JP3226204B2 - Controller for resistance spot welding - Google Patents

Controller for resistance spot welding

Info

Publication number
JP3226204B2
JP3226204B2 JP34912095A JP34912095A JP3226204B2 JP 3226204 B2 JP3226204 B2 JP 3226204B2 JP 34912095 A JP34912095 A JP 34912095A JP 34912095 A JP34912095 A JP 34912095A JP 3226204 B2 JP3226204 B2 JP 3226204B2
Authority
JP
Japan
Prior art keywords
welding
current
positive
circuit
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP34912095A
Other languages
Japanese (ja)
Other versions
JPH09168871A (en
Inventor
和紀 蔵園
政隆 長嶺
正二 三平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NAG SYSTEM CO., LTD.
Original Assignee
NAG SYSTEM CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NAG SYSTEM CO., LTD. filed Critical NAG SYSTEM CO., LTD.
Priority to JP34912095A priority Critical patent/JP3226204B2/en
Publication of JPH09168871A publication Critical patent/JPH09168871A/en
Application granted granted Critical
Publication of JP3226204B2 publication Critical patent/JP3226204B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は,正負一対の電極で
被溶接物を挟持し加圧通電して溶接を行う抵抗スポット
溶接機用制御装置に関し,さらに詳しくは,一対の電極
間に任意パルス形状の溶接電流を供給して,被溶接物の
表面圧痕や変形または電極の溶着,ナゲットの偏位や散
りの発生を防ぎながら常に適切な溶接品質を得ることを
目的とする抵抗スポット溶接用制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control device for a resistance spot welding machine for sandwiching a work to be welded between a pair of positive and negative electrodes and performing welding by applying a pressure to the work. Control for resistance spot welding that aims to always obtain appropriate welding quality while supplying the welding current of the shape and preventing the surface indentation and deformation of the work to be welded, the welding of the electrodes, and the occurrence of deviation and scattering of the nugget. Related to the device.

【0002】[0002]

【従来の技術とその問題】従来の抵抗スポット溶接用制
御装置には大別して単相交流,単相整流,三相整流,イ
ンバータ,コンデンサ方式などがある。
2. Description of the Related Art Conventional resistance spot welding control devices are roughly classified into single-phase AC, single-phase rectification, three-phase rectification, inverters, and capacitor systems.

【0003】しかしながら,単相交流,単相整流および
三相整流式の場合には50HZないし60HZ の電源周
波に同期した一定の間隔でしか電流制御を行い得ず,イ
ンバータの場合も制御時間の単位は数百から数kHZ
高速になるものの,やはり一定間隔であることに変わり
はなかった。
However, single-phase alternating current, when the single-phase rectifier and three-phase rectification is not obtained performs only current control at regular intervals synchronized with the power frequency of 50H Z to 60H Z, if the inverter also controls time although the unit consists of hundreds to kH Z and fast, no still it remains a constant interval.

【0004】また単相交流式では正負の電流は同一値に
よって行われ,単相整流および三相整流式ではその正負
同一値に制御された溶接電流を溶接トランス二次側で直
流に変換していた。
In the single-phase AC type, the positive and negative currents are generated with the same value. In the single-phase rectification and the three-phase rectification type, the welding current controlled to the same positive and negative values is converted to DC on the secondary side of the welding transformer. Was.

【0005】コンデンサ式においては,コンデンサ群の
充電電圧を調整することによって溶接条件を設定するの
で,通電時間についてはコンデンサの容量と,溶接機二
次回路のインピーダンスによって決定され,任意に調整
することはできなかった。
In the capacitor type, welding conditions are set by adjusting the charging voltage of the capacitor group. Therefore, the energization time is determined by the capacity of the capacitor and the impedance of the secondary circuit of the welding machine, and can be adjusted arbitrarily. Could not.

【0006】これらの制約は以下に述べるように,特に
板厚の異なる被溶接物や固有抵抗の低い被溶接物を低加
圧かつ短時間で,圧痕や変形を少なくし,しかも電極と
被溶接物の溶着や散り発生を抑制しながら溶接する場合
に問題となっていた。
As described below, these restrictions reduce the indentation and deformation of an object to be welded, in particular, to a workpiece having a different plate thickness or a material having a low specific resistance, at a low pressure and in a short time. This has been a problem when welding while suppressing the occurrence of welding and scattering of objects.

【0007】[0007]

【課題を解決するための手段】本発明はかかる従来の抵
抗スポット溶接用制御装置の欠点を解消するためになさ
れたものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the drawbacks of the conventional control apparatus for resistance spot welding.

【0008】しなわち,本発明(請求項1)は正負一対
の電極で被溶接物を挟持し加圧通電して溶接を行う抵抗
スポット溶接機用制御装置において,前記電極側に対し
て高電圧の溶接電源を電気的に絶縁すると共に,所定の
低電圧に降圧する電源トランスと,前記電源トランスか
らの電力を蓄積する,前記電極の正極および負極に対応
した充電回路と,前記充電回路によって各々任意に設定
可能な電圧値まで充電されるコンデンサ群と,前記コン
デンサ群に蓄積された電力を,正負間の電極に各々対応
して個別に電流方向の切り替え設定して通電時間および
休止時間にて任意設定のn回数だけ被溶接物に供給する
放電回路とを備えたことを特徴とする。
[0008] In other words, the present invention (claim 1) is a control device for a resistance spot welding machine in which an object to be welded is sandwiched between a pair of positive and negative electrodes and welding is performed by applying pressure and conducting. A power transformer for electrically insulating a voltage welding power source and stepping down to a predetermined low voltage, a charging circuit corresponding to a positive electrode and a negative electrode of the electrode for storing power from the power transformer, and the charging circuit. A capacitor group charged to a voltage value that can be set arbitrarily, and the electric power stored in the capacitor group are individually switched in the current direction corresponding to each of the positive and negative electrodes, and are set for the energizing time and the pause time. And a discharge circuit for supplying the workpiece to the workpiece n times .

【0009】なお,被溶接物によっては直流通電のみで
十分な場合もあり,この場合は負極側の充電回路,コン
デンサバンクおよび放電回路を省略して正極側のみの構
成とし装置を簡略すこともできる。
In some cases, depending on the work to be welded, it is sufficient to apply only DC current. In this case, the charging circuit, the capacitor bank and the discharging circuit on the negative electrode side are omitted, and only the positive electrode side is used to simplify the apparatus. it can.

【0010】さらにもう一つの本発明(請求項2)は正
負一対の電極で被溶接物を挟持し加圧通電して溶接を行
う抵抗スポット溶接機用制御装置において,前記電極側
に対して高電圧の溶接電源を電気的に絶縁すると共に,
所定の低電圧に降圧する電源トランスと,前記電源トラ
ンスからの電流を直流に変換する整流回路と,変換され
た直流を,前記電極の正極および負極に各々対応して個
別に電流方向の切り替え設定して通電時間および休止時
間にて任意設定のn回数だけ被溶接物に供給する通電回
路とを備えたことを特徴とする。
[0010] Still another aspect of the present invention (claim 2) is a control device for a resistance spot welding machine that sandwiches an object to be welded between a pair of positive and negative electrodes and conducts welding by applying a pressure to the electrode side. While electrically insulating the voltage welding power source,
A power transformer for stepping down to a predetermined low voltage, a rectifier circuit for converting a current from the power transformer into a direct current, and setting of the converted direct current in a current direction individually corresponding to the positive and negative electrodes of the electrodes, respectively. And an energization circuit for supplying the workpiece to the workpiece n times during the energization time and the pause time.

【0011】なお,前記溶接トランスと整流回路に代え
て二つの直流安定化電源を使用することにより,電源変
動による溶接電流の変化を補償する構成にすることもで
きる。前項と同様に被溶接物によっては直流通電のみで
十分な場合は,負極側の充電回路および通電回路を省略
して正極側のみの構成とし装置を簡略すこともできる。
By using two DC stabilized power supplies instead of the welding transformer and the rectifier circuit, it is also possible to adopt a configuration in which a change in welding current due to a power supply fluctuation is compensated. In the same manner as in the preceding paragraph, if only DC energization is sufficient depending on the object to be welded, the charging circuit and the energizing circuit on the negative electrode side can be omitted and only the positive electrode side can be used to simplify the apparatus.

【0012】[0012]

【発明の実施の形態】本発明の実施例として,以下に本
発明を抵抗スポット溶接機に適用した例を示す。図1は
本発明(請求項1)の電気ブロック回路図である。溶接
電源1は電源トランス2を介して降圧されて充電回路3
および充電回路4に供給される。マイクロコンピュータ
5は充電回路3および充電回路4を制御してコンデンサ
・バンク6およびコンデンサ・バンク7を通して各々あ
らかじめ設定器14に設定された電圧まで充電する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS As an embodiment of the present invention, an example in which the present invention is applied to a resistance spot welding machine will be described below. FIG. 1 is an electric block circuit diagram of the present invention (claim 1). The welding power source 1 is stepped down through the power source transformer 2 and the charging circuit 3
And supplied to the charging circuit 4. The microcomputer 5 controls the charging circuit 3 and the charging circuit 4 to charge up to the voltage set in the presetter 14 through the capacitor bank 6 and the capacitor bank 7, respectively.

【0013】マイクロコンピュータ5は放電回路9およ
び放電回路10を制御して各々任意に設定可能な通電時
間および休止時間にて任意の設定回数だけ被溶接物に対
しての通電を,外部からの起動スイッチ8が入力される
ことにより行う。このとき放電回路9を駆動すれば図1
の上部電極E1から下部電極E2に対して通電が行わ
れ,放電回路10によれば正負の極性が入れ替わって,
下部電極E2から上部電極E1側への通電となる。溶接
時に溶接機の二次導体に流れた溶接電流を電流センサ1
1で検出し,モニタ回路12を通してマイクロコンピュ
ータ5によってあらかじめ設定器14に入力された上限
値又は下限値と比較判定される。
The microcomputer 5 controls the discharge circuit 9 and the discharge circuit 10 to energize the workpiece by an arbitrary number of times during an arbitrarily set energization time and a pause time, and to start the energization from the outside. This is performed when the switch 8 is input. At this time, if the discharge circuit 9 is driven, FIG.
Is supplied from the upper electrode E1 to the lower electrode E2. According to the discharge circuit 10, the positive and negative polarities are switched.
The current flows from the lower electrode E2 to the upper electrode E1. Current sensor 1 detects the welding current flowing through the secondary conductor of the welding machine during welding.
1 and is compared with the upper limit value or the lower limit value previously input to the setting unit 14 by the microcomputer 5 through the monitor circuit 12.

【0014】この上限値のレベルは被溶接物の材質,板
厚等の溶接条件に応じて求められた散りの発生,圧潰変
形を発生せざる電流値を基準にした設定値である。また
下限値は未溶着または不完全溶接をせざる電流値に対応
した基準レベルを設定する。
The level of the upper limit value is a set value based on a current value which does not cause scatter and crushing, which is obtained according to welding conditions such as the material of the workpiece and the plate thickness. As the lower limit, a reference level corresponding to a current value that does not cause unwelded or incomplete welding is set.

【0015】マイクロコンピュータ5によって比較判定
された電流値があらかじめ設定された上限値又は下限値
を越えた場合に入出力回路15を経て警報出力が発せら
れ,次工程への移行を停止するようになっている。な
お,上記の判定結果は各機器類への入出力データを表示
する表示器13に出力されて検出値が表示される。
When the current value compared and determined by the microcomputer 5 exceeds a preset upper limit value or lower limit value, an alarm output is issued via the input / output circuit 15 and the transition to the next step is stopped. Has become. Note that the above determination result is output to the display 13 which displays input / output data to each device and the detected value is displayed.

【0016】次に,図2は本発明(請求項2)の実施例
を示す電気ブロック回路図である。同実施例について説
明する。なお,図1と同一符号は同一構成部品を示す。
FIG. 2 is an electric block circuit diagram showing an embodiment of the present invention (claim 2). The embodiment will be described. The same reference numerals as those in FIG. 1 indicate the same components.

【0017】溶接電源4は電源トランス2を介して降圧
されて各々正負電極に対応した整流回路16および整流
回路17に供給される。
The welding power source 4 is stepped down through the power source transformer 2 and supplied to the rectifier circuits 16 and 17 corresponding to the positive and negative electrodes, respectively.

【0018】外部から起動スイッチ8が入力されると,
マイクロコンピュータ5は通電回路18および通電回路
19を制御して各々任意に設定可能な通電時間および休
止時間にて任意の設定回数だけ被溶接物に対して通電を
行う。このとき通電回路18を駆動すれば図2の上部電
極E1から下部電極E2に対して通電が行われ,通電回
路19によれば正負の極性が入れ替わって,溶接電流は
下部電極E2から上部電極E1への通電となる。電流値
は電流センサ11で検出され,モニタ回路12を通して
マイクロコンピュータ5によって判定し,あらかじめ定
められた上下限値を超えた場合に警報が出力されるよう
になっている。
When the start switch 8 is inputted from outside,
The microcomputer 5 controls the energizing circuit 18 and the energizing circuit 19 to energize the workpiece by an arbitrarily set number of times with an arbitrarily set energizing time and a pause time. At this time, when the energizing circuit 18 is driven, energization is performed from the upper electrode E1 to the lower electrode E2 in FIG. 2, and according to the energizing circuit 19, the positive and negative polarities are switched, and the welding current is changed from the lower electrode E2 to the upper electrode E1. To the power supply. The current value is detected by the current sensor 11 and determined by the microcomputer 5 through the monitor circuit 12, and an alarm is output when the current value exceeds a predetermined upper and lower limit value.

【0019】この請求項2の実施例では,整流回路を用
いたことにより,連続的な電源を使用することができる
から,請求項1のコンデンサにより一旦,電流を蓄積す
ることがなく,より大きな溶接電源容量を必要とする
が,通電時間の長さに制約されることがなくなり,しか
も回路構成を簡素化できる特長がある。
In the embodiment of the present invention, a continuous power supply can be used by using the rectifier circuit. Although a welding power source capacity is required, there is a feature that the length of current supply time is not restricted and the circuit configuration can be simplified.

【0020】図3はダイレクトスポット溶接,図4はシ
リーズスポット溶接方法において,直流溶接を行った場
合の極性効果といわれる現象である。溶接電流が正極か
ら負極に流れるとき,電子流は電流と逆向きに流れる。
この場合,ナゲットは正極側に偏位(偏り)して,正極
側の発熱が大きくなるので,正極側の電極の損耗が大き
くなり,溶着も起こしやすい。
FIG. 3 shows a phenomenon called a polarity effect when direct current welding is performed in the direct spot welding method and FIG. 4 is a series spot welding method. When the welding current flows from the positive electrode to the negative electrode, the electron current flows in the opposite direction to the current.
In this case, the nugget is displaced (biased) toward the positive electrode side, and the heat generation on the positive electrode side increases, so that the electrode on the positive electrode side is greatly worn and welded easily.

【0021】単相整流,三相整流のほか,図6のインバ
ータ式,図7のコンデンサ式などの直流溶接電源はいず
れもこの欠点をもっている。電流の向きが交互に入れ替
わる図5の交流溶接電源においてはこのような現象はみ
られないが,ただし2枚の被溶接物の板厚が大きく異な
る,すなわち正負極の熱容量が大幅に異なる場合には,
それぞれの熱時定数が異なるために類似の現象が発生す
ることもある。また薄板側の電極はより溶接部に近く,
この点からもより過熱されやすい。
In addition to single-phase rectification and three-phase rectification, DC welding power sources such as the inverter type shown in FIG. 6 and the capacitor type shown in FIG. 7 all have this disadvantage. Such a phenomenon is not observed in the AC welding power source shown in FIG. 5 in which the direction of the current is alternately changed. However, when the two workpieces have significantly different plate thicknesses, that is, when the heat capacities of the positive and negative electrodes are significantly different. Is
Similar phenomena may occur due to different thermal time constants. Also, the electrode on the thin plate side is closer to the weld,
From this point, it is easier to overheat.

【0022】本発明では前記のように,この現象を補正
するために,正負両方向の電流の大きさを任意に調整で
きるようにし,さらに電流の流れる方向の切り替え,つ
まり上下電極の極性変更のタイミングを任意の通電時間
および休止時間にて任意のn回数を行えるようにして,
板厚の異なる被溶接物の溶接においても,ナゲットの偏
位,両電極の磨耗を最適にバランスさせることができ,
これに伴って電極の被溶接物への溶着も防止できるよう
にした。
In the present invention, as described above, in order to correct this phenomenon, the magnitude of the current in both the positive and negative directions can be arbitrarily adjusted, and the direction of the current flow is switched, that is, the timing of changing the polarity of the upper and lower electrodes is changed. Can be performed any number of times in any energization time and pause time,
Even when welding workpieces with different plate thicknesses, the deviation of the nugget and the wear of both electrodes can be optimally balanced.
Accordingly, welding of the electrode to the workpiece can be prevented.

【0023】さらに,本発明では単相交流,インバー
タ,コンデンサ式など,従来のように電源トランスの代
わりに放電回路と電極の間に溶接トランスを設置する方
式の場合と比べて,溶接トランス内のインダクタンスの
影響がなく,電流波形の立ち上がりが急峻で,なおか
つ,正負の電流の方向の切り替え休止時間を短時間に調
整できるので,ナゲットの形成開始を早めることができ
る。従来のように放電回路のあとに溶接トランスが存在
すると,このインダクタンスの影響を受けて電流波形の
立ち上がりが遅くなり,溶接部において溶融に十分なジ
ュール熱が発生する前に2枚の溶接物は圧接されて板間
の接触抵抗が急激に減少する。その結果溶接部における
ジュール熱も発生しにくくなるため,以後のナゲットの
成長速度が遅くなってしまう。
Further, in the present invention, compared with a conventional method of installing a welding transformer between a discharge circuit and an electrode instead of a power supply transformer, such as a single-phase AC, an inverter, a capacitor type, etc. There is no influence of the inductance, the rise of the current waveform is steep, and the switching pause time in the direction of the positive or negative current can be adjusted in a short time, so that the nugget formation can be started earlier. If a welding transformer is present after the discharge circuit as in the past, the rise of the current waveform will be delayed due to the influence of this inductance. Due to the pressure contact, the contact resistance between the plates sharply decreases. As a result, Joule heat is less likely to be generated in the welded portion, and the subsequent nugget growth rate will be reduced.

【0024】本発明を適用すれば,まだ2枚の被溶接物
間の接触抵抗が低くならないうちに溶接部に大きなエネ
ルギーを供給できるので,ナゲットが早期に形成され,
通電時間も短くてすむ。すなわち省エネルギーであるば
かりでなく,被溶接物の圧潰変形が少ないうちに溶接を
終えることができる。さらに銅やアルミニウムなど固有
抵抗の低い材質に対する溶接性も改善されるという効果
もある。
According to the present invention, a large amount of energy can be supplied to the welded portion before the contact resistance between the two workpieces is reduced, so that the nugget can be formed early.
The energization time can be short. That is, not only energy saving, but also welding can be completed before the crushing deformation of the workpiece is small. Further, there is an effect that the weldability to a material having low specific resistance such as copper and aluminum is also improved.

【0025】(アップスロープ)他方,従来の場合は,
電流の立ち上がりが急峻であることは溶接部に対する急
激な加熱を行うことになり,しばしば溶接部の爆飛を伴
うという問題がある。この問題を回避するには単相整
流,三相整流,インバータ式,などで採用されている溶
接電流の初期アップスロープ制御を行うか,加圧力を上
げて溶接物のなじみをよくし,すなわち板間抵抗を低く
押さえて溶接部におけるジュール熱の発生を抑制するし
かなかった。しかし加圧力を高くし板間抵抗を低く押さ
えると,溶接電流をさらに大きくし,また通電時間も延
長しなくてはならず,高加圧と相まって溶接物の圧潰変
形をさらに促進することになってしまう。
(Up slope) On the other hand, in the conventional case,
If the current rises steeply, the welded portion will be rapidly heated, and there is a problem that the welded portion is often exploded. To avoid this problem, perform initial up-slope control of the welding current used in single-phase rectification, three-phase rectification, inverter type, etc., or increase the pressing force to improve the familiarity of the welded material. The only option was to keep the inter-resistance low to suppress the generation of Joule heat in the weld. However, if the pressing force is increased and the inter-plate resistance is reduced, the welding current must be further increased and the energizing time must be prolonged. In combination with the high pressure, the crushing of the welded material is further promoted. Would.

【0026】本発明によれば電流波形の各パルス幅を自
由に調整することができるので,等価的に適当なアップ
スロープと同等の効果をもたらすことができ,電流の立
ち上がりが急峻であるにもかかわらず,加圧力を低く保
ちながら溶接部の爆飛を抑制することができる。
According to the present invention, each pulse width of the current waveform can be freely adjusted, so that an effect equivalent to an appropriate upslope can be equivalently obtained, and even if the rise of the current is steep. Regardless, the blast of the weld can be suppressed while keeping the pressing force low.

【0027】(極性効果)図8は本実施例に基づく溶接
電流波形の一例である。図中の上側の電流波形が放電回
路9に,下側の電流波形が放電回路10によるものであ
る。ここでは放電回路10側の電力を供給するコンデン
サ・バンク7の方の充電電圧をやや高めに設定してい
る。最初に比較的短い放電回路9側の第1パルスで被溶
接物のなじみをよくして爆飛の防止を行い,以降溶接に
寄与する3つのパルスで溶接を行うが,その間,放電回
路10の下側のパルスを若干大きめにして前記の極性効
果によるナゲットの偏位を補正している。
(Polarity Effect) FIG. 8 is an example of a welding current waveform based on this embodiment. In the figure, the upper current waveform is due to the discharge circuit 9, and the lower current waveform is due to the discharge circuit 10. Here, the charging voltage of the capacitor bank 7 for supplying the power of the discharging circuit 10 is set slightly higher. First, the first pulse on the relatively short discharge circuit 9 side improves the conformity of the work to be welded to prevent explosion, and thereafter, welding is performed with three pulses contributing to welding. The lower pulse is made slightly larger to correct the nugget deviation due to the polarity effect.

【0028】(極性効果と焼き戻し)図9は,図8の実
施例に対し焼き戻し作用を加えた本発明に基づく溶接電
流波形の別の一例である。本図のように放電回路9と放
電回路10とは必ずしも交互に駆動されるわけではな
く,溶接条件によっては片側が連続で駆動されることも
ある。図9では最初に放電回路9側に被溶接物のなじみ
をよくして爆飛防止用の第1パルスを供給し,次に同一
方向でパルス幅の大きい溶接通電を行い,最後に放電回
路10側に極性効果の補正と焼き戻しとを兼ねた小さい
パルスで通電を行っている。
(Polarity Effect and Tempering) FIG. 9 shows another example of a welding current waveform according to the present invention in which a tempering action is added to the embodiment of FIG. As shown in this figure, the discharge circuit 9 and the discharge circuit 10 are not necessarily driven alternately, and one side may be driven continuously depending on welding conditions. In FIG. 9, first, the first pulse for preventing explosion is supplied to the discharge circuit 9 side to improve the conformity of the work to be welded, and then a welding current having a large pulse width is applied in the same direction. The energization is performed on the side with a small pulse that serves both for correcting the polarity effect and for tempering.

【0029】(電流の重畳と散り発生)図10は本発明
の実施例に基づく溶接電流波形の別の一例である。同図
(A)は同時に放電回路9を連続で駆動させた場合と放
電回路10を断続に駆動させた時の正極及び負極側の矩
形波形を示もので,放電回路9から電流値の大きいパル
ス幅の長い電流を流し,放電回路10から電流値の小さ
いパルスを短時間断続的に流すと,正極側及び負極側の
パルス矩形波が相殺される。したがって同図の(B)の
電流波形のごとく実質的に電極側に流れる溶接電流は重
畳された電流波形により溶接部に通電される。
FIG. 10 shows another example of a welding current waveform based on the embodiment of the present invention. FIG. 3A shows the positive and negative side rectangular waveforms when the discharge circuit 9 is continuously driven at the same time and when the discharge circuit 10 is driven intermittently. When a current having a long width is supplied and a pulse having a small current value is intermittently supplied from the discharge circuit 10 for a short period of time, the positive and negative pulse side rectangular waves are canceled. Therefore, the welding current substantially flowing to the electrode side as shown in the current waveform (B) of FIG.

【0030】こうすることで,被溶接物の溶接条件に応
じた溶接電流の立ち上げを早くして被溶接板間の抵抗を
低下する前に発熱させることができ,短時間にナゲット
を生成することによって溶け込みを深くさせることがで
きる。しかも溶接電流の任意の低下時間及び回数を設定
できるので,急速な発熱で溶け込みを深くして爆飛直前
の溶融部が低下時間を設けることによって過熱を断続に
拡散させることができるので,溶接部への加圧力追従性
が遅い機構においても,加圧力を低く保ちながら溶接部
の爆飛を抑制することができる。
By doing so, the rise of the welding current in accordance with the welding conditions of the work to be welded can be accelerated to generate heat before the resistance between the work plates is reduced, and a nugget can be generated in a short time. This can deepen the penetration. In addition, since the welding current can be set to any desired time and number of times, rapid heat generation can deepen the penetration, and the molten portion immediately before the explosion has a reduced time so that overheating can be intermittently diffused. Even in a mechanism with a slow pressing force following force, the explosion of the weld can be suppressed while keeping the pressing force low.

【0031】(散り発生防止)図11は本実施例に基づ
く溶接電流波形の別の一例である。この場合,図10と
同様に,同時に放電回路9と放電回路10とを断続的に
駆動させた時の正極及び負極側のパルス状の矩形波を重
畳したもので,同図の(A)に示すように,放電回路9
及び放電回路10からの大きさの異なる電流値とパルス
幅の電流を同時に流した時に,正極側のパルス波形と負
極側のパルス波形とが相殺される結果,同図(B)に示
すような重畳されたパルス波形の溶接電流を電極間に通
電することができる。
(Prevention of Scattering) FIG. 11 shows another example of a welding current waveform based on this embodiment. In this case, as in FIG. 10, pulse-shaped rectangular waves on the positive and negative sides when the discharge circuit 9 and the discharge circuit 10 are simultaneously driven intermittently are superimposed. As shown, the discharge circuit 9
When the currents having different magnitudes and the pulse widths from the discharge circuit 10 and the pulse width are simultaneously supplied, the positive-side pulse waveform and the negative-side pulse waveform cancel each other out, and as shown in FIG. A welding current having a superimposed pulse waveform can be supplied between the electrodes.

【0032】したがって,この電流波形制御によれば,
被溶接物の溶接条件に応じた発熱コントロールを迅速に
行うことができ,短時間にナゲットを生成することによ
って溶け込みを深くさせることができる。しかも溶接電
流の任意の休止時間及び任意の通電回数を設定できるの
で,急速な発熱で溶け込みを深くして爆飛直前の溶融部
が休止時間を設けることによって,過熱を断続に拡散さ
せながら極性効果を防止でき,溶接部への加圧力追従性
が遅い機構においても加圧力を低く保ちながら溶接部の
爆飛を抑制することができる。
Therefore, according to this current waveform control,
Heat generation control according to the welding conditions of the workpiece can be quickly performed, and the penetration can be deepened by generating a nugget in a short time. In addition, since the welding current can be set to any desired pause time and the number of times of energization, rapid heat generation can deepen the penetration and provide a pause time for the molten zone immediately before the explosion, thereby dispersing the overheating intermittently and making it more polar. This prevents the explosion of the welded portion while keeping the applied pressure low even in a mechanism having a slow ability to follow the applied force to the welded portion.

【0033】[0033]

【発明の効果】本発明(請求項1及び請求項2)は,正
負両方向の溶接電流のパルス波形の大きさとパルス幅を
任意に調整でき,さらに電流の方向の切り替えタイミン
グを任意の通電時間および休止時間にて任意の設定回数
で行うことができるので,板厚の異なる被溶接物の溶接
においても,ナゲットの偏位,両電極の磨耗を最適にバ
ランスさせることができ,これに伴って電極の被溶接物
への溶着も防止できる。また電流波形の立ち上がりが急
峻でなおかつ正負の電流の方向の切り替え休止時間を短
時間に調整できるようにしたので,ナゲットの形成開始
を早めることができる。
According to the present invention (claims 1 and 2), the magnitude and pulse width of the pulse waveform of the welding current in both the positive and negative directions can be arbitrarily adjusted. Since the welding can be performed at an arbitrary number of times during the pause time, even when welding workpieces having different plate thicknesses, the deviation of the nugget and the wear of both electrodes can be optimally balanced. Can also be prevented from welding to the workpiece. In addition, since the rising of the current waveform is steep and the switching pause time in the direction of the positive or negative current can be adjusted in a short time, the start of the nugget formation can be hastened.

【0034】さらにまた,本発明を適用すれば,まだ2
枚の被溶接物間の接触抵抗が低くならないうちに溶接部
に大きなエネルギーを供給できるので,ナゲットが早期
に形成され,通電時間も短くてすむ。すなわち省エネル
ギーであるばかりでなく,被溶接物の圧潰変形が少ない
うちに溶接を終えることができる。さらに銅やアルミニ
ウムなど固有抵抗の低い材質に対する溶接性も改善でき
る。
Furthermore, if the present invention is applied, it is still 2
Since a large amount of energy can be supplied to the welded portion before the contact resistance between the workpieces is reduced, a nugget is formed early and the energization time can be reduced. That is, not only energy saving, but also welding can be completed before the crushing deformation of the workpiece is small. Further, the weldability to a material having low specific resistance such as copper and aluminum can be improved.

【0035】また本発明は電流波形の各パルス幅を自由
に調整することができるので,等価的に適当なアップス
ロープ制御と同等の効果をもたらすことができ,電流の
立ち上がりが急峻であるにもかかわらず,加圧力を低く
保ちながら溶接部の爆飛を抑制することができる。
Further, according to the present invention, since each pulse width of the current waveform can be freely adjusted, the same effect as that of an appropriate up-slope control can be equivalently obtained. Regardless, the blast of the weld can be suppressed while keeping the pressing force low.

【0036】また本発明(請求項2)の場合は,整流回
路又は直流安定化電源回路を用いたことにより,連続的
な電源を使用することができるから,請求項1のコンデ
ンサにより一旦,電流を蓄積することがなく,より大き
な溶接電源容量を要するが,通電時間の長さに制約され
ることがなくなり,しかも回路構成を簡素化できる。
In the case of the present invention (claim 2), a continuous power supply can be used by using a rectifier circuit or a DC stabilized power supply circuit. , And a larger welding power source capacity is required. However, there is no restriction on the length of energization time, and the circuit configuration can be simplified.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例を示す電気ブロック回路図であ
る。
FIG. 1 is an electric block circuit diagram showing an embodiment of the present invention.

【図2】本発明の他の実施例を示す電気ブロック回路図
である。
FIG. 2 is an electric block circuit diagram showing another embodiment of the present invention.

【図3】ダイレクトスポット溶接方法における溶接電流
の向きによる極性効果を示す概略説明図である。
FIG. 3 is a schematic explanatory view showing a polarity effect depending on a direction of a welding current in a direct spot welding method.

【図4】シリーズスポット溶接方法における溶接電流の
向きによる極性効果を示す概略説明図である。
FIG. 4 is a schematic explanatory view showing a polarity effect depending on a direction of a welding current in a series spot welding method.

【図5】単相交流式における電流波形図である。FIG. 5 is a current waveform diagram in a single-phase AC system.

【図6】インバータ式における電流波形図である。FIG. 6 is a current waveform diagram in an inverter type.

【図7】コンデンサ式における電流波形図である。FIG. 7 is a current waveform diagram in a capacitor system.

【図8】本発明の実施例における電流波形図である。FIG. 8 is a current waveform diagram in the example of the present invention.

【図9】本発明の他の実施例における電流波形図であ
る。
FIG. 9 is a current waveform diagram in another embodiment of the present invention.

【図10】本発明の実施例における上側放電と下側放電
の重畳電流波形図である。
FIG. 10 is a superimposed current waveform diagram of an upper discharge and a lower discharge in an example of the present invention.

【図11】本発明の他の実施例における上側放電と下側
放電の重畳電流波形図である。
FIG. 11 is a superimposed current waveform diagram of an upper discharge and a lower discharge in another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1・・・ 溶接電源 2・・・ 電源トランス 3・・・ 充電回路 4・・・ 充電回路 5・・・ マイクロコンピュータ 6・・・ コンデンサ・バンク 7・・・ コンデンサ・バンク 8・・・ 起動スイッチ 9・・・ 放電回路 10・・・ 放電回路 11・・・ 電流センサ 12・・・ モニタ 13・・・ 表示装置 14・・・ 設定器 15・・・ 入出力回路 16・・・ 整流回路 17・・・ 整流回路 18・・・ 通電回路 19・・・ 通電回路 E1・・・ 上部電極 E2・・・ 下部電極 DESCRIPTION OF SYMBOLS 1 ... Welding power supply 2 ... Power supply transformer 3 ... Charging circuit 4 ... Charging circuit 5 ... Microcomputer 6 ... Capacitor bank 7 ... Capacitor bank 8 ... Start switch 9 discharge circuit 10 discharge circuit 11 current sensor 12 monitor 13 display device 14 setting device 15 input / output circuit 16 rectifier circuit 17 .. Rectifier circuit 18 ... energizing circuit 19 ... energizing circuit E1 ... upper electrode E2 ... lower electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 三平 正二 神奈川県川崎市多摩区枡形1丁目23番1 号 株式会社電元社製作所内 審査官 神崎 孝之 (56)参考文献 特開 平3−285777(JP,A) 特開 平4−167981(JP,A) 特開 昭58−100984(JP,A) 特開 昭59−218284(JP,A) 特公 昭48−24625(JP,B1) (58)調査した分野(Int.Cl.7,DB名) B23K 11/26 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Shoji Sanpeira 1-23-1 Masugata, Tama-ku, Kawasaki City, Kanagawa Prefecture Examiner at Dengensha Seisakusho Co., Ltd. Takayuki Kanzaki (56) References JP 3-285777 ( JP, A) JP-A-4-167981 (JP, A) JP-A-58-100984 (JP, A) JP-A-59-218284 (JP, A) JP-B-48-24625 (JP, B1) (58 ) Surveyed field (Int.Cl. 7 , DB name) B23K 11/26

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】正負一対の電極で被溶接物を挟持し加圧通
電して溶接を行う抵抗スポット溶接機用制御装置におい
て,前記電極側に対して高電圧の溶接電源を電気的に絶
縁すると共に,所定の低電圧に降圧する電源トランス
と,前記電源トランスからの電力を蓄積する,前記電極
の正極および負極に対応した充電回路と,前記充電回路
によって各々任意に設定可能な電圧値まで充電されるコ
ンデンサ群と,前記コンデンサ群に蓄積された電力を,
正負間の電極に各々対応して個別に電流方向の切り替え
設定して通電時間および休止時間にて任意設定のn回数
だけ被溶接物に供給する放電回路とを備えたことを特徴
とする抵抗スポット溶接用制御装置。
In a control apparatus for a resistance spot welding machine for performing welding by sandwiching an object to be welded between a pair of positive and negative electrodes and applying a current by applying a pressure, a high-voltage welding power source is electrically insulated from the electrode side. A power transformer for stepping down to a predetermined low voltage, a charging circuit corresponding to the positive and negative electrodes of the electrodes for storing power from the power transformer, and charging to a voltage value which can be set arbitrarily by the charging circuit. And the power stored in the capacitor group
Switching of current direction individually for positive and negative electrodes
Arbitrarily set n times for energization time and pause time
A control device for resistance spot welding, comprising: a discharge circuit for supplying only to a workpiece.
【請求項2】正負一対の電極で被溶接物を挟持し加圧通
電して溶接を行う抵抗スポット溶接機用制御装置におい
て,前記電極側に対して高電圧の溶接電源を電気的に絶
縁すると共に,所定の低電圧に降圧する電源トランス
と,前記電源トランスからの電流を直流に変換する整流
回路と,変換された直流を,前記電極の正極および負極
に各々対応して個別に電流方向の切り替え設定して通電
時間および休止時間にて任意設定のn回数だけ被溶接物
に供給する通電回路とを備えたことを特徴とする抵抗ス
ポット溶接用制御装置。
2. A control device for a resistance spot welding machine in which a work to be welded is sandwiched between a pair of positive and negative electrodes and welding is performed by applying a pressure and electrically welding a high-voltage welding power source to said electrode side. A power transformer for stepping down to a predetermined low voltage, a rectifier circuit for converting a current from the power transformer to a direct current, and converting the converted direct current individually in a current direction corresponding to a positive electrode and a negative electrode of the electrode . And a power supply circuit for supplying the workpiece to the workpiece by an arbitrary number of times set during the power-on time and the pause time after switching .
JP34912095A 1995-12-20 1995-12-20 Controller for resistance spot welding Expired - Lifetime JP3226204B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34912095A JP3226204B2 (en) 1995-12-20 1995-12-20 Controller for resistance spot welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34912095A JP3226204B2 (en) 1995-12-20 1995-12-20 Controller for resistance spot welding

Publications (2)

Publication Number Publication Date
JPH09168871A JPH09168871A (en) 1997-06-30
JP3226204B2 true JP3226204B2 (en) 2001-11-05

Family

ID=18401632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34912095A Expired - Lifetime JP3226204B2 (en) 1995-12-20 1995-12-20 Controller for resistance spot welding

Country Status (1)

Country Link
JP (1) JP3226204B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ300059B6 (en) * 1999-04-01 2009-01-21 Resistance welding method
DE19923172C2 (en) * 1999-05-20 2001-12-06 Erdogan Karakas Resistance welding process
JP6020345B2 (en) * 2013-05-13 2016-11-02 マツダ株式会社 Welding method
CN111243802B (en) * 2020-01-15 2022-09-13 东莞市凯立锐智能科技有限公司 Leadless resistor with auxiliary lead and welding method

Also Published As

Publication number Publication date
JPH09168871A (en) 1997-06-30

Similar Documents

Publication Publication Date Title
US4485293A (en) Short circuit transfer arc welding machine
US6321167B1 (en) Resistance-welding power supply apparatus
EP0670623A2 (en) Controllable power supply
US3657724A (en) Method of and power supply for electric arc welding
US6713708B2 (en) Portable drawn arc stud welding apparatus and method providing high current output in short time intervals
JPH0694078B2 (en) Resistance welder
US6552293B2 (en) Metallic members joining method and reflow soldering method
US6046424A (en) Resistance welding control apparatus
JP3226204B2 (en) Controller for resistance spot welding
US7288741B2 (en) Arc welder
US4273984A (en) Flash butt welding apparatus
JP2001334369A (en) Power supply device for resistance welding
JPS6224877A (en) Capacitor type spot welding machine
US3575573A (en) Method of and power supply for electric arc welding
JPH1085947A (en) Method and device for controlling resistance welding
JPH0386383A (en) Capacitor type spot welding machine
JPH08197260A (en) Inverter control ac resistance welding equipment and its resistance welding method
JP3766653B2 (en) Semi-insulator welding method and welding apparatus therefor
JP2537516B2 (en) Control method and apparatus for arc welding power source
WO1986000035A1 (en) Resistance welder
JP2710939B2 (en) Consumable electrode type bipolar arc welding method
AU587165B2 (en) Resistance welder
JPH1024377A (en) Welding power unit for parallel gap welding
US6043448A (en) Method of welding cylindrical bodies
Zaruba et al. New type of pulse stabilizer of alternating current welding arc

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080831

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090831

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term