JPS622916B2 - - Google Patents
Info
- Publication number
- JPS622916B2 JPS622916B2 JP3434681A JP3434681A JPS622916B2 JP S622916 B2 JPS622916 B2 JP S622916B2 JP 3434681 A JP3434681 A JP 3434681A JP 3434681 A JP3434681 A JP 3434681A JP S622916 B2 JPS622916 B2 JP S622916B2
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- welding
- value
- thyristor
- conduction angle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000003466 welding Methods 0.000 claims description 38
- 238000000034 method Methods 0.000 claims description 16
- 238000012360 testing method Methods 0.000 claims description 4
- 230000007423 decrease Effects 0.000 claims description 3
- 230000003247 decreasing effect Effects 0.000 claims 1
- 239000000428 dust Substances 0.000 description 4
- 238000012544 monitoring process Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000005493 welding type Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K11/00—Resistance welding; Severing by resistance heating
- B23K11/24—Electric supply or control circuits therefor
- B23K11/25—Monitoring devices
- B23K11/252—Monitoring devices using digital means
- B23K11/258—Monitoring devices using digital means the measured parameter being a voltage
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Arc Welding Control (AREA)
- Resistance Welding (AREA)
Description
【発明の詳細な説明】
本発明は、抵抗溶接中の電極間電圧を監視し、
溶接部の品質を制御する方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention monitors interelectrode voltage during resistance welding,
This invention relates to a method for controlling the quality of welds.
一般的に、抵抗溶接の通電時間は非常に短か
く、数サイクル〜数十サイクルの間であり、一
方、溶接がジユール熱の融接によつてなされるこ
とより、制御と熱発生との間に大きな時間差が発
生する。 In general, the current application time for resistance welding is very short, ranging from a few cycles to several tens of cycles, and on the other hand, since welding is done by fusion welding of Joule heat, there is a gap between control and heat generation. There will be a large time difference.
そのために抵抗溶接過程中に品質を制御する制
御技術は現在のところ確立されておらず、溶接の
終了後に溶接結果がどうであるかの判定を、溶接
条件(溶接電流、通電時間等)で行う方式が多く
採用されている。 For this reason, no control technology has been established to control quality during the resistance welding process, and the welding results are judged based on welding conditions (welding current, energization time, etc.) after welding is complete. Many methods are used.
また、抵抗溶接の品質を監視するのに電極チツ
プの中に、超音波の送・受素子を埋設し、溶接部
におけるナゲツト生成過程における超音波の透
過、反射量によつてナゲツトの大きさを判別し、
監視する方法が発表されている。 In addition, to monitor the quality of resistance welding, an ultrasonic transmitting/receiving element is embedded in the electrode chip, and the size of the nugget can be determined by the amount of ultrasonic transmission and reflection during the nugget generation process at the weld. determine,
A monitoring method has been published.
しかし、装置が大がかりであり、その上、電極
が高価であり、現場向ではなく産業性がない。 However, the device is large-scale, and the electrodes are expensive, so it is not suitable for on-site use and is not industrially viable.
また、他の方式として、電極間電圧で監視する
方式が発表されている。これは、電極間電圧のピ
ーク値を検出し、このピーク値よりも一定の割合
だけピーク値が減少した時点で通電をストツプさ
せる方式のものである。この方式は、信号検出が
容易に出来るという長所を有している。 Furthermore, as another method, a method of monitoring using inter-electrode voltage has been announced. This is a method that detects the peak value of the voltage between the electrodes and stops energization when the peak value decreases by a certain percentage from this peak value. This method has the advantage that signal detection is easy.
しかし、一般的に抵抗溶接機を使用している加
工業界における工場の電源事情は悪く、電源電圧
変動は大きい。従つて従来の電極間電圧を監視す
る方式は、電源電圧変動に直接左右され電源電圧
変動により誤動作する。また、チリが発生すると
電極間電圧は大きく減少するので上記制御方式に
おいては通電をストツプすることになり、良好な
溶接結果が得られないという欠点を有している。 However, power supply conditions in factories in the processing industry that use resistance welding machines are generally poor, and power supply voltage fluctuations are large. Therefore, the conventional method of monitoring the interelectrode voltage is directly affected by power supply voltage fluctuations and malfunctions due to power supply voltage fluctuations. Furthermore, when dust occurs, the inter-electrode voltage decreases significantly, so in the above control method, the current supply has to be stopped, which has the disadvantage that good welding results cannot be obtained.
本発明は、従来の欠点を解決し、溶接結果を再
現性よく均質化できる抵抗溶接機の制御方法を提
供することを目的とし、以下、その実施例につい
て図面と共に説明する。 An object of the present invention is to provide a control method for a resistance welding machine that solves the conventional drawbacks and can homogenize welding results with good reproducibility, and embodiments thereof will be described below with reference to the drawings.
最初に通電サイクルと電極間電圧特性について
説明する。 First, the energization cycle and interelectrode voltage characteristics will be explained.
一般的に、抵抗溶接を行つた時に溶接電流、加
圧力、板厚を一定の条件にしておくと、通電サイ
クルに対する電極間電圧は、第1図に示すように
なる。 Generally, when performing resistance welding, if the welding current, pressing force, and plate thickness are kept constant, the interelectrode voltage with respect to the current application cycle will be as shown in FIG. 1.
図において、Aの曲線は、適正溶接条件で溶接
を行つた時に得られる電極間電圧の特性で、良好
な溶接結果が得られる。 In the figure, curve A is the characteristic of the interelectrode voltage obtained when welding is performed under appropriate welding conditions, and good welding results can be obtained.
Bの曲線は、入熱(例えば溶接電流)が少ない
時の特性であり、強度が不足している場合に得ら
れる。 Curve B is a characteristic when the heat input (for example, welding current) is small, and is obtained when the strength is insufficient.
Cの曲線は、入熱が大きい時の特性で、途中で
チリが発生して電極間電圧が急激にドロツプして
いる。一般的にチリが発生した時点において通電
をストツプすると十分な強度が得られ難く特性が
ばらつく。 Curve C is a characteristic when the heat input is large, and dust occurs in the middle, causing a sudden drop in the voltage between the electrodes. Generally, if the electricity supply is stopped when dust occurs, it is difficult to obtain sufficient strength and the characteristics will vary.
尚、同じ板厚、材質の溶接を行う時に、通電サ
イクルに対する電極間電圧の特性がほぼAの曲線
と同じになれば、良好な溶接結果が得られること
は、一般的に認められていることである。 It is generally accepted that when welding plates of the same thickness and material, if the characteristics of the interelectrode voltage with respect to the current cycle are approximately the same as curve A, good welding results will be obtained. It is.
第2図は、第1図の各通電サイクル毎の電極間
電圧の積算値をプロツトしたものであり、A曲線
の積算値の特性曲線をa、B曲線のそれをb、C
曲線のそれをcでプロツトしている。 Figure 2 is a plot of the integrated value of the interelectrode voltage for each energization cycle in Figure 1, with the characteristic curve of the integrated value of curve A being a, that of curve B being b, and C.
The curve is plotted at c.
従つて、良好な溶接結果を得るためには、電極
間電圧の積算値がほぼa曲線に合致するように制
御すれば良い。しかし、抵抗溶接においては、電
源電圧変動が大きいこと、電極チツプの摩耗、加
圧力の変動等により、同じ条件設定で繰り返し溶
接をしてもa曲線が得られないことが多い。 Therefore, in order to obtain good welding results, it is sufficient to control the integrated value of the inter-electrode voltage so that it approximately matches the a-curve. However, in resistance welding, it is often impossible to obtain an a-curve even if welding is repeated under the same conditions due to large fluctuations in power supply voltage, wear of electrode tips, fluctuations in applied force, etc.
次に、本発明の制御方法の一実施例について図
面と共に説明する。第2図において、通電1サイ
クル目の電極間電圧の値がV1sであつた場合、そ
の値はa曲線を得るための1サイクル目の電極間
電圧V1aより低い。まず、この両者の値の差電圧
を求める。第1サイクル目の電極間電圧(積算
値)の差をE1とすると、
E1=V1a−V1 ……(1)
となる。 Next, an embodiment of the control method of the present invention will be described with reference to the drawings. In FIG. 2, when the value of the interelectrode voltage in the first cycle of energization is V 1 s, that value is lower than the interelectrode voltage V 1 a in the first cycle for obtaining the a curve. First, find the difference voltage between these two values. If the difference in interelectrode voltage (integrated value) in the first cycle is E1 , then E1 = V1a − V1 ...(1).
ここで、E1>0の時には、次の通電サイクル
において、溶接電源回路中のサイリスタの導通角
を増さなければa曲線には近づけない。従つて、
次の通電サイクルにおいて、どれ位、導通角を増
したらよいかが大きな課題となり、以下第3図を
用いて説明する。 Here, when E 1 >0, the curve a cannot be approached unless the conduction angle of the thyristor in the welding power supply circuit is increased in the next energization cycle. Therefore,
A major issue is how much the conduction angle should be increased in the next energization cycle, which will be explained below using FIG. 3.
通電1サイクル目の電極間電圧の差E1が求ま
ると、第3図に示すように、E1の値に前もつて
キースイツチで設定した任意可変設定値Kの値を
乗算してθ1=K・E1を求める。この乗算はマ
イクロコンピユータにより行われる。そして、次
の通電2サイクル目におけるサイリスタは、その
導通角をθ1加算して導通させる。 When the difference E 1 in the voltage between the electrodes in the first cycle of energization is determined, as shown in FIG. 3, the value of E 1 is multiplied by the value of the arbitrary variable setting value K previously set with the key switch to obtain θ 1 = Find K・E 1 . This multiplication is performed by a microcomputer. Then, in the next second energization cycle, the thyristor is made conductive by adding θ 1 to its conduction angle.
その結果、電極間電圧の積算値(各通電サイク
ル毎の加算値)がV2sとなつた時には、同じ動作
を繰り返し、E2=V2a−V2sを演算する。そし
て、第3図に示すように、E2に対するθ2=
K・E2を求め、第3サイクル目のサイリスタの
導通角をθ2増して通電する。もし、E2の値が
負の時、即ち、S曲線がa曲線以上になつた時に
は、第3図におけるθの値が負となり、次のサイ
リスタの導通角はθ2減じて通電される。 As a result, when the integrated value of the interelectrode voltage (added value for each energization cycle) reaches V 2 s, the same operation is repeated to calculate E 2 =V 2 a−V 2 s. Then, as shown in FIG. 3, θ 2 = E 2
Find K·E 2 and increase the conduction angle of the thyristor by θ 2 in the third cycle and energize it. If the value of E 2 is negative, that is, when the S curve exceeds the a curve, the value of θ in FIG. 3 becomes negative, and the conduction angle of the next thyristor is reduced by θ 2 and is energized.
以上のような動作を繰り返し行い、a曲線に漸
近させる。 The above operations are repeated to asymptotize to the a curve.
尚、Kの定数の値は、作業者が設定するもの
で、大きな値に設定すればダンピング状態とな
り、あまりに小さな値を設定すれば漸近するのに
時間がかかりすぎることになる。 The value of the constant K is set by the operator; if it is set to a large value, a damping state will occur, and if it is set too small, it will take too much time to reach asymptosis.
従つて、Kの値に対しては使用溶接機、溶接材
の種類、板厚、大きさに対して適当な値が存在す
る。この値の設定に対しては、作業者がカツト・
アンド・トライで決定する。 Therefore, there is an appropriate value for K depending on the welding machine used, the type of welding material, the plate thickness, and the size. The operator can set this value by cutting
Decide by and try.
以上のような操作を行うことにより、a曲線に
容易に漸近させ得、均質で良好な溶接結果が得ら
れる。尚、上記説明においては、第3図の関係
を、マイクロコンピユータを用いてθ=K・Eの
演算を行わせたが、これらの関係をテーブル化し
ても同様な効果が得られる。 By performing the above operations, it is possible to easily asymptotize the a-curve, and a homogeneous and good welding result can be obtained. In the above description, the relationship shown in FIG. 3 is calculated using a microcomputer as θ=K·E, but the same effect can be obtained even if these relationships are made into a table.
以上説明したように本発明の抵抗溶接機の制御
方法は、溶接過程中に、通電の各サイクル毎に電
極間電圧を検出して積算し、テスト・モード時に
得られた電極間電圧の積算値と比較しその差に応
じてフイードバツク制御するとともにそのフイー
ドバツク量の割合を任意に可変設定できるので、
電源電圧変動、電極チツプの消耗等の情乱が生じ
ても、またチリが発生しても良好な溶接ができ、
またすべての溶接条件に対応することができ、良
好で均質な溶接結果を得ることができる。 As explained above, the control method of the resistance welding machine of the present invention detects and integrates the inter-electrode voltage for each cycle of energization during the welding process, and obtains the integrated value of the inter-electrode voltage obtained in the test mode. It is possible to control the feedback according to the difference between the
Good welding can be achieved even if there are disturbances such as power supply voltage fluctuations or wear of electrode tips, or even if dust occurs.
In addition, it can handle all welding conditions and produce good and uniform welding results.
第1図は抵抗溶接における通電サイクルと電極
間電圧との関係を示す図、第2図、第3図は本発
明の制御方法の一実施例を説明するための図であ
る。
FIG. 1 is a diagram showing the relationship between the energization cycle and the inter-electrode voltage in resistance welding, and FIGS. 2 and 3 are diagrams for explaining an embodiment of the control method of the present invention.
Claims (1)
電圧をデシタル値に変換してマイクロコンピユー
タに入力し、テスト・モードにセツトして良好な
溶接がなされた時の前記電極間電圧のデジタル値
を各通電サイクル毎に積算してマイクロコンピユ
ータのRAMに記憶し、次に自動制御モードに
し、各通電サイクル毎の電極間電圧の積算値を前
記テスト・モードの時の値と比較してその差電圧
Eを求め、溶接電源回路中のサイリスタの導通角
の増減値θと前記差電圧Eとの間にθ=K・E
(K:可変設定定数)という関係をもたせて演算
し、テスト・モード時の電圧の方が高い時には前
記サイリスタの導通角を増し、逆に、低い時には
前記サイリスタの導通角を減じて導通させ、これ
らの動作を各通電サイクル毎に実行することを特
徴とする抵抗溶接機の制御方法。1 Detect the inter-electrode voltage during resistance welding, convert the detected voltage to a digital value, input it to the microcomputer, set the test mode, and obtain the digital value of the inter-electrode voltage when good welding is achieved. is integrated for each energization cycle and stored in the RAM of the microcomputer. Next, the automatic control mode is set, and the integrated value of the interelectrode voltage for each energization cycle is compared with the value in the test mode to determine the difference. Calculate the voltage E, and calculate the difference between the increase/decrease value θ of the conduction angle of the thyristor in the welding power supply circuit and the differential voltage E as θ=K・E.
(K: variable setting constant), when the voltage in the test mode is higher, the conduction angle of the thyristor is increased, and when it is lower, the conduction angle of the thyristor is decreased to make it conductive; A method for controlling a resistance welding machine, characterized in that these operations are performed for each energization cycle.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3434681A JPS57149072A (en) | 1981-03-09 | 1981-03-09 | Control method for resistance welding machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3434681A JPS57149072A (en) | 1981-03-09 | 1981-03-09 | Control method for resistance welding machine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57149072A JPS57149072A (en) | 1982-09-14 |
JPS622916B2 true JPS622916B2 (en) | 1987-01-22 |
Family
ID=12411569
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3434681A Granted JPS57149072A (en) | 1981-03-09 | 1981-03-09 | Control method for resistance welding machine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS57149072A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6378814U (en) * | 1986-11-11 | 1988-05-25 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102007028160B4 (en) | 2007-06-12 | 2019-07-11 | Lorch Schweißtechnik GmbH | Method and device for controlling a power source and power source with such a device |
-
1981
- 1981-03-09 JP JP3434681A patent/JPS57149072A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6378814U (en) * | 1986-11-11 | 1988-05-25 |
Also Published As
Publication number | Publication date |
---|---|
JPS57149072A (en) | 1982-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4254466A (en) | Power factor monitoring and control system for resistance welding | |
JPH0255150B2 (en) | ||
CA3017083A1 (en) | Resistance welding method and resistance welding apparatus | |
JPS622916B2 (en) | ||
JP3117543B2 (en) | Resistance welding control device | |
US6633016B2 (en) | Resistance welding method | |
JP2584300B2 (en) | Automatic setting device for spot welding conditions | |
JP3584321B2 (en) | Current control method and device for resistance welding machine | |
JPS5847579A (en) | Method and device for controlling weld time in resistance welding | |
JP3037657B2 (en) | Resistance spot welding quality control device | |
JP2001353579A (en) | Device for judging acceptability or unacceptability of quality of welding | |
US3800119A (en) | Resistance welding monitor | |
JP3489760B2 (en) | Joining method | |
JPS63299871A (en) | Resistance welding control or monitoring device | |
JP3181208B2 (en) | Degradation state detection device for resistance junction electrode | |
JPH03207581A (en) | Method for controlling resistance welding machine | |
JPS6043836B2 (en) | Control method and device for resistance welding machine | |
CN116604158A (en) | Inverter type welding power supply, electric welding machine and welding method | |
JP2747375B2 (en) | Resistance welding equipment | |
US3515842A (en) | Bond testing apparatus | |
JP5224384B2 (en) | Conductor welding method and welding apparatus therefor | |
JP2651207B2 (en) | Lead Welding Method for Leaded Battery | |
JPH0753819Y2 (en) | Quality control equipment for resistance welding machines | |
JPS6319274B2 (en) | ||
JPS6117382A (en) | Control device for resistance welding |