device structure suitable for high-density and large-scale integration.

本発明の特徴は、牛導体基板の一主面が平面形状で一方
向に延びる長方形をなすごとく露出し、その周りが該牛
導体基板に埋設せる絶縁膜で囲まれており、バイポーラ
トランジスタの一導電製のコレクタ領域がその全周を該
絶縁膜に囲まれて設けられ、該トランジスタの逆導電型
のベース領域かれ、該トランジスタの一導電汲の二きツ
タ領域がその第1および第2の辺を前記長方形の長辺に
接する該絶縁膜の部分に接しかつ残りの第3および第4
の辺が該一主面に露呈する姿態で該ベース領域内に設け
られ、−導電屋の多結晶シリコン導電体が該エミッタ領
域の該第1および第2の辺間に接続して咳一方向とは直
角方向に該絶縁膜上を延在している牛導体集積回路装置
にある。又、このような姿態のバイポーラトランジスタ
を複数個ならべて牛導体基板に設け、各バイポーラトラ
ンジスタのエミッタ領域を前記多結晶シリコン導電体に
より共通接続することができる。
A feature of the present invention is that one main surface of the conductive substrate is exposed in a planar shape to form a rectangular shape extending in one direction, and is surrounded by an insulating film embedded in the conductive substrate. A conductive collector region is provided with its entire circumference surrounded by the insulating film, a base region of the opposite conductivity type of the transistor is provided, and two ivy regions of one conductivity type of the transistor are provided with the first and second ivy regions of the transistor. The sides of the insulating film are in contact with the long sides of the rectangle, and the remaining third and fourth
a polycrystalline silicon conductor is provided in the base region with a side thereof exposed to the one main surface, and a polycrystalline silicon conductor of a conductive layer is connected between the first and second sides of the emitter region to form a conductor in one direction. and a conductor integrated circuit device extending on the insulating film in a direction perpendicular to the conductor. Further, a plurality of bipolar transistors having such a configuration can be arranged on a conductor substrate, and the emitter regions of each bipolar transistor can be commonly connected by the polycrystalline silicon conductor.

次に本発明をより良く理解するために実施例をあげて説
明する。
Next, in order to better understand the present invention, examples will be given and explained.

まず第1図乃至第8図を参照して本発明の第一の実施例
を説明する。
First, a first embodiment of the present invention will be described with reference to FIGS. 1 to 8.

第1図に電気等価回路で示した、トランジスタ素子l、
抵抗素子2.3及びダイオード素子4#5゜例を第2図
乃至第8図を参照して説明する。まず領域に、周知のシ
リコン酸化膜をマスクとする選択拡散法によりて高不純
物浸度のチャンネルストツノf用P形単結晶領域12を
トランジスタ形成予定部分をとシかこんで環状に設け、
トランジスタ形成予定部分の表面にシリコン窒化膜14
を設けてこれをマスクとして選択酸化法を適用し約2ン
クロン厚のシリコン酸化被膜13を牛導体基板11の素
子非形成部分に埋置して形成する。この際に、周知の如
く、シリコンの酸化鉱横方向にも進行するため、シリコ
ン酸化被膜13はシリコン窒化膜14で覆われたトラン
ジスタ予定領域内に横方向から着千量侵入して形成され
る。したがって後にシリコン窒化膜14を除去して得ら
れるシリコン単結晶露出領域の面積15’はもとの゛!
スクノリーンの面積よシも縮小されている。本・実施例
の場合には約1iクロン侵入されるから4fクロン中の
スリッド・リーンを使用すれば約2ミク■4−の単結晶
露出領域が得られる。次に第3図に示すよンジスタ予定
部分にN形単結晶領域15を形成す(5ン る。0.1ミクロン厚のシリコン窒化膜を使用し約2電
クロン厚のシリコン酸化被膜を形成した本実施例の場合
は、打込みエネルギー200 K@V、ドーズ量4×l
Oで燐を注入したのち、1150℃の窒素雰囲気中で1
0時間熱処理を行うのが好適である。この処理によシ層
抵抗値が約300Ωハ、深さ約5ミクロンのN形単結晶
領域が形成される。
Transistor element l, shown in the electrical equivalent circuit in Figure 1,
Examples of the resistor element 2.3 and the diode element 4#5 will be explained with reference to FIGS. 2 to 8. First, a P-type single-crystal region 12 for the channel stock horn f with a high degree of impurity impregnation is formed in a ring shape around the area where the transistor is to be formed, using a well-known selective diffusion method using a silicon oxide film as a mask.
A silicon nitride film 14 is formed on the surface of the area where the transistor is to be formed.
Using this as a mask, a selective oxidation method is applied to form a silicon oxide film 13 having a thickness of approximately 2 nm and embedding it in the non-element forming portion of the conductor substrate 11. At this time, as is well known, the silicon oxide film 13 also advances in the lateral direction, so that the silicon oxide film 13 is formed by penetrating from the lateral direction into the transistor area covered with the silicon nitride film 14. . Therefore, the area 15' of the silicon single crystal exposed region obtained by later removing the silicon nitride film 14 is the same as the original area 15'!
The area of Sknorrin has also been reduced. In the case of this embodiment, since the penetration is about 1i microns, if a slid lean of 4f microns is used, an exposed area of the single crystal of about 2 microns can be obtained. Next, an N-type single crystal region 15 is formed in the area where the resistor is to be formed as shown in FIG. In the case of this example, the implantation energy was 200 K@V and the dose was 4×l.
After injecting phosphorus with O, 1
It is preferable to perform the heat treatment for 0 hours. This treatment forms an N-type single crystal region with a layer resistance of about 300 Ω and a depth of about 5 microns.

次に第4図に示すようにシリコン窒化膜14を除去して
N形単結晶゛領域15の表面15′を露出させたのち、
0.5#クロン厚のシリコン多結晶膜16を全面に形成
し、その表面を熱酸化して約0.05ミクロンのシリコ
ン酸化膜17で覆い、その上にホトレジスト18を゛N
N領領域15コレクタ表面領域予定部分およびシリコン
多結晶膜16のコレ元素をイオン注入法でシリーン多結
晶膜11丙賃選択的に導入する。この際には硼素を打込
みエネルギー100に@V、  ドース量lXl0  
で注入するのが好適である。次に、ホトレジスト膜18
を除去したのち基板表面の全面にわたって0.2iクロ
/厚のシリコン窒化膜を生成する。ホトレジストを用い
てシリコン窒化膜の選択エツチングをおこない、第5図
に示すようにシリコン多結晶膜16の連結体形成予定部
分を覆うようにクリコン窒化膜19を残存させ、基板を
熱酸化処理してシリコン多結晶膜16の露出部分を選択
的にシリコン酸化物20に変換して互に分離されたシリ
コン多結晶膜からなる連結体(本実施例では回路素子、
素子への電極、配線を含む)を形成する0本実施例では
1000℃の酸素雰囲気中で6時間熱処理するのが好適
である。この際に、シリコン多結晶中に選択的に注入さ
れていた硼素が活性化されてシリコン多結晶膜に層抵抗
値が約4 KQ/6のP形半導体Zクロン深さのP形牛
導体領域21が形成される。
Next, as shown in FIG. 4, after removing the silicon nitride film 14 to expose the surface 15' of the N-type single crystal region 15,
A silicon polycrystalline film 16 with a thickness of 0.5 microns is formed on the entire surface, the surface is thermally oxidized and covered with a silicon oxide film 17 of approximately 0.05 microns, and a photoresist 18 is placed on top of it.
These elements are selectively introduced into the silicon polycrystalline film 11 in a portion of the N region 15 intended for the collector surface region and the silicon polycrystalline film 16 by ion implantation. At this time, implant boron at an energy of 100@V and a dose of lXl0.
It is preferable to inject at Next, the photoresist film 18
After removing the silicon nitride film, a silicon nitride film having a thickness of 0.2i chrome/thickness is formed over the entire surface of the substrate. The silicon nitride film is selectively etched using photoresist, and the silicon nitride film 19 is left to cover the portion of the silicon polycrystalline film 16 where the connecting body is to be formed, as shown in FIG. 5, and the substrate is thermally oxidized. The exposed portion of the silicon polycrystalline film 16 is selectively converted into silicon oxide 20 to form a connected body (in this embodiment, a circuit element,
In this example, it is preferable to perform heat treatment in an oxygen atmosphere at 1000° C. for 6 hours. At this time, the boron selectively implanted into the silicon polycrystal is activated and the layer resistance value of the silicon polycrystal film is approximately 4 KQ/6. 21 is formed.

又、前述の如く、選択酸化の際に起る・す―ン面積縮小
現象のため、得られるシリコン多結晶膜からなる連結体
のノ9ターン巾はもとのマスクツ中ターン巾に比し約I
tクロン程度減少する。
In addition, as mentioned above, due to the phenomenon of reduction in the area of the ring that occurs during selective oxidation, the width of the nine turns of the resulting interconnected body made of polycrystalline silicon film is approximately smaller than the width of the middle turn of the original mask. I
It decreases by about t chron.

次に第6図に示すように連結体のN影領域予定部分(本
実施例ではトランジスタのエミッタおよびコレクタ電極
配線予定部分およびダイオード形成用部分)の表面を覆
うシリコン窒化膜19t−選択的に除去し、残存するシ
リコン窒化膜をマスクとして連結体の所望部分に高濃度
のN形不純物元Xを導入する。本実施例では周知の熱拡
散法によシ燐を950℃で20分間拡散導入するのが好
適である。この際には、N形予定部分のシリコン多結晶
膜に燐が導入されて層抵抗値が約20 ¥0のN形半導
体の特性を与えると同時にこのN形部分が基板の単結晶
領域のエミッタ、コレクタコンタクト各予定部分に接着
した部分では単結晶領域内にフタ領域、P形単結晶領域
21をベース領域、高濃度N形単結晶領域22をエミッ
タ領域とするNPN )ランジスタと、トランジスタの
各領域に接続するP形あるいはN形半導体特性を有する
多結晶シリコンからなる連結体が形成された。次に、連
結体に形成されているPNm合のうち不要部分を短絡し
、かつ連結体中の抵抗体を構成する部分およびダイオー
ドのアノード、カンード、PN′fiI!合を構成する
部分以外の電極・配線部分の電気伝導度を増加させるた
め以下に述べるメタライズ工程をおこなう、すなわち第
7因に示すように、連結体の表面に残存する絶縁被膜1
9のうち所望部分即ち必要とする抵抗素子及びPN接合
を保線する部分を残し、他の部分の絶縁被膜を除去して
連結体の表1lfit−露出させ、基板の表面の全面に
わたって金属薄膜を被着させ熱処理をおこなって連結サ
イド層を形成した。熱処理後基板を王水に浸けて残余の
白金を除去して連結体の露出部に層抵抗値が約544の
白金シリサイドが形成される。最後に、第8図に示すよ
うに基板表面の全面に絶縁被膜25t−被着し、所望部
分に金属シリサイドに達する開孔を設けたのち、これら
の開孔内で金属シリサイドにそれぞれ接続して絶縁膜2
5上に伸びる金属膜を形成し所望の電極配線端子101
〜105とする。この際に連結体の両側には絶縁物20
があるから開孔は連結体の幅の外側に出ても、連結体の
幅より広くしても差しつかえない、したがって開孔の目
合せ余裕をゆるくとることができる。また金属膜101
〜105を、外部取シだし端子として用いても他の回路
素子との配線として用いてもよいし、第一層目の連結体
と同様の多結晶シリコンを用いた連結体に置きかえても
よい。
Next, as shown in FIG. 6, the silicon nitride film 19t covering the surface of the N shadow area (in this example, the transistor emitter and collector electrode wiring areas and the diode forming area) of the connector is selectively removed. Then, using the remaining silicon nitride film as a mask, a high concentration of N-type impurity element X is introduced into a desired portion of the connector. In this example, it is preferable to diffuse and introduce phosphorus at 950° C. for 20 minutes by a well-known thermal diffusion method. At this time, phosphorus is introduced into the silicon polycrystalline film in the area intended for N-type, giving it the characteristics of an N-type semiconductor with a layer resistance value of about 20 yen. , in the portion bonded to each planned portion of the collector contact, a lid region is formed in the single crystal region, a base region is the P type single crystal region 21, and an emitter region is the highly doped N type single crystal region 22. A linkage of polycrystalline silicon having P-type or N-type semiconductor properties was formed connecting the regions. Next, unnecessary parts of the PNm junction formed in the connector are short-circuited, and the parts constituting the resistor in the connector, the anode and cand of the diode, and the PN'fiI! In order to increase the electrical conductivity of the electrode/wiring parts other than the parts that constitute the joint, the metallization process described below is performed.
9, leave the desired parts, that is, the parts that maintain the required resistance elements and PN junctions, and remove the insulation coating of other parts to expose the top surface of the connector, and cover the entire surface of the substrate with a metal thin film. A connecting side layer was formed by applying heat treatment. After the heat treatment, the remaining platinum is removed by immersing the substrate in aqua regia to form platinum silicide having a layer resistance of about 544 on the exposed portion of the connector. Finally, as shown in Fig. 8, an insulating film 25t is deposited on the entire surface of the substrate, and openings reaching the metal silicide are formed in desired areas, and connections are made to the metal silicide within these openings. Insulating film 2
5 to form a metal film extending over the desired electrode wiring terminal 101.
~105. At this time, insulators 20 are placed on both sides of the connecting body.
Because of this, the openings can be made outside the width of the connecting body or wider than the width of the connecting body, and therefore a loose margin for alignment of the openings can be provided. Also, the metal film 101
~105 may be used as an external lead terminal or as wiring with other circuit elements, or may be replaced with a connecting body using polycrystalline silicon similar to the first layer connecting body. .

合(ダイオ−1’)4,5.6が金属クリサイ4層24
で連結され、金属膜によって奇々電極趨子101.10
2,103,104.105が取)出されて第1図に示
したゲート回路が完成する。
(Diode-1') 4,5.6 is metal crystal 4 layer 24
101.10 connected by a metal film.
2,103,104,105) are extracted to complete the gate circuit shown in FIG.

次に第9図乃至第11図を参照して本発明の第二の実施
例を説明する。
Next, a second embodiment of the present invention will be described with reference to FIGS. 9 to 11.

この実施例は第9図に示すようなニオツタ7オロワ付き
CMLゲート回路を高密度集積回路構造に実現するもの
で、第9図のトランジスタ1m〜1fと抵抗R3〜R,
から成る回路中トランジスタla〜If部分と、例示の
ためとシ出した抵抗R8゜R3を含む部分20Gについ
てR10図および第11図を参照して説明する。R* 
 a R@を含めて抵抗R8〜R1と配線端子201〜
208(電源端子201,202、入力端子203〜2
05、基準電圧端子206、出力端子207.208)
などは他の回路との接続を考慮して適宜配置され相当す
るもので、第一の実施例の各部分と機能的に等価な部分
は第一の実施例と同一の参照数字で示されている。この
実施例の装置は第一の実施例と同様に製造されるもので
P型千尋体基板11弐面の各回路菓子すなわちトランジ
スタl&〜If。
This embodiment realizes a CML gate circuit with a Niotta 7 follower as shown in FIG. 9 in a high-density integrated circuit structure.
A portion 20G including transistors la to If in the circuit, and a portion 20G including a resistor R8.degree. R*
a Resistors R8 to R1 including R@ and wiring terminals 201 to
208 (power terminals 201, 202, input terminals 203-2
05, reference voltage terminal 206, output terminal 207.208)
etc. are arranged appropriately and correspond to each other in consideration of connection with other circuits, and parts that are functionally equivalent to each part in the first embodiment are indicated by the same reference numerals as in the first embodiment. There is. The device of this embodiment is manufactured in the same manner as the first embodiment, and each circuit confection, that is, transistors l&~If, is formed on the second side of the P-type monolithic substrate 11.

抵抗R,,R,の形成予定部分をシリコン窒化膜で覆っ
て基板表向の選択酸化を行ない、各回路素子の形成予定
部分をと9まいて表面に埋置された酸化膜13を形成す
る。なお、予め各回路素子の形成予定部分を囲んで基板
表向にP+型チャンネルストッ/f領域12を設けるの
が好ましいが、場合たよっては省略してもよい。次いで
N型不純物をイオン打ち込みして、素子形成予定部分に
Nff1領域15を形成する。N型領域15の形成のた
めにはイオン打込の代シに熱拡散法を用いてもよいし、
て素子予定部分のN型領域15を作りてもよい。
The portions where the resistors R, , R, are to be formed are covered with a silicon nitride film, and the substrate surface is selectively oxidized, and the oxide film 13 buried on the surface is formed over the portions where each circuit element is to be formed. . Although it is preferable to previously provide a P+ type channel stock/f region 12 on the surface of the substrate surrounding the portion where each circuit element is to be formed, it may be omitted depending on the case. Next, N-type impurity ions are implanted to form an Nff1 region 15 in a portion where an element is to be formed. In order to form the N-type region 15, a thermal diffusion method may be used instead of ion implantation, or
Alternatively, the N-type region 15 in the intended element portion may be formed.

はN型領域15の表面)を露出せしめ、基板表面全体に
、すなわち、すべての露出単結晶領域および・絶縁物1
3の表面を覆って、多結晶シリコン層16を設け、その
所定部分にPffi不純物をドープさせる。このドープ
部分は、トランジスタla〜Ifのベース予定部分およ
び抵抗R,,R,の抵抗素子領域予定部分に少くとも接
する多結晶シリコン部分であるが、後者に接する部分は
部分的に(のちに酸化物に変換させる部分に)ドープ量
を少なくすることがi[マしい、勿論のちの工程にさし
つかえない部分にもドープしてよい0次いで各回路素子
の電極配線を構成する連結体となるべき部分を除いて多
結晶シリコン層16を熱酸化し、酸化物20 、20’
を形成するとともに、P戯不純物を多結晶層からN温単
結晶領域15にドーグし、トランジスタ予定部分ではベ
ースとなシ、抵抗部結晶シリコンの一部も酸化物20′
に変換される。
(the surface of the N-type region 15) is exposed over the entire substrate surface, that is, all the exposed single crystal regions and the insulator 1.
A polycrystalline silicon layer 16 is provided covering the surface of 3, and predetermined portions of the polycrystalline silicon layer 16 are doped with Pffi impurities. This doped portion is a polycrystalline silicon portion that is in contact with at least the intended base portions of the transistors la to If and the intended resistive element regions of the resistors R, , R, but the portion in contact with the latter is partially (later oxidized). It is better to reduce the amount of doping (in the parts that are to be converted into products), but it is of course possible to dope parts that will not interfere with later processes. The polycrystalline silicon layer 16 is thermally oxidized except for oxides 20 and 20'.
At the same time, P-type impurities are doped from the polycrystalline layer to the N-temperature single crystal region 15, and in the area where the transistor is planned, a part of the crystalline silicon in the resistance part is also formed into an oxide 20'.
is converted to

次に、残存する多結晶シリーン層の所定部を!スフし他
を露出させてN型不純物を多結晶シリコン層ならびにそ
れに徽する単結晶領域に導入する。
Next, a predetermined portion of the remaining polycrystalline silicon layer! After washing and exposing the other parts, N-type impurities are introduced into the polycrystalline silicon layer and the single crystal region surrounding it.

ここで露出するのはトランジスタ1axlfの二電ツタ
予定部分およびコレクタコンタクト予定部分に接する多
結晶クリコツ部分である。この結果各トランジスタのベ
ース領域21内にN型工iyタ領域22が、コレクタ1
5の狭面領域内にN+型=レクタコンタクト領域23が
それぞれ形成される0次いで連結体16内に形成された
不要なPN接合31.32.33t−ネグレクトして素
子間のオーンツク接続を得る丸めに多結晶シリコン層表
面に高導電率材料たとえば金属シリサイドの層24を設
ける。この層24は不要なPN接合の近傍のみに設けて
もよいし、不要なPN接合のない連結体には設けなくて
もよいが、連結体での信号損失を小さくするためには連
結体の必要部分全体に設層を設けてもよいし、第一の実
施例のように開孔を有する絶縁膜を表面に設けて開孔全
通して必要な電気的接続を行なったシ、あるいは第2層
の配線層を設けたシしてもよい。
What is exposed here is the polycrystalline cricket portion which is in contact with the portion of transistor 1axlf that is intended to be a bivoltaic wire and the portion that is intended to be a collector contact. As a result, an N-type transistor region 22 is formed in the base region 21 of each transistor, and the collector 1
N+ type=rector contact regions 23 are formed in the narrow area of 5, respectively. 0 then unnecessary PN junctions 31, 32, 33 formed in the connector 16 - Neglected to obtain an open circuit connection between the elements. A layer 24 of a highly conductive material such as metal silicide is then provided on the surface of the polycrystalline silicon layer. This layer 24 may be provided only in the vicinity of unnecessary PN junctions, or may not be provided in connected bodies without unnecessary PN junctions, but in order to reduce signal loss in the connected body, it is necessary to A layer may be provided over the entire required portion, or an insulating film having holes may be provided on the surface as in the first embodiment and the necessary electrical connections may be made through the entire hole, or a second layer may be formed. A wiring layer may also be provided.

このようにして形成された第1θ図、第11図の構造に
おいては、エミッタが共通接続される四つのトランジス
タ11〜ldが並行してならべられ、エミッタ共通配線
となる多結晶クリコン連結体が各トランジスタの霧出表
面領域と交叉して、q!rll!出貴面領域の交叉部分
にエミッタ22を形成している(@l 1図Aも参照)
。しかもこれらトランジスタl&〜ldにさらに並行し
てエミッタ7オロワトランジスタl 命e 1 fがそ
れぞれ配置され、ダートトランジスタ1 m −1eの
共通コレクタ出力端子となる連結体がゲートトランジス
タの各表面露出領域pよび出力トランジスタl・の表面
露出領域に交叉して伸び、ダートトランジス来生ずる不
要PN接合32をショートさせて、共通コレクタ出力の
出力トランジスタベースへのオーミック接続を可能にし
ている。基準トランジスタldのコレクタと出力トラン
ジスタ1fのベースとの接続についても同様である。(
以上第11図Bも参照)、この結果、各トランジスタl
a〜1fの寸法ならびに間隔が極度に縮少され、高密度
集積回路構造の実現が可能となる。なお、第10図にお
いて入力端子203〜205の接続を含む各部分の接続
は第9図のとおシになされている。
In the structure of FIG. 1θ and FIG. 11 formed in this manner, four transistors 11 to ld whose emitters are commonly connected are arranged in parallel, and a polycrystalline conductor linkage serving as a common emitter wiring is connected to each transistor. q! rllll! An emitter 22 is formed at the intersection of the exit plane regions (see also @l 1 Figure A).
. Furthermore, emitter 7 lower transistors l, e1, and f are arranged in parallel with these transistors l&~ld, and the connected body serving as the common collector output terminal of the dirt transistors 1m-1e is connected to each surface exposed region p of the gate transistor. and extends across the exposed surface areas of the output transistors 1 and 1, shorting out the unnecessary PN junctions 32 resulting from the dirt transistors and allowing an ohmic connection of the common collector output to the output transistor base. The same applies to the connection between the collector of the reference transistor ld and the base of the output transistor 1f. (
(See also FIG. 11B above), as a result, each transistor l
The dimensions and spacing of a to 1f are extremely reduced, making it possible to realize high-density integrated circuit structures. In FIG. 10, the connections of each part including the connections of input terminals 203 to 205 are made as in FIG. 9.

第二の実施例において、例示として含めた抵抗R8は幅
を埋置酸化膜13で画定し長さを選択酸化膜20′(逆
にいえば両端の多結晶シリコン連結体)によって画定し
深さをNff1領域15中へのP汲不純物のドーグ深さ
で画定した牛導体単結晶抵抗であり、抵抗R1は幅およ
び深さをN童領域15中へのPfi不純物のドープの幅
および深さでそれぞれ画定し、長さを両端の多結晶シリ
コン連結体によって画定したものであるが、第9図・の
抵抗R1って実現してもよい。
In the second embodiment, the resistor R8 included as an example has a width defined by the buried oxide film 13, a length defined by the selective oxide film 20' (in other words, the polycrystalline silicon connections at both ends), and a depth defined by the buried oxide film 13. is a conductor single crystal resistor whose width and depth are defined by the depth of Pfi impurity doped into the Nff1 region 15, and the resistance R1 is defined by the width and depth of the Pfi impurity doped into the Nff1 region 15. Although the lengths are defined by the polycrystalline silicon connectors at both ends, the resistor R1 shown in FIG.

以上実施例につき説明したが、本発明の主要部分は多結
晶シリコンからなる連結体を媒体とじて回路素子を互に
連結してゆく点にるり、本発明の効果は従来の回路素子
接続のだめのコンタクト・ホールを排除し、かつ・譬タ
ーンの自己縮小効果を取り入れることによシ、回路素子
自体の面積を縮lトt、て高密度集積化を可能ならしめ
る点にある。
Although the embodiments have been described above, the main part of the present invention is that circuit elements are connected to each other using a connecting body made of polycrystalline silicon as a medium. By eliminating contact holes and incorporating the self-shrinking effect of the pattern, the area of the circuit elements themselves can be reduced and high-density integration can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

WI1図は本発明の第一の実施例で実現すべき回路の電
気等価回路図、第2図乃至第8図は本発明の第一の実施
例による製造方法の各工程における構造を示す図で、#
!3図は断面図、篤2図Bおよび第4図乃至第8図のB
は平面図、第2因Aおよびw、4図乃至第8図のAは各
図のBのA−A’線に沿った断面図である0w、9図は
本発明の第二の実施例で実現される集積回路の等価回路
図、第10図は本発明の第二の実施例による集積回路装
置の線に沿った断面図である。 図中の主な符号 1 、1 a 〜1 f −)ランジスタ、2+3+R
1〜R8・・・抵抗、4〜6・・・ダイオード、11・
・・P型子導体基板、12・・・P°1チャンネルスト
ッパ領域、13・・・埋置酸化物膜、15・・・N型領
域、16・・・多結晶シリコン層、20・・・選択酸化
膜、20’・・・Pffiドープ後の選択酸化膜、21
・・・P型領域、22・・・Nff1エミツタ領域、2
3・・・N懺コレクタコンタクト領域、24・・・金属
シリサイド層。 (L)
Figure WI1 is an electrical equivalent circuit diagram of the circuit to be realized in the first embodiment of the present invention, and Figures 2 to 8 are diagrams showing the structure at each step of the manufacturing method according to the first embodiment of the present invention. ,#
! Figure 3 is a sectional view, Atsushi Figure 2 B and Figures 4 to 8 B.
is a plan view, second factor A and w, A in FIGS. 4 to 8 is a sectional view taken along the line A-A' of B in each figure 0w, and FIG. 9 is a second embodiment of the present invention. FIG. 10 is a sectional view taken along a line of an integrated circuit device according to a second embodiment of the present invention. Main symbols 1, 1 a to 1 f -) transistors in the diagram, 2+3+R
1-R8...Resistance, 4-6...Diode, 11.
...P type child conductor substrate, 12...P°1 channel stopper region, 13...buried oxide film, 15...N type region, 16...polycrystalline silicon layer, 20... Selective oxide film, 20'...Selective oxide film after Pffi doping, 21
... P type region, 22 ... Nff1 emitter region, 2
3...N collector contact region, 24...metal silicide layer. (L)

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板の一主面が平面形状で一方向に延びる
長方形をなすごとく露出し、その周りが該半導体基板に
埋設せる絶縁膜で囲まれており、バイポーラトランジス
タの一導電型のコレクタ領域がその全周を該絶縁膜に囲
まれて設けられ、該トランジスタの逆導電型のベース領
域がその3辺を該絶縁膜に接し残りの1辺が該一主面に
露呈する姿態で該コレクタ領域の内部に設けられ、該ト
ランジスタの一導電型のエミツタ領域がその第1および
第2の辺を前記長方形の長辺に接する該絶縁膜の部分に
接しかつ残りの第3および第4の辺が該一主面に露呈す
る姿態で該ベース領域内に設けられ、一導電型の多結晶
シリコン導電体が該エミッタ領域の該第1および第2の
辺間に接続して該一方向とは直角方向に該絶縁膜上を延
在していることを特徴とする半導体集積回路装置。
(1) One main surface of a semiconductor substrate is exposed in a planar shape to form a rectangular shape extending in one direction, and is surrounded by an insulating film buried in the semiconductor substrate, and is a collector region of one conductivity type of a bipolar transistor. is provided so that its entire circumference is surrounded by the insulating film, and the base region of the opposite conductivity type of the transistor is in contact with the insulating film on three sides and the remaining one side is exposed on the one principal surface. an emitter region of one conductivity type of the transistor provided inside the region, the first and second sides of which are in contact with the portion of the insulating film that is in contact with the long side of the rectangle, and the remaining third and fourth sides is provided in the base region in such a manner that it is exposed on the one main surface, and a polycrystalline silicon conductor of one conductivity type is connected between the first and second sides of the emitter region, and is connected to the one direction. A semiconductor integrated circuit device, characterized in that the device extends on the insulating film in a right angle direction.
(2)半導体基板には複数個のバイポーラトランジスタ
が設けられ、各バイポーラトランジスタのエミッタ領域
は前記多結晶シリコン導電体により共通接続され、各バ
イポーラトランジスタは特許請求の範囲第(1)項記載
の態様となっていることを特徴とする特許請求の範囲第
(1)項記載の半導体集積回路装置。
(2) A semiconductor substrate is provided with a plurality of bipolar transistors, the emitter regions of each bipolar transistor are commonly connected by the polycrystalline silicon conductor, and each bipolar transistor is configured according to the aspect described in claim (1). A semiconductor integrated circuit device according to claim (1), characterized in that:
JP62146610A 1987-06-12 1987-06-12 Semiconductor integrated circuit device Granted JPS62295446A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62146610A JPS62295446A (en) 1987-06-12 1987-06-12 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62146610A JPS62295446A (en) 1987-06-12 1987-06-12 Semiconductor integrated circuit device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP1425278A Division JPS54107280A (en) 1978-02-10 1978-02-10 Semiconductor integrated circuit unit

Publications (2)

Publication Number Publication Date
JPS62295446A true JPS62295446A (en) 1987-12-22
JPH0413862B2 JPH0413862B2 (en) 1992-03-11

Family

ID=15411625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62146610A Granted JPS62295446A (en) 1987-06-12 1987-06-12 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPS62295446A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5119484A (en) * 1974-08-09 1976-02-16 Hitachi Ltd Handotaisochito sonoseizohoho
JPS51130183A (en) * 1975-05-06 1976-11-12 Matsushita Electric Ind Co Ltd Semiconductor ic and its process

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5119484A (en) * 1974-08-09 1976-02-16 Hitachi Ltd Handotaisochito sonoseizohoho
JPS51130183A (en) * 1975-05-06 1976-11-12 Matsushita Electric Ind Co Ltd Semiconductor ic and its process

Also Published As

Publication number Publication date
JPH0413862B2 (en) 1992-03-11

Similar Documents

Publication Publication Date Title
US5017503A (en) Process for making a bipolar transistor including selective oxidation
US4326213A (en) Semiconductor device and process for producing the same
US4033797A (en) Method of manufacturing a complementary metal-insulation-semiconductor circuit
JP2842871B2 (en) Power MOS transistor structure
JPH0719838B2 (en) Semiconductor device and manufacturing method thereof
JPS622708B2 (en)
EP0030147A1 (en) Method for manufacturing a semiconductor integrated circuit
US4835588A (en) Transistor
EP0451286A1 (en) Integrated circuit device
US4058419A (en) Method of manufacturing integrated injection logic semiconductor devices utilizing self-aligned double-diffusion techniques
JP2592414B2 (en) Method of manufacturing bipolar transistor structure
KR940002834B1 (en) Semiconductor integrated circuit and fabricating method thereof
JPS6329828B2 (en)
JPS62295446A (en) Semiconductor integrated circuit device
EP0101739B1 (en) Heterojunction transistor and method of fabricating the same
JPS6232618B2 (en)
JPS6169164A (en) Logic circuit device
JPH0121625B2 (en)
JPS62295440A (en) Semiconductor integrated circuit device
KR0184522B1 (en) Semiconductor device and a method of fabricating the same
JP2722415B2 (en) Method for manufacturing semiconductor device
GB2081508A (en) Integrated injection logic cell having self-aligned collector and base with reduced base resistance and method of making same
JPS6169149A (en) Manufacture of integrated circuit device
JP3158404B2 (en) Method for manufacturing semiconductor device
JPH06275821A (en) Mos transistor and its manufacture