JPS6169149A - Manufacture of integrated circuit device - Google Patents

Manufacture of integrated circuit device

Info

Publication number
JPS6169149A
JPS6169149A JP19720085A JP19720085A JPS6169149A JP S6169149 A JPS6169149 A JP S6169149A JP 19720085 A JP19720085 A JP 19720085A JP 19720085 A JP19720085 A JP 19720085A JP S6169149 A JPS6169149 A JP S6169149A
Authority
JP
Japan
Prior art keywords
silicon
single crystal
polycrystalline
connecting body
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19720085A
Other languages
Japanese (ja)
Inventor
Hiroshi Shiba
宏 柴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP19720085A priority Critical patent/JPS6169149A/en
Publication of JPS6169149A publication Critical patent/JPS6169149A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To increase density and integrate the titled device in a large scale by using a polycrystalline silicon wiring path formed through selective oxidation as a circuit-element connecting body, adding an impurity element through the connecting body and shaping a desired circuit element into a semiconductor substrate. CONSTITUTION:An silicon p type single crystal substrate 11 is thermally oxidized and treated, and the exposed sections of an silicon polycrystalline film 16 are converted selectively into silicon oxides 20 to form connecting bodies consisting of mutually isolated silicon polycrystalline films. Silicon nitride films 19 on the surfaces of n type region prearranged sections in the connecting body are removed selectively, and an n type impurity element in high concentration is introduced to the desired sections of the connecting bodies while using the residual silicon nitride films as masks. Phosphorus is introduced to the silicon polycrystalline film to shape high-concentration n type single crystal regions 22 and 23. Accordingly, contact-holes are removed, and the self-reduction effect of a pattern is adopted, thus reducing the area of circuit element itself, then enabling high-density integration.

Description

【発明の詳細な説明】 本発明は高密度集積回路装【ユの製造方法に関し、特に
多結晶シリコン層を用いた高@度半心体集積回路装置の
製造方法に閂するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a high-density integrated circuit device, and more particularly to a method for manufacturing a high-density semicircular integrated circuit device using a polycrystalline silicon layer.

衆知の如く、従来、集積回路装置は、半導体基板内に各
々絶縁分離して設けられた複数個の回路素子を、半導体
基板の表面に設けられた金目配線路で接続して恰成され
てきた。ここで、回路素子の金属配線路への接続はコン
タクト・ホール即ち回路素子表面t−覆う絶縁被ME設
けられた開孔部を介しておこなわれ次。
As is well known, integrated circuit devices have conventionally been constructed by connecting a plurality of circuit elements, each of which is insulated and separated within a semiconductor substrate, with metal wiring paths provided on the surface of the semiconductor substrate. . Here, the connection of the circuit element to the metal wiring path is made through a contact hole, that is, an opening provided in an insulating layer covering the surface of the circuit element.

しかるに、従来のこの様な詐成法では、集積回路装置の
高密度かつ大規模集積化を計るとき、微細かつ莫大な数
のコンタクト・ホールを設けなければならず、為にこれ
の実現には極めて高度な微細パターン加工技術を必要と
した。
However, with this conventional fraud method, when aiming for high-density and large-scale integration of integrated circuit devices, it is necessary to create a huge number of minute contact holes, which makes it difficult to realize this. This required extremely advanced fine pattern processing technology.

遣方法を提供することにある。The goal is to provide a way to send money.

本発明の0徴は、選択的酸化によって形成した多結晶シ
リコン配線路を回路素子連結体とし、この連結体を通じ
て不純物元素の添加をおこなりて所望の回路素子を半導
体基板内に形成することにおる。又、この際、多結晶シ
リコン層内に回路素子を形成することもできる。本発明
の選択的酸化によりて形成した多結晶シリ°コン層上に
は高導電率材料層を設けられる。これにより、多結晶シ
リコン層中に選択酸化による酸化物と高導電率材料層と
によって画定された回路索子を形成することができる。
A feature of the present invention is that a polycrystalline silicon wiring path formed by selective oxidation is used as a circuit element connection body, and an impurity element is added through this connection body to form a desired circuit element in a semiconductor substrate. is. Further, at this time, circuit elements can also be formed within the polycrystalline silicon layer. A layer of high conductivity material is provided on the polycrystalline silicon layer formed by the selective oxidation of the present invention. This allows formation of circuit elements defined by the selective oxidation oxide and the layer of high conductivity material in the polycrystalline silicon layer.

したがって本発明によれば、従来のようなコンタクト−
ホールを必要とせず、装置の形成に必要なパターンの総
数を著しく減少することが出来る。
Therefore, according to the present invention, the conventional contact
No holes are required and the total number of patterns needed to form the device can be significantly reduced.

更に本発明によれば、パターンの自己縮小現象を適′用
することができるため、高度の微細パターン加工技術を
使用することなく、高密度集積回路装置を容易に得るこ
とができる。
Further, according to the present invention, since the pattern self-reduction phenomenon can be applied, a high-density integrated circuit device can be easily obtained without using advanced fine pattern processing technology.

次に本発明をよシ良く理解するために実施例をあけて説
明する。
Next, in order to better understand the present invention, examples will be explained below.

第1図に電気等価回路で示した、トランジスタ素子1、
抵抗素子2.3及びダイオード素子4.5.6を接続し
て構成されたゲート回路を集積回路構造に実現するため
に本発明を適用した場合の実施例第2図乃至第8図を参
照して説明する。まf      ず第2図を参照する
と、比抵抗率lOオーム・センナメートルのシリコンP
形単結晶基板11の所望領域に、周知のシリコン酸化膜
をマスクとする迅択拡散法によって高不純物Q度のチャ
ンネルストッパ用P形単結晶領域12をトランジスタ形
成予定部分をとりかこんで環状に設け、トランジスタ形
成予定部分の表面にシリコン窒化膜14f、設けてこれ
をマスクとして選択酸化法を適用し約2ミクロ/厚のシ
リコン酸化被膜13″に半導体基板11の素子非形成部
分に埋置して形成する。この際に、周知の如く、シリコ
ンの酸化は横方向にも進行するため、シリコン酸化被膜
13はシリコン窒化膜14で覆われたトランジスタ予定
領域内に横方向から若干量侵入して形成される。したが
って後にシリコン窒化膜14を除去して得られるシリコ
ン単結晶露出領域の面積15/はもとのマスクパターン
の面積よりも縮小されている。本実施例の場合には約1
ミクロン侵入されるから4ミクロン巾のスリットパター
ンを使用すれば約2ミクロン巾の単結晶露出領域が得ら
れる。次に第3図に示すように基板表面の全面にわたっ
てN形不純物元素をイオン注入法で打込み、熱処理をお
こなってトランジスタ予定部分KIN形単結晶領域工5
を形成する。0.1ミクロン厚のシリコン窒化膜を使用
し約2ミクロン厚のシリコン酸化被膜を形成した本実施
例の場合は、打込みエネルギー200I(eV’。
A transistor element 1, shown in an electrical equivalent circuit in FIG.
Embodiments in which the present invention is applied to realize a gate circuit configured by connecting a resistor element 2.3 and a diode element 4.5.6 in an integrated circuit structure. I will explain. First, referring to Figure 2, silicon P with a specific resistivity of lO ohm sennameter
A P-type single-crystal region 12 for a channel stopper with a high impurity Q degree is provided in a desired region of a single-crystal substrate 11 in a ring shape surrounding the area where a transistor is to be formed, using a well-known rapid selective diffusion method using a silicon oxide film as a mask. A silicon nitride film 14f is provided on the surface of the area where a transistor is to be formed, a selective oxidation method is applied using this as a mask, and a silicon oxide film 13'' of about 2 micrometers/thick is embedded in the non-element forming area of the semiconductor substrate 11. At this time, as is well known, oxidation of silicon also progresses in the lateral direction, so the silicon oxide film 13 is formed by slightly penetrating into the transistor area covered with the silicon nitride film 14 from the lateral direction. Therefore, the area 15/ of the silicon single crystal exposed region obtained by later removing the silicon nitride film 14 is smaller than the area of the original mask pattern.
Since the penetration is microns, using a 4 micron wide slit pattern will result in a single crystal exposed area about 2 microns wide. Next, as shown in FIG. 3, an N-type impurity element is implanted over the entire surface of the substrate by ion implantation, and heat treatment is performed to form a KIN-type single crystal region in the intended transistor area.
form. In the case of this example, in which a silicon nitride film with a thickness of 0.1 microns was used to form a silicon oxide film with a thickness of approximately 2 microns, the implantation energy was 200 I (eV').

ドーズt 4 x 10tsで燐を注入したのち、11
50℃の窒素雰囲気中で10時間熱処理を行うのが好適
である。この処理により層抵抗喧が約3000/口、深
さ約5ミクロンのN形単結晶領域が形成される。
After injecting phosphorus at a dose of t4 x 10ts, 11
It is preferable to perform the heat treatment in a nitrogen atmosphere at 50° C. for 10 hours. This process forms an N-type single crystal region with a layer resistance of about 3000/hole and a depth of about 5 microns.

次に第4図に示すようにシリコン窒化膜14を除去して
N形単結晶領域15の表面1ダを露出させたのち、0.
5ミクロン厚のシリコン多結晶膜16を全面に形成し、
その表面を熱酸化して約0.05ミクロンのシリコン酸
化II!¥17で薇い、その上にホトレジスト18をN
影領域15のコレクタ表面領域予定部分およびシリコン
多結晶urnsのコレクタ引出配線予定部分をGうよう
に選択的に設け、このホトレジスト18をマスクにして
P形不純物元素をイオン注入法でシリコン多結晶膜16
内に選択的に導入する。この際には硼素を打込みエネル
ギー100K15V、  ドーズfk 1 x 101
4で注入するのが好適である。次に、ホトレジスト膜1
8を除去したのち基板表面の全面にわたって0.2ミク
ロン厚のシリコン窒化膜を生成する。ホトレジストを用
いて7リコン窒化膜の逍択エツチングをおこない、第5
図に示すようにシリコン多結晶膜16の連結体形成予定
部分を覆うようにシリコン窒化膜19を残存させ、基板
を熱酸化処理してシリコン多結晶膜46の露出部分を選
択的にシリコ/酸化物20に変換して互に分離されたシ
リコン多結晶膜からなる連結体(本実施例では回路素子
、素子への電極、配線を含む)を形成する。本実施例で
は1000℃の酸素算囲気中で611テlトl il:
へ処りUするのが好適である。この際に、/リコン多結
晶中に選択的に注入されていた硼素が活性化されてシリ
コン多結晶膜に層抵抗1直が約4KQ/口のP形半導体
の電気特性を与えると同時に基板のN形単結晶領域15
に接着した部分では硼素の拡散・によシ約0.4ミクロ
ン深さのP形半導体領域21が形成される。又、前述の
如く、選択酸化の際に起るパターン面積縮小現象のため
、得られるシリコン多結晶膜からなる連5拮体のパター
ン巾はもとのマスクパターン巾に比し約1ミクロン程度
減少する。次に第6図に示すように連結体のN影領域予
定部分(本実施例ではトランジスタのエミッタおよびコ
レクタ電極配線予定部分およびダイオード形成用部分)
の表面を覆うシリコン窒化膜19を選択的に除去し、残
存するシリコン窒化膜をマスクとして連結体の所望部分
に高濃度のN形不純物元素を導入する。本実施例では周
知の熱拡散法により燐を950℃で20分間拡散導入す
るのが好適である。
Next, as shown in FIG. 4, the silicon nitride film 14 is removed to expose a portion of the surface of the N-type single crystal region 15.
A 5 micron thick silicon polycrystalline film 16 is formed on the entire surface,
The surface is thermally oxidized to approximately 0.05 micron silicon oxide II! I bought it for ¥17 and put photoresist 18N on top of it.
The portion where the collector surface region of the shadow region 15 is planned and the portion where the collector lead wiring of the silicon polycrystalline urns is planned are selectively provided in the shape of G, and using the photoresist 18 as a mask, a P-type impurity element is ion-implanted into the silicon polycrystalline film. 16
selectively introduced within. At this time, implant boron with an energy of 100K15V and a dose of fk 1 x 101
It is preferred to inject at 4. Next, photoresist film 1
After removing 8, a silicon nitride film with a thickness of 0.2 microns is formed over the entire surface of the substrate. Perform selective etching of the silicon nitride film using photoresist, and
As shown in the figure, the silicon nitride film 19 is left so as to cover the portion of the silicon polycrystalline film 16 where the connecting body is to be formed, and the substrate is thermally oxidized to selectively oxidize the exposed portion of the silicon polycrystalline film 46. A connected body (including circuit elements, electrodes to the elements, and wiring in this embodiment) made of silicon polycrystalline films separated from each other is formed. In this example, 611 telol in an oxygen atmosphere at 1000°C:
It is preferable to do a hedori U. At this time, the boron that had been selectively implanted into the silicon polycrystal is activated, giving the silicon polycrystalline film the electrical characteristics of a P-type semiconductor with a layer resistance of approximately 4 KQ/s. N-type single crystal region 15
A P-type semiconductor region 21 with a depth of about 0.4 microns is formed by boron diffusion at the bonded portion. Furthermore, as mentioned above, due to the pattern area reduction phenomenon that occurs during selective oxidation, the pattern width of the resulting quintuplet made of silicon polycrystalline films is reduced by about 1 micron compared to the original mask pattern width. do. Next, as shown in FIG. 6, the N shadow area planned portion of the connector (in this example, the transistor emitter and collector electrode wiring planned portion and the diode formation portion)
The silicon nitride film 19 covering the surface of the silicon nitride film 19 is selectively removed, and a high concentration N-type impurity element is introduced into a desired portion of the connector using the remaining silicon nitride film as a mask. In this example, it is preferable to diffuse and introduce phosphorus at 950° C. for 20 minutes by a well-known thermal diffusion method.

この際には、N形予定部分のシリコン多結晶膜に燐が導
入されて層抵抗値が約20Ω/口のN形半導体の特性を
与えると同時にこのN形部分が基板の単結晶領域のエミ
ッタ、コレクタコンタクト各予定部分に接着した部分で
は単結晶領域内にも燐が拡散導入されて約o、4ミクロ
ン深さの高濃度N形単結晶領域22及び23が形成され
る。以上の製造工程によシ、N形単結晶領域15をゴレ
クタ領r     域、P形単結晶領域21をベース領
域、高濃度N形単結晶領域22をエミッタ領域とするN
PN)ランジスタと、トランジスタの各領域に接続する
P形あるいはN形半導体特性を有する多結晶シリコンか
らなる連結体が形成された。次に、連結体に形成されて
いるPN接合のうち不要部分を短絡し、かつ連結体中の
抵抗体を1成する部分およびダイオードのアノード、カ
ソード、PNN接合−S成する部分以外の′!!極・配
置部分の電気伝導度を増加させるため以下に述べるメタ
ジイズ工程をおこなう。すなわち第7図に示すように、
連結体の表面に残存する絶縁被膜19のうち所望部分即
ち必要とする抵抗素子及びPN接合を保該する部分を残
し、他の部分の絶縁被膜を除去して連結体の表面を露出
させ、基板の表面の全面にわたって金属薄膜を被層させ
熱処理をおこなって連結体の露出表面に金属シリサイド
24を形成したのち残余の金属薄膜を除去する。本実施
例では0.1ミクロン厚の白金膜を被着させ、窒素雰囲
気中で600℃、30分間の熱処理をおこない白金シリ
サイド層を形成した。熱処理後基板を王水に浸けて残余
の白金を除去して連結体の露出部に層抵抗値が約5r)
10の白金シリサイドが形成される。最後に、第8図に
示すように基板表面の全面に絶縁被膜25を被着し、所
望部分に金属シリサイドに達する開孔を設けたのち、こ
れらの開孔内で金属シリサイドにそれぞれ接続して絶縁
PA2i)上に伸びる金属膜を形成し所望の電極配線端
子101〜105とする。
At this time, phosphorus is introduced into the silicon polycrystalline film in the N-type portion to give it the characteristics of an N-type semiconductor with a layer resistance value of about 20Ω/hole, and at the same time, this N-type portion becomes the emitter of the single crystal region of the substrate. Phosphorus is also diffused into the single crystal region at the portions bonded to the respective planned portions of the collector contact, forming high concentration N-type single crystal regions 22 and 23 with a depth of approximately 0.4 microns. Through the above manufacturing process, N type single crystal region 15 is used as a golector region, P type single crystal region 21 is used as a base region, and high concentration N type single crystal region 22 is used as an emitter region.
A link body consisting of a PN) transistor and a polycrystalline silicon having P-type or N-type semiconductor properties connected to each region of the transistor was formed. Next, short-circuit unnecessary parts of the PN junctions formed in the connecting body, and short-circuit the parts of the connecting body other than the parts forming the resistor, the anode and cathode of the diode, and the parts forming the PNN junction-S. ! In order to increase the electrical conductivity of the pole/arrangement portion, the metalization process described below is performed. That is, as shown in Figure 7,
Of the insulation coating 19 remaining on the surface of the connector, a desired portion, that is, a portion that retains the necessary resistance element and PN junction, is left, and the insulation coating of the other portions is removed to expose the surface of the connector. A thin metal film is coated over the entire surface of the connector and heat-treated to form metal silicide 24 on the exposed surface of the connector, and then the remaining metal thin film is removed. In this example, a 0.1 micron thick platinum film was deposited and heat treated at 600° C. for 30 minutes in a nitrogen atmosphere to form a platinum silicide layer. After heat treatment, the board is immersed in aqua regia to remove the remaining platinum, and the exposed part of the connector has a layer resistance of about 5r).
10 platinum silicides are formed. Finally, as shown in FIG. 8, an insulating film 25 is applied to the entire surface of the substrate, and openings reaching the metal silicide are formed in desired areas, and connections are made to the metal silicide within these openings. A metal film extending over the insulation PA2i) is formed to form desired electrode wiring terminals 101 to 105.

この際に連結体の両側には絶縁物20があるから開孔は
連結体の幅の外側に出ても、連結体の幅より広くしても
差しつかえない。したがって開孔の目合せ余裕をゆるく
とることができる。また金属膜101〜105を、外部
取り出し端子として用いても他の回路素子との配置とし
て用いてもよいし、第一層目の連結体と同様の多結晶シ
リコンを用いた連結体に置きかえてもよい。以上の製造
工程により、基板の単品シリコン薄膜の領域に形成され
た抵抗素子2.3、及びPN接合(ダイオード)4.5
.6が金属シリサイド層24で連結され、金属膜によっ
て各々電極端子101.102.103.104.10
5が取シ出されて第1図に示したゲート回路が完成する
At this time, since there are insulators 20 on both sides of the connecting body, the openings may be outside the width of the connecting body or may be wider than the width of the connecting body. Therefore, it is possible to provide a loose alignment margin for the openings. Further, the metal films 101 to 105 may be used as external terminals or as arrangement with other circuit elements, or may be replaced with a connecting body using polycrystalline silicon similar to the connecting body in the first layer. Good too. Through the above manufacturing process, a resistive element 2.3 and a PN junction (diode) 4.5 are formed in the single silicon thin film region of the substrate.
.. 6 are connected by a metal silicide layer 24, and each electrode terminal 101, 102, 103, 104, 10 is connected by a metal film.
5 is removed to complete the gate circuit shown in FIG.

以上実施例につき説明したが、本発明の効果は従来の回
路素子接続のためのコンタクト・ホールを排除し、かつ
パターンの自己縮小効果を取シ入れることによシ、回路
素子自体の面積を縮小して高密度集積化を可能ならしめ
る点にある。
As described above with reference to the embodiments, the effect of the present invention is to reduce the area of the circuit element itself by eliminating the conventional contact hole for connecting circuit elements and incorporating the self-shrinking effect of the pattern. The point is that it enables high-density integration.

従ってこの発明の技術的厄囲は上記実施例に限定される
ものではなく、この発明の権利は特許請求範囲に示す全
ての製造方法に及ぶ。
Therefore, the technical scope of this invention is not limited to the above embodiments, and the rights of this invention extend to all manufacturing methods shown in the claims.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例によって集積回路措造として実
現されるべき電気等価回路図、第2図乃至第8図は本発
明の実施例による集積回路溝造の製造方法の各工程にお
ける(ユ造を示す図で、第2図人および第4図乃至蕗8
図のAは各図のBのA−A′線に沿った断面]A1第3
図は断面図、第2図11−よび第4図乃至第8図のBは
平面図である。 図において、 1・・・・・・・・・・・・・・・・・・・・・・・・
トランジスタ2.3  ・・・・・・・・・・・・・・
・抵抗4.5.6・・・・・・・・・ダイオード11・
・・・・・・・・・・・・・・・・・・・・半導体基板
13.20  ・・・・・・・・・歳化物16・・・・
・・・・・・・・・・・・・・・・・多結晶シリコン層
皿  ) 代理人 弁理士 内 原   日  。 、−一・′ 第 /Ta μ N−J  已 第4 図 第5図 第60
FIG. 1 is an electrical equivalent circuit diagram to be realized as an integrated circuit structure according to an embodiment of the present invention, and FIGS. 2 to 8 show ( This is a diagram showing Yuzo, Figure 2: Person, and Figures 4 to 8.
A in the figure is a cross section taken along the line A-A' of B in each figure] A1 No. 3
The figure is a sectional view, and B in FIGS. 2-11 and 4-8 is a plan view. In the figure, 1・・・・・・・・・・・・・・・・・・・・・
Transistor 2.3 ・・・・・・・・・・・・・・・
・Resistance 4.5.6・・・・・・Diode 11・
...... Semiconductor substrate 13.20 ...... Age compound 16...
・・・・・・・・・・・・・・・・・・Polycrystalline silicon layer plate) Agent: Patent attorney Hiro Uchihara. , -1・'th /Ta μ N-J 已 4th figure 5th figure 60

Claims (1)

【特許請求の範囲】[Claims]  単結晶領域を部分的に露出する半導体基板の一主面に
多結晶シリコン薄膜を被着しこの多結晶シリコン薄膜を
選択的に酸化物に変換して連結体を形成する工程と、前
記連結体の形成後に前記多結晶シリコン薄膜を通して不
純物元素を単結晶領域に添加する工程と、前記連結体の
表面に金属シリサイド層を形成する工程とを含むことを
特徴とする集積回路装置の製造方法。
a step of depositing a polycrystalline silicon thin film on one main surface of a semiconductor substrate in which a single crystal region is partially exposed and selectively converting the polycrystalline silicon thin film into an oxide to form a connecting body; A method for manufacturing an integrated circuit device, comprising the steps of: adding an impurity element to the single crystal region through the polycrystalline silicon thin film after forming the polycrystalline silicon thin film; and forming a metal silicide layer on the surface of the connector.
JP19720085A 1985-09-06 1985-09-06 Manufacture of integrated circuit device Pending JPS6169149A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19720085A JPS6169149A (en) 1985-09-06 1985-09-06 Manufacture of integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19720085A JPS6169149A (en) 1985-09-06 1985-09-06 Manufacture of integrated circuit device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP1425178A Division JPS54107279A (en) 1978-02-10 1978-02-10 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS6169149A true JPS6169149A (en) 1986-04-09

Family

ID=16370478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19720085A Pending JPS6169149A (en) 1985-09-06 1985-09-06 Manufacture of integrated circuit device

Country Status (1)

Country Link
JP (1) JPS6169149A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4828832A (en) * 1971-07-05 1973-04-17
JPS51130183A (en) * 1975-05-06 1976-11-12 Matsushita Electric Ind Co Ltd Semiconductor ic and its process

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4828832A (en) * 1971-07-05 1973-04-17
JPS51130183A (en) * 1975-05-06 1976-11-12 Matsushita Electric Ind Co Ltd Semiconductor ic and its process

Similar Documents

Publication Publication Date Title
US4450470A (en) Semiconductor integrated circuit device
US4433468A (en) Method for making semiconductor device having improved thermal stress characteristics
CA1241770A (en) Self-aligned metal silicide process for integrated circuits having self-aligned polycrystalline silicon electrodes
EP0002364B1 (en) Integrated semiconductor device and process for producing it
JPS622708B2 (en)
US4045249A (en) Oxide film isolation process
EP0519592A2 (en) Self-aligned planar monolithic integrated circuit vertical transistor process
JPH0578173B2 (en)
JPS62290173A (en) Manufacture of semiconductor integrated circuit device
JP2592414B2 (en) Method of manufacturing bipolar transistor structure
JPS58501848A (en) High-density CMOS device with conductively interconnected wells and method of manufacturing the same
JPS6329828B2 (en)
JPH01164061A (en) Manufacture of bi-cmos semiconductor device
JPS6169149A (en) Manufacture of integrated circuit device
JPS6169164A (en) Logic circuit device
JPS6232618B2 (en)
JPH0121625B2 (en)
JPS62295440A (en) Semiconductor integrated circuit device
JPH0413862B2 (en)
JP2654056B2 (en) Method for manufacturing semiconductor device
JP2572843B2 (en) Method for manufacturing semiconductor device
JP2745946B2 (en) Method for manufacturing semiconductor integrated circuit
JP3158404B2 (en) Method for manufacturing semiconductor device
JPS6072228A (en) Method for inpurity doping into semiconductor substrate
JP3036770B2 (en) Manufacturing method of semiconductor integrated circuit