JP2651207B2 - Lead Welding Method for Leaded Battery - Google Patents

Lead Welding Method for Leaded Battery

Info

Publication number
JP2651207B2
JP2651207B2 JP63207871A JP20787188A JP2651207B2 JP 2651207 B2 JP2651207 B2 JP 2651207B2 JP 63207871 A JP63207871 A JP 63207871A JP 20787188 A JP20787188 A JP 20787188A JP 2651207 B2 JP2651207 B2 JP 2651207B2
Authority
JP
Japan
Prior art keywords
welding
battery
lead body
power
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63207871A
Other languages
Japanese (ja)
Other versions
JPH0256854A (en
Inventor
知也 村田
康裕 石黒
久夫 小林
秀哲 名倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP63207871A priority Critical patent/JP2651207B2/en
Publication of JPH0256854A publication Critical patent/JPH0256854A/en
Application granted granted Critical
Publication of JP2651207B2 publication Critical patent/JP2651207B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/528Fixed electrical connections, i.e. not intended for disconnection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/564Terminals characterised by their manufacturing process
    • H01M50/566Terminals characterised by their manufacturing process by welding, soldering or brazing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> この発明は、リード体付き電池におけるリード体の溶
接方法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a method for welding a lead body in a battery with a lead body.

<従来の技術> リード体付き電池は、エレクトロニクス機器等の停電
バックアップ用電源等として使用されており、長期間安
定した動作をさせるため、筒形電池や偏平形電池等の電
池の端子面に、電流取出し用のリード体を、抵抗溶接や
レーザ溶接等で直接溶接する構成が採られている。
<Conventional technology> A battery with a lead body is used as a power supply for a power failure backup of an electronic device or the like. In order to perform a stable operation for a long period of time, a terminal surface of a battery such as a cylindrical battery or a flat battery is used. A configuration is employed in which a lead for current extraction is directly welded by resistance welding, laser welding, or the like.

そして、抵抗溶接を用いる場合、一般的には、電池短
紙面に密着させたリード体の上から一対の溶接用電極を
押し当て、コンデンサ式溶接機や交流式溶接機等を使用
し、一定の溶接電流にてリード体を電池端子面にスポッ
ト溶接する方法が採られている。
When resistance welding is used, generally, a pair of welding electrodes are pressed from above a lead body adhered to the short side of the battery, and a fixed type welding machine or an AC welding machine is used. A method has been adopted in which a lead body is spot-welded to a battery terminal surface with a welding current.

<発明が解決しようとする課題> ところで、このようにリード体に溶接用電極を押し合
てて抵抗溶接する場合、電極形状や加圧力等のバラツキ
は避けられない。そして、上記の従来方法のように一定
の溶接電流で溶接を行なう場合には、このようなバラツ
キによって溶接強度が変化し、このためリード体を信頼
性高く電池端子面に溶接することができないという問題
がある。
<Problems to be Solved by the Invention> By the way, when the welding electrode is pressed against the lead body and resistance welding is performed, variations in the electrode shape, the pressing force, and the like are inevitable. When welding is performed with a constant welding current as in the above-described conventional method, the welding strength changes due to such variations, and therefore, the lead cannot be reliably welded to the battery terminal surface. There's a problem.

つまり、この種の溶接用電極では、一般に、電極の先
端にRを付けてこのRの先端部分が被溶接面に集中的に
当るようにしているが。このRが使用に伴う摩耗により
次第に大きくなるため、電極とリード体表面との接触面
積も大きくなる。また電極のリード体への加圧力によっ
てもこの接触面積が変化する。そして、例えばこの接触
面積が広がった場合、溶接強度を確保するためには溶接
電流を大きくする等して溶接エネルギーを大きくする必
要とするが、上記従来方法では、このような制御ができ
ず、従って溶接強度のバラツキは避けられないのであ
る。
That is, in this type of welding electrode, an R is generally attached to the tip of the electrode so that the tip of the R intensively contacts the surface to be welded. Since this R gradually increases due to wear due to use, the contact area between the electrode and the lead body surface also increases. The contact area also changes depending on the pressing force of the electrode on the lead body. And, for example, when the contact area is widened, it is necessary to increase welding energy by increasing welding current or the like in order to secure welding strength. However, in the above-described conventional method, such control cannot be performed. Therefore, variations in welding strength cannot be avoided.

一方、必要以上に大きな溶接エネルギーでリード体を
電気端子面に溶接しようとする時には、溶接に伴う発発
熱に因る電池性能劣化が起こるようになる。このような
性能劣化は、例えば厚さ5mm以下のコイン形リチウム電
池の負極端子面に、厚さ0.3mm程度の薄いリード板を溶
接する場合は特に問題となり、発熱により負極端子面の
電池内側に位置する負極リチウムが沸騰状態で溶融・飛
散し、またこれによってセパレータが損傷して電池が内
部ショートすることが起こる。
On the other hand, when the lead body is to be welded to the electric terminal surface with unnecessarily large welding energy, the battery performance deteriorates due to heat generation accompanying the welding. Such performance deterioration is particularly problematic when, for example, a thin lead plate of about 0.3 mm thickness is welded to the negative electrode terminal surface of a coin-shaped lithium battery having a thickness of 5 mm or less, and heat is generated inside the battery on the negative electrode terminal surface due to heat generation. The located negative electrode lithium is melted and scattered in a boiling state, and this may damage the separator and cause a short circuit inside the battery.

このため、信頼性の面から、コイン形リチウム電池等
の偏平形電池を使用する場合のリード体の溶接方法は、
レーザ溶接を用いなければならないのが現状である。
For this reason, from the viewpoint of reliability, the welding method of the lead body when using a flat type battery such as a coin type lithium battery is as follows.
At present, laser welding must be used.

この発明は、溶接用電極先端のRや加圧力等のバラツ
キに拘らず、電池端子面にリード体を強度高く抵抗溶接
でき且つ電池内部への熱的影響を少なくし得る、リード
体の溶接方法を提供することを目的とする。
The present invention relates to a method for welding a lead body, which can perform high strength resistance welding of a lead body to a battery terminal surface and can reduce thermal influence on the inside of a battery, irrespective of variations such as R and pressing force at the tip of a welding electrode. The purpose is to provide.

<課題を解決するための手段> 即ちこの発明は、電池の端子面にリード体を抵抗溶接
して構成されるリード体付き電池において、定電力溶接
電源を用い、溶接部での発熱量を一定にして前記溶接を
行うことを要旨とする、リード体付き電池におけるリー
ド体の溶接方法である。
<Means for Solving the Problems> That is, according to the present invention, in a battery with a lead body formed by resistance welding a lead body to a terminal surface of the battery, a constant-power welding power source is used to keep a calorific value in a welded portion constant. And a method for welding a lead body in a battery with a lead body.

上記の定電力電源は、溶接部における溶接電圧及び溶
接電流を通電期間中逐次測定し、またこれらの積として
算出される電力値(即ち、発熱量)が一定値になるよう
にこれらの溶接電圧や溶接電流をフィードバック制御す
ることで、溶接部での発熱量を一定とする電源である。
The constant power source described above measures the welding voltage and welding current in the welded portion successively during the energization period, and sets the welding voltage and welding current so that the power value (that is, the calorific value) calculated as the product thereof becomes a constant value. It is a power supply that controls the welding current and the welding current in a feedback manner to keep the heat value at the welded portion constant.

そしてこの定電力電源を用いれば、例えば、作業中に
おいて溶接用電極とリード体との接触面積増大等により
これらの間の接触抵抗が減少し、これに伴い溶接電圧の
低下があった場合でも、溶接電流が自動的に増大するよ
うに調整される。
And, if this constant power source is used, for example, during the operation, the contact resistance between the welding electrode and the lead body is decreased due to an increase in the contact area between the welding electrode and the lead body. The welding current is adjusted to increase automatically.

<作用> 上記のように定電力電源により溶接部での発熱量を一
定にすることで、電極形状や加圧力等のバラツキに拘ら
ず通電期間中は一定の熱量が溶接部に与えられるように
なり、この結果安定した溶接が行え、溶接強度のバラツ
キを防ぐことができる。
<Operation> By making the calorific value at the welded portion constant by the constant power source as described above, a constant amount of heat is given to the welded portion during the energization period regardless of variations in the electrode shape, the pressing force, and the like. As a result, stable welding can be performed, and variations in welding strength can be prevented.

<実施例> 以下にこの発明の実施例を説明する。<Example> An example of the present invention will be described below.

第1図において、CR2032形の偏平形リチウム電池1の
負極端子面2に、厚さ0.2mmのステンレス製のリード板
3の一端部を載置し、またこの一端部の上から、距離t
だけ離間させたクロム銅製の1対の溶接用電極4a、4bを
圧接させ、以下の通りリード板3を負極端子面2に抵抗
溶接して、本発明のリード体付き電池を作製した。尚、
上記の距離tは4.5mmとした。
In FIG. 1, one end of a stainless steel lead plate 3 having a thickness of 0.2 mm is placed on the negative electrode terminal surface 2 of a CR2032 type flat lithium battery 1, and a distance t is set from above the one end.
A pair of welding electrodes 4a and 4b made of chromium copper, which were separated only by pressure, were pressed into contact with each other, and the lead plate 3 was resistance-welded to the negative electrode terminal surface 2 as described below, thereby producing a battery with a lead body of the present invention. still,
The above distance t was 4.5 mm.

即ち第2図は、リード板3の負極端子面2との溶接部
における発熱量を一定とするために使用する、定電力電
源と一例を含めた装置全体の電気回路を示したものであ
る。この例では、工業用の三相交流電源からの電力は、
ダイオード等の整流素子を組合わせてなる全波整流用の
整流回路5にて直流に変換された後、平滑用のコンデン
サとパワートランジスタ等を組合わせて構成されるパワ
ートランジスタ部6に入力されて2相交流電力に変換さ
れ、また昇圧用のトランス7を介し、更に整流回路8を
経て再び直流化された後、一対の溶接用電極4a、4bの間
に印加される。
That is, FIG. 2 shows an electric circuit of the entire apparatus including a constant power supply and an example, which is used to make the calorific value at the welding portion of the lead plate 3 with the negative electrode terminal surface 2 constant. In this example, the power from the industrial three-phase AC power supply is
After being converted into direct current by a full-wave rectifier rectifier circuit 5 composed of a combination of rectifiers such as diodes, it is input to a power transistor unit 6 composed of a combination of a smoothing capacitor and a power transistor. The power is converted into two-phase AC power, further converted to DC through a step-up transformer 7 and further through a rectifier circuit 8, and then applied between a pair of welding electrodes 4a and 4b.

一方、パワートランジスタ部6は、そのパワートラン
ジスタのドライブ用の駆動回路9を介して、制御回路11
により制御(例えば位相制御により出力電力の周波数を
変化させている)され、その出力電力値が調整されてい
る。
On the other hand, the power transistor section 6 is connected to a control circuit 11 via a drive circuit 9 for driving the power transistor.
(For example, the frequency of the output power is changed by phase control), and the output power value is adjusted.

また、この制御回路11には、発熱量設定部10並びに演
算回路12がそれぞれ接続されている。この内、発熱量設
定部10には、溶接部における所望の発熱量が、例えば電
力値に換算されて設定されている。また、演算回路12に
は、溶接部における電流(整流回路8から溶接用電極4
a,4bに流れる電流)、並びに電圧(溶接用電極4a,4b間
の電圧)Vを測定する電流検出部13、並びに電圧検出部
14の出力がそれぞれ入力されていて、これらの溶接電流
並びに溶接電圧を適当なタイミングで順次取込み、また
これらの値を掛合わせた電力値IVを算出する。この算出
値から、ジュールの法則Q=IVによって、溶接部での発
熱量Qが求められる。尚、上記の電圧Vは、溶接用電極
4a,4b間に電圧検出部14の電圧検出用端子を取付けて測
定した。
Further, the control circuit 11 is connected to a heat generation amount setting unit 10 and an arithmetic circuit 12. Of these, a desired heat value at the welded portion is set in the heat value setting unit 10, for example, converted into a power value. The arithmetic circuit 12 includes a current at the welded portion (from the rectifier circuit 8 to the welding electrode 4).
a, 4b), and a current detector 13 for measuring a voltage (voltage between the welding electrodes 4a, 4b) V, and a voltage detector
Each of the fourteen outputs is input, these welding currents and welding voltages are sequentially taken in at appropriate timings, and a power value IV obtained by multiplying these values is calculated. From this calculated value, the heat value Q at the welded portion is obtained according to Joule's law Q = IV. In addition, the above-mentioned voltage V is a welding electrode.
The measurement was performed with the voltage detection terminal of the voltage detection unit 14 attached between 4a and 4b.

制御回路11は、演算回路12で算出された上記電力値と
発熱量設定部10にて設定された電力値とを比較し、両者
が異なる場合には、パワートランジスタ部6の出力電力
を適宜調整し、上記算出電力値を上記設定電力値に一致
させるよう機能する。そして、このようにして、溶接用
電極4a,4bでの発熱量は発熱量設定部10で設定された発
熱量に一致するようにフィードバック制御されている。
The control circuit 11 compares the power value calculated by the arithmetic circuit 12 with the power value set by the heat generation amount setting unit 10, and if the power values are different, appropriately adjusts the output power of the power transistor unit 6. Then, it functions so that the calculated power value matches the set power value. In this way, in such a manner, the calorific value of the welding electrodes 4a and 4b is feedback-controlled so as to match the calorific value set by the calorific value setting unit 10.

尚、定電力電源としては、上記したほか、例えば第3
図に示したように、2相交流電源からの電力を整流回路
16を通して整流後に大容量コンデンサ17に蓄積してお
き、またこのコンデンサの溶接用電極側に接続したパワ
ートランジスタ18により、大容量コンデンサ17から溶接
用電極4a,4bへの電力を、溶接部における電力値(電流
値と電圧値の積)に応じて、制御回路19、並びに発熱量
設定部20、演算回路21、電流検出部22及び電圧検出部23
を組合わせて構成した制御部によりフィードバック制御
することで、溶接部での発熱量を一定にするようにした
構成のものを用いても良い。
In addition, as the constant power source, in addition to the above, for example,
As shown in the figure, the power from the two-phase AC power supply is
After being rectified through 16 and stored in a large-capacity capacitor 17, the power from the large-capacity capacitor 17 to the welding electrodes 4 a and 4 b is transferred to the welding electrode 4 a by a power transistor 18 connected to the welding electrode side of the capacitor. In accordance with the value (product of the current value and the voltage value), the control circuit 19, the heat generation amount setting unit 20, the arithmetic circuit 21, the current detection unit 22, and the voltage detection unit 23
A configuration may be used in which feedback control is performed by a control unit configured by combining the above so that the amount of heat generated at the welded portion is made constant.

そして、上記のような定電力電源を用い、通電時間6m
secのパルス出力並びに溶接電力3680Wの溶接条件にて、
またリード板3への溶接用電極4a,4bの加圧力を2kg,4k
g,6kgと変え、更に溶接用電極4a,4bの先端のRを0.3mm,
0.5mm,0.7mm,0.9mmと変化させ、このように種々の条件
でリード板2と電池端子面とのパルス溶接を用い、様々
なリード体付き電池を作製した。
Then, using a constant power supply as described above, the energizing time is 6 m
With pulse output of sec and welding condition of welding power 3680W,
Also, the pressing force of the welding electrodes 4a, 4b to the lead plate 3 is 2kg, 4k.
g, 6kg, and the R of the tip of the welding electrodes 4a, 4b is 0.3 mm,
The batteries were changed to 0.5 mm, 0.7 mm, and 0.9 mm, and various kinds of batteries with lead bodies were manufactured by using pulse welding of the lead plate 2 and the battery terminal surface under various conditions.

一方、従来のコンデンサ式溶接機、並びに交流式溶接
機をそれぞれ用いた他は同じ溶接条件にて、溶接電流を
一定にしてリード体を電池端子面に溶接して、種々のリ
ード端子付き電池を作製した。
On the other hand, under the same welding conditions except that a conventional capacitor-type welding machine and an AC-type welding machine were used, the welding current was kept constant and the lead body was welded to the battery terminal surface to produce various batteries with lead terminals. Produced.

そして、以上の3通りの溶接方法により作製したリー
ド端子付き電池について、電池内部の負極リチウムの飛
びの有無、並びにリード体の引張り強度をそれぞれ調べ
た。
Then, with respect to the batteries with lead terminals manufactured by the above three welding methods, the presence or absence of flying of the negative electrode lithium inside the batteries and the tensile strength of the lead body were examined.

これらの結果は第1表に示した通りである。尚、この
結果は、それぞれのリード体付き電池について3個づつ
の平均値である。また、加圧力(kg)は、溶接用電極の
先端にかかる圧力を指す。
These results are as shown in Table 1. This result is an average value of three batteries for each leaded battery. The pressing force (kg) indicates a pressure applied to the tip of the welding electrode.

上記の結果から、本願の溶接方法を用いることで、有
効な溶接条件の幅が拡がり、この結果、例えば溶接用電
極の摩耗や加圧力のバラツキなどによって溶接部の面積
が変化した場合にも、電池内部へ悪影響を及ぼすことが
なく溶接強度の高い溶接を行うことができることが判
る。
From the above results, by using the welding method of the present application, the range of effective welding conditions is expanded, and as a result, even when the area of the welded portion changes due to, for example, abrasion of the welding electrode or variation in the pressing force, It can be seen that welding with high welding strength can be performed without adversely affecting the inside of the battery.

<発明の効果> 以上のようにこの発明の方法によれば、リード体を抵
抗溶接にて電池端子面に溶接する場合において、溶接に
伴う電池内部への熱影響がなく且つ溶接強度の高い溶接
を行うことができ、信頼性の高いリード体付き電池にお
けるリード体の溶接方法を提供することができる。
<Effects of the Invention> As described above, according to the method of the present invention, when the lead body is welded to the battery terminal surface by resistance welding, there is no thermal effect on the inside of the battery due to welding and the welding has high welding strength. Can be performed, and a method for welding a lead body in a highly reliable battery with a lead body can be provided.

【図面の簡単な説明】[Brief description of the drawings]

第1図は偏平形電池の端子面にリード体を溶接する状態
の説明図、第2図は実施例の方法に用いる装置の電気回
路図、第3図は他の装置の電気回路図である。 1……偏平形電池、3……リード体、4a,4b……溶接用
電極、5,8,16……整流回路、10,20……発熱量設定部、1
1,19……制御回路、12,21……演算回路、13,22……電流
検出部、14,23……電圧検出部。
FIG. 1 is an explanatory diagram of a state where a lead body is welded to a terminal surface of a flat battery, FIG. 2 is an electric circuit diagram of an apparatus used in the method of the embodiment, and FIG. 3 is an electric circuit diagram of another apparatus. . 1 flat battery, 3 lead, 4a, 4b welding electrode, 5, 8, 16 rectifier circuit, 10, 20 heating value setting section, 1
1,19 ... control circuit, 12,21 ... arithmetic circuit, 13,22 ... current detector, 14,23 ... voltage detector.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 名倉 秀哲 東京都港区新橋5丁目36番11号 富士電 気化学株式会社内 (56)参考文献 特開 平1−265449(JP,A) 実開 昭63−152166(JP,U) 実開 昭61−19057(JP,U) 実開 昭63−152166(JP,U) ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Hidenori Nakura 5-36-11 Shimbashi, Minato-ku, Tokyo Inside Fuji Electric Chemical Co., Ltd. (56) References JP-A-1-265449 (JP, A) Sho-63-152166 (JP, U) Sho-sho 61-19057 (JP, U) Sho-sho 63-152166 (JP, U)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】電池の端子面にリード体を抵抗溶接して構
成されるリード体付き電池において、定電力溶接電源を
用い、溶接部での発熱量を一定にして前記抵抗溶接を行
うことを特徴とするリード体付き電池におけるリード体
の溶接方法。
1. A battery with a lead body formed by resistance welding a lead body to a terminal surface of a battery, wherein the resistance welding is performed by using a constant power welding power source and keeping a calorific value at a welding portion constant. A method for welding a lead body in a battery with a lead body.
JP63207871A 1988-08-22 1988-08-22 Lead Welding Method for Leaded Battery Expired - Fee Related JP2651207B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63207871A JP2651207B2 (en) 1988-08-22 1988-08-22 Lead Welding Method for Leaded Battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63207871A JP2651207B2 (en) 1988-08-22 1988-08-22 Lead Welding Method for Leaded Battery

Publications (2)

Publication Number Publication Date
JPH0256854A JPH0256854A (en) 1990-02-26
JP2651207B2 true JP2651207B2 (en) 1997-09-10

Family

ID=16546932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63207871A Expired - Fee Related JP2651207B2 (en) 1988-08-22 1988-08-22 Lead Welding Method for Leaded Battery

Country Status (1)

Country Link
JP (1) JP2651207B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5711277A (en) * 1995-08-29 1998-01-27 Isuzu Motors Limited Accumulating fuel injection apparatus

Also Published As

Publication number Publication date
JPH0256854A (en) 1990-02-26

Similar Documents

Publication Publication Date Title
DE50014376D1 (en) Arc welding apparatus and method with a stacking unit of fuel cells
JPH0694078B2 (en) Resistance welder
JP4426693B2 (en) Metal member joining method and reflow soldering method
JP2651207B2 (en) Lead Welding Method for Leaded Battery
JP4464531B2 (en) Resistance welding power supply
EP1055477A2 (en) Fusing processing method
US6303894B1 (en) Resistance welding with an electrochemical capacitor as the current power source
JP3226204B2 (en) Controller for resistance spot welding
CN101480754A (en) Capacitance energy storage type inversion spot welding method
JP2004009140A (en) Micro welding apparatus
JPH0234277A (en) Arc welding equipment
JPH0644029Y2 (en) Battery with lead terminal
US4672167A (en) Method and apparatus for welding metallic parts
JP6220682B2 (en) Welding equipment
JPH01321078A (en) Pulse arc welding power source
JP3766653B2 (en) Semi-insulator welding method and welding apparatus therefor
JP3200159B2 (en) Consumable electrode type gas shielded arc welding welding method and welding apparatus
JPH0777630B2 (en) Charge control method for pulse charge type electrostatic precipitator
JPS603908B2 (en) High frequency resistance spot projection welding machine
JPS5832862Y2 (en) spot welding machine
JPH0459177A (en) Arc welding power unit
JPH0451024Y2 (en)
JPS57202985A (en) Electric welding method
JPS6321592B2 (en)
JPS58143859A (en) Control apparatus of electric dust collecting device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees