JPS62291166A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS62291166A
JPS62291166A JP61136616A JP13661686A JPS62291166A JP S62291166 A JPS62291166 A JP S62291166A JP 61136616 A JP61136616 A JP 61136616A JP 13661686 A JP13661686 A JP 13661686A JP S62291166 A JPS62291166 A JP S62291166A
Authority
JP
Japan
Prior art keywords
photoresist
insulating film
metal layer
region
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61136616A
Other languages
Japanese (ja)
Inventor
Tokujiro Watanabe
渡辺 徳二郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61136616A priority Critical patent/JPS62291166A/en
Publication of JPS62291166A publication Critical patent/JPS62291166A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To prevent a crystal defect from being formed in a semiconductor device by forming a field insulating film on first and second ion implanted regions, and using the first and second regions as first and second channel stoppers. CONSTITUTION:A photoresist 7 is formed on a P-type MOST region and its field region, with a metal layer 5 and the photoresist 7 as masks P-type impurity atom ions 9 are implanted to the field region of an N-type MOST. After the resist 7 is removed, a resist 8 is formed on the N-type MOST region and its field region, and N-type impurity atom ions 10 are implanted to the filed region of the P-type MOST. After the photoresist B is removed, the layer 5 is removed, with the nitride film of a second insulating film 4 as a mask the field is oxidized to form a thick oxide film as a field insulating film 11 on the field region, and a P-type channel stopper 12 and an N-type channel stopper 13 are simultaneously formed thereunder. Thus, a crystal defect can be prevented.

Description

【発明の詳細な説明】 発明の詳細な説明 〔産業上の利用分野〕 本発明は半導体装置の製造方法に関し、特にチャネルス
トッパを有するCMO8集積回路を含む半導体装置の製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a semiconductor device, and more particularly to a method of manufacturing a semiconductor device including a CMO8 integrated circuit having a channel stopper.

〔従来の技術〕[Conventional technology]

従来、この種の半導体装置の製造方法、例えばチャネル
ストッパを有するCMO8集積回路の製造方法は、一般
にチャネルストッパの形成にはイオン注入法を使用する
が、その場合の素子領域を覆うマスクとしては、従来か
ら、減圧D V D窒化膜の厚い膜あるいはホトレジス
トを用いてきた。
Conventionally, in the manufacturing method of this type of semiconductor device, for example, the manufacturing method of a CMO8 integrated circuit having a channel stopper, an ion implantation method is generally used to form the channel stopper. Conventionally, thick films of low pressure DVD nitride films or photoresists have been used.

第2図(a)〜(d)は従来の半導体装置の製造方法の
第1の例を説明するために工程順に示した半導体チップ
の断面図である。
FIGS. 2(a) to 2(d) are cross-sectional views of a semiconductor chip shown in order of steps to explain a first example of a conventional method for manufacturing a semiconductor device.

この第1の例は、先ず、第2図(a、)に示すように、
例えばN型シリコンの半導体基板1内にP型のウェル2
を形成したのち、半導体基板1とウェル2の表面」−に
第1絶縁膜3例えば薄い酸化膜および第2絶縁膜4例え
ば減圧CVDの窒化膜を形成する。
In this first example, first, as shown in FIG. 2(a),
For example, a P-type well 2 is placed in an N-type silicon semiconductor substrate 1.
After forming, a first insulating film 3 such as a thin oxide film and a second insulating film 4 such as a nitride film formed by low pressure CVD are formed on the surfaces of the semiconductor substrate 1 and the well 2.

次に、第2図(b)に示すように、所定の素子領域にの
み選択的に第2絶縁膜4を残し、半導体基板1のpチャ
ネルM OS I−ランジスタ(以後pM OS Tと
称する〉領域およびpMO8Tのフィールド領域にホト
レジスト−7′を形成してnチャネルMO3)−ランジ
スタ(以降n M O8’T−と称す)のフィールド領
域にP型の不純物原子例えばホウ素のイオン注入9を行
ないイオン注入領域12′を形成する。この時、n M
 OS Tの素子領域は第1絶縁膜3−トの第2絶縁膜
4をマスクとしている。
Next, as shown in FIG. 2(b), the second insulating film 4 is selectively left only in predetermined device regions, and a p-channel MOS I-transistor (hereinafter referred to as pMOS T) on the semiconductor substrate 1 is formed. A photoresist 7' is formed in the field region and the field region of the pMO8T, and ion implantation 9 of P-type impurity atoms, for example, boron, is performed in the field region of the n-channel MO3) transistor (hereinafter referred to as nMO8'T-). An implanted region 12' is formed. At this time, n M
The element region of the OST uses the second insulating film 4 of the first insulating film 3 as a mask.

次に、第2図(c)に示すように、ポトレジスI・7′
を除去した後、同様に、nMo5T領域及びそのフィー
ルド領域を含むP型のウェル2を覆うようにホトレジス
ト8′を形成し、p M OS Tのフィールド領域に
N型の不純物原子例えばリンのイオン注入10を行ない
イオン注入領域13′を形成する。
Next, as shown in Figure 2(c), Potregis I 7'
After removing, a photoresist 8' is similarly formed to cover the P-type well 2 including the nMo5T region and its field region, and N-type impurity atoms such as phosphorus ions are implanted into the field region of the pMOST. Step 10 is performed to form an ion implantation region 13'.

更に、第2図(d)に示すように、ポi・レジス1〜8
′を除去した後、第2絶縁膜4をマスクとし′でLOC
O3法によりフィールド酸化を行ない、フィールド領域
にフィールド絶縁膜11として厚い酸化膜を形成すると
共にP型のチャネルスI−ツバ12とN型のチャネルス
トッパ13を同時に形成する。この時、nMo3T領域
は第1絶縁膜3及び第2絶縁膜4で覆われている。
Furthermore, as shown in FIG. 2(d), Poi Regis 1 to 8
After removing ', the second insulating film 4 is used as a mask, and the LOC is
Field oxidation is performed using the O3 method to form a thick oxide film as a field insulating film 11 in the field region, and simultaneously form a P-type channel I-flange 12 and an N-type channel stopper 13. At this time, the nMo3T region is covered with the first insulating film 3 and the second insulating film 4.

以後、第2絶縁膜4を除去したのち通常の製造工程を経
てCMO3集積回路を完成する。
Thereafter, after removing the second insulating film 4, the CMO3 integrated circuit is completed through normal manufacturing steps.

第3図(a)〜(d)は従来の半導体装置の製造方法の
第2の例を説明するために工程順に示した半導体チップ
の断面図である。
FIGS. 3(a) to 3(d) are cross-sectional views of a semiconductor chip shown in order of steps to explain a second example of a conventional method for manufacturing a semiconductor device.

この第2の例は、第3図(a )に示すように、先ず、
N型シリコンの半導体基板1にP型のウェル2を形成し
た後、第1絶縁膜3として薄い酸化膜形成し、第2絶縁
膜4として1000人程度0減圧CVDの窒化膜を第1
の例よりも薄く形成する。
In this second example, as shown in FIG. 3(a), first,
After forming a P-type well 2 on an N-type silicon semiconductor substrate 1, a thin oxide film is formed as a first insulating film 3, and a nitride film of about 1,000 low pressure CVD is deposited on the first insulating film 4 as a second insulating film 4.
Form it thinner than the example above.

次に、第3図(b)に示すように、所定の素子領域上に
ホトレジスト6を形成してホトレジスト6をマスクとし
て、第2絶縁膜4を除去し、ホトレジスト6を残した状
態で、nMo8T領域およびそのフィールド領域にレジ
スト7″を形成してnMO8Tのフィールド領域にP型
不純物原子例−5〜 えばホウ素のイオン注入9を行ない、イオン注入領域1
2′を形成する。この時nMO3T素子領域は第1絶縁
膜3.第2絶縁膜4、さらにポトレジス1へ6で覆って
いるためイオン注入のエネルギーは比較的高くすること
ができ、所望のP型イオン注入領域12′を形成する事
ができる。
Next, as shown in FIG. 3(b), a photoresist 6 is formed on a predetermined device region, and the second insulating film 4 is removed using the photoresist 6 as a mask. A resist 7'' is formed in the field region and its field region, and ion implantation 9 of P-type impurity atoms, for example boron, is performed in the field region of the nMO8T.
2' is formed. At this time, the nMO3T element region is covered with the first insulating film 3. Since the second insulating film 4 and the photoresist 1 are covered with 6, the ion implantation energy can be relatively high, and a desired P-type ion implantation region 12' can be formed.

次に、第3図(c)に示すように、ホトレジスト7″及
び6とを除去した後に、ホトレジスト8″を所定のパタ
ーンでnMO8T及びそのフィールド領域を含むP型の
ウェル2の上を覆うように形成し、pMO3Tのフィー
ルド領域にN型の不純物原子例えばリンのイオン注入1
oを行いイオン注入領域13′を形成する。しかしこの
場合、I)MO8TO8上のマスクは薄い酸化股上の1
000人程人程窒化膜であるため、イオン注入時のエネ
ルギーをあまり大きくできず、前に説明した第1の従来
例の方法より制限された製造条件となる。
Next, as shown in FIG. 3(c), after removing the photoresists 7'' and 6, a photoresist 8'' is applied in a predetermined pattern to cover the P-type well 2 including the nMO8T and its field region. ion implantation of N-type impurity atoms, for example, phosphorus, into the field region of pMO3T.
Step 3 is performed to form an ion implantation region 13'. But in this case, I) the mask on MO8TO8 is 1 on the thin oxide crotch.
Since it is a nitride film of about 1,000 yen, the energy during ion implantation cannot be increased very much, resulting in manufacturing conditions that are more limited than those of the first conventional method described above.

更に、第3図(d)に示すように、ホトレジスト8″を
除去して、第2絶縁膜4をマスクとしてL OCOS法
によりフィールド酸化を行いフィールド絶縁膜11とし
て厚い酸化膜を形成すると共にP型及びN型のチャネル
ストッパ12及び13を形成する。
Furthermore, as shown in FIG. 3(d), the photoresist 8'' is removed and field oxidation is performed by the LOCOS method using the second insulating film 4 as a mask to form a thick oxide film as the field insulating film 11. Type and N type channel stoppers 12 and 13 are formed.

以降は、第1の従来例と同様のプロセスによりCMO8
集積回路を完成する。
After that, the CMO8 is manufactured using the same process as the first conventional example.
Complete the integrated circuit.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

」−述した従来の半導体装置の製造方法は、膜厚の厚い
フィールド絶縁膜の下にチャネルストッパを形成する為
にホトレジスト及び第2絶縁膜である窒化膜をマスクと
して、フィールド絶縁膜である酸化膜に不純物原子が食
われない程度の深さに、イオン注入をしなければならず
、注入エネルギーをある程度大きくしなければならない
” - The conventional semiconductor device manufacturing method described above uses photoresist and a nitride film, which is a second insulating film, as a mask to form a channel stopper under a thick field insulating film. Ions must be implanted to a depth that prevents impurity atoms from being eaten into the film, and the implantation energy must be increased to a certain degree.

しかし、上述の第1の例では、第2絶縁膜を減圧CVD
の窒化膜で形成すると膜厚2000Å以上ではクラック
が生じ易くなるので1800人程度以下の膜厚にしなけ
ればならず、従って、イオン注入のエネルギーを低くし
てチャネルストッパを形成しようとするとイオン注入の
ドーズ量を増やすことになりフィールド領域の表面に結
晶欠陥を生じさせるという欠点がある。勿論、ドーズ量
を増やさずにイオン注入をすればチャネルストッパとし
ての充分な不純物濃度が得られない。又、−上述の第2
の例では、P型の不純物原子をイオン注入する場合には
ホトレジストがマスクとなるので上述のような欠点は無
いが、しがし、次の工程のN型の不純物原子をイオン注
入をする場合には第1の例と同様の欠点が生じてしまい
しがも第2絶縁膜の窒化膜の膜厚が第1の例より薄い分
だけ注入エネルギーを低くしなければならず良好な特性
をもったチャネルストッパの形成はより困難になる。
However, in the first example described above, the second insulating film is formed by low pressure CVD.
If the nitride film is formed with a thickness of 2000 Å or more, cracks are likely to occur, so the film thickness must be less than 1800 Å. Therefore, if you try to form a channel stopper by lowering the ion implantation energy, the ion implantation will be difficult. This method has the disadvantage that it increases the dose and causes crystal defects on the surface of the field region. Of course, if ion implantation is performed without increasing the dose, a sufficient impurity concentration as a channel stopper cannot be obtained. Also, - the above-mentioned second
In the example above, when ion-implanting P-type impurity atoms, the photoresist serves as a mask, so there is no drawback as described above. However, when ion-implanting N-type impurity atoms in the next step, This method has the same drawbacks as the first example, but the implantation energy must be lowered because the thickness of the nitride film of the second insulating film is thinner than that of the first example. Forming channel stops becomes more difficult.

本発明の目的は、チャネルストッパを形成するためのイ
オン注入条件の範囲が広くかつフィールド領域の表面に
イオン注入による結晶欠陥を生じさせにくい安定した半
導体装置の製造方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a stable method for manufacturing a semiconductor device that allows a wide range of ion implantation conditions for forming a channel stopper and is less likely to cause crystal defects due to ion implantation on the surface of a field region.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の半導体装置の製造方法は、−導電型の半導体基
板に反対導電型のウェルを形成する工程と、前記半導体
基板と前記ウェルとの表面に第1絶縁膜、第2絶縁膜及
び金属層を順次形成する工程と、前記金属層上に所定の
パターンで第1のホトレジストを形成して前記第1のホ
トレジストをマスクとして前記金属層及び前記第2絶縁
膜を順次除去して前記ウェル上及び前記半導体基板上に
それぞれ所定のパターンで前記第2絶縁膜と前記金属層
を残す工程と、前記第1のホトレジストを除去した後に
前記半導体基板上の前記第1絶縁膜の一部及び前記金属
層を覆うようにして第2のホトレジストを形成して前記
ウェル上の前記金属層と前記第2のホトレジストとをマ
スクとして反対導電型の不純物をイオン注入し前記ウェ
ル表面と前記ウェル周辺の半導体基板表面に反対導電型
の第1のイオン注入領域を形成する工程と、前記第2の
ホトレジストを除去した後に前記ウェル上の前記金属層
と前記第1のイオン注入領域上の前記第1絶縁膜との上
に第3のホトレジストを形成して前記半導体基板上の前
記金属層と前記第3のホ)へレジストをマスクとして一
導電型の不純物をイオン注入し前記半導体基板表面に一
導電型の第2のイオン入流領域を形成する工程と、前記
ホトレジスト及び前記金属層を除去して前記第1及び第
2のイオン注入領域上にフィールド絶縁膜を形成すると
共に前記第1及び第2のイオン注入領域をそれぞれ第1
及び第2のチャネルストッパとする工程とを含んで構成
される。
The method for manufacturing a semiconductor device of the present invention includes the steps of forming a well of an opposite conductivity type on a semiconductor substrate of a -conductivity type, and forming a first insulating film, a second insulating film, and a metal layer on the surfaces of the semiconductor substrate and the well. forming a first photoresist in a predetermined pattern on the metal layer and sequentially removing the metal layer and the second insulating film using the first photoresist as a mask to form a layer on the well and leaving the second insulating film and the metal layer in predetermined patterns on the semiconductor substrate, and a part of the first insulating film and the metal layer on the semiconductor substrate after removing the first photoresist; A second photoresist is formed to cover the surface of the well, and an impurity of an opposite conductivity type is ion-implanted using the metal layer on the well and the second photoresist as a mask, and the surface of the well and the surface of the semiconductor substrate around the well are ion-implanted. forming a first ion-implanted region of opposite conductivity type in the well; and after removing the second photoresist, forming a bond between the metal layer on the well and the first insulating film on the first ion-implanted region. A third photoresist is formed on the semiconductor substrate, and an impurity of one conductivity type is ion-implanted into the metal layer on the semiconductor substrate and the third photoresist using the resist as a mask. forming a field insulating film over the first and second ion implantation regions by removing the photoresist and the metal layer; each first
and a step of forming a second channel stopper.

〔実施例〕〔Example〕

次に、本発明の一実施例について図面を参照して説明す
る。
Next, an embodiment of the present invention will be described with reference to the drawings.

第1図(a)〜(d)は本6発明の一実施例を説明する
ために工程順に示した半導体チップの断面図である。
FIGS. 1(a) to 1(d) are cross-sectional views of a semiconductor chip shown in the order of steps for explaining an embodiment of the present invention.

この実施例は、第1図(a>に示すように、先ず、N型
シリコンの半導体基板1内にP型のウェル2を形成した
後、半導体基板1及びウェル2の表面上に第1絶縁膜3
として500人程0の熱酸化膜、第2絶縁膜4として減
圧CV I)により成長した1000人程度0窒化膜さ
らに厚さ1.0μm程度のアルミニウム等の金属層5を
順次形成する。
In this embodiment, as shown in FIG. membrane 3
A thermal oxide film with a thickness of about 500 as a second insulating film 4, a nitride film with a thickness of about 1,000 grown by low pressure CVI) as a second insulating film 4, and a metal layer 5 of aluminum or the like with a thickness of about 1.0 μm are successively formed.

次に、図1(b)に示すように、素子領域にホトレジス
トを所定のパターンに形成してそのホトレジストをマス
クにして金属層5を、例えばCCff4.CF、及びB
Cl3の混合ガスを用いて異方性ドライエツチングし、
続いて、第2絶縁膜4の窒化膜をCF4.H2の混合ガ
スでドライエツチングする。更に、ホトレジストを除去
後、pMO3T領域およびそのフィールド領域にホトレ
ジストアを形成し、金属層5とホトレジスト7とをマス
クとしてnMO3Tのフィールド領域にP型の不純物原
子例えばホウ素のイオン注入9を行なう。ここで、ホウ
素のイオン注入エネルギーは30〜150keVの間で
自由に選ぶ事ができ、nMO3T領域のマスクとしての
効果は金属層1.0μmと窒化膜1000人によって充
分に保証されている。
Next, as shown in FIG. 1B, a photoresist is formed in a predetermined pattern in the element region, and using the photoresist as a mask, the metal layer 5 is coated with, for example, CCff4. CF, and B
Anisotropic dry etching using a mixed gas of Cl3,
Subsequently, the nitride film of the second insulating film 4 is coated with CF4. Dry etching with a mixed gas of H2. Further, after removing the photoresist, a photoresist is formed in the pMO3T region and its field region, and ion implantation 9 of P-type impurity atoms, for example, boron, is performed in the nMO3T field region using the metal layer 5 and the photoresist 7 as masks. Here, the boron ion implantation energy can be freely selected between 30 and 150 keV, and the effectiveness of the nMO3T region as a mask is sufficiently guaranteed by the metal layer of 1.0 μm and the nitride film of 1,000 layers.

次に、第1図(c)に示すように、レジスl〜7を除去
した後、同様にnMO3T領域およびそのフィールド領
域にレジスト8を形成し、pMos1゛のフィールド領
域にN型不純物原子例えばリン乃至ヒ素のイオン注入1
oを行なう。ここで、リン乃至ヒ素のイオン注入エネル
ギーは30〜2゜OkeVの間で自由に選べ、p M 
OS−「領域のマスクとしての効果はnMO8Tの場合
と同様に充分保証される。
Next, as shown in FIG. 1(c), after removing resists 1 to 7, a resist 8 is formed in the nMO3T region and its field region, and an N-type impurity atom, for example, phosphorus, is formed in the field region of pMos1. ~ Arsenic ion implantation 1
Do o. Here, the ion implantation energy of phosphorus or arsenic can be freely selected between 30 and 2°OkeV, and pM
The effectiveness of the OS region as a mask is fully guaranteed as in the case of nMO8T.

続いて、第1図(d)に示すように、ホI・レジスト8
を除去した後、金属層8をアルミニウムならば熱リン酸
液等でウェットエツチングして除去し、第2絶縁膜4の
窒化膜をマスクにLOCO3法を使ってフィールド酸化
を行ないフィールド領域にフィールド絶縁膜11として
厚い酸化膜を形成すると共にその下にP型のチャネルス
トッパ12とN型のチャネルストッパ13とを同時に形
成する。
Subsequently, as shown in FIG. 1(d), the hole resist 8
After removing the metal layer 8, if it is aluminum, it is removed by wet etching with a hot phosphoric acid solution, etc., and field oxidation is performed using the LOCO3 method using the nitride film of the second insulating film 4 as a mask to form field insulation in the field region. A thick oxide film is formed as the film 11, and a P-type channel stopper 12 and an N-type channel stopper 13 are simultaneously formed thereunder.

以後、第2絶縁膜4の窒化膜を除去したのち、通常の製
造工程を経て、CMO3集積回路を完成する。
Thereafter, after removing the nitride film of the second insulating film 4, the CMO3 integrated circuit is completed through normal manufacturing steps.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、チャネルストッパを形成
するためのイオン注入工程に使用する素子領域を覆うマ
スクとして、アルミニラ・ム等の金属層を利用すること
により、イオン注入条件の範囲を広くすると共にドーズ
量の増加に伴なって発生する結晶欠陥を防止して良好な
特性のチャネルストッパを有する半導体装置の製造方法
を提供できるという効果がある。
As explained above, the present invention widens the range of ion implantation conditions by using a metal layer such as aluminum as a mask to cover the device region used in the ion implantation process to form a channel stopper. In addition, it is possible to provide a method for manufacturing a semiconductor device having a channel stopper with good characteristics by preventing crystal defects that occur as the dose increases.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(d)は本発明の一実施例を説明するた
めに工程順に示した半導体チップの断面図、第2及び第
3図(a)〜(d)はそれぞれ従来の半導体装置の製造
方法の第1及び第2の例を説明するために工程順に示し
た半導体チップの断面図である。 1・・・半導体基板、2・・・ウェル、3・・・第1絶
縁膜、4・・・第2絶縁膜、5・・・金属層、6.7゜
7′、7″、8.8’ 、8″・・・ホトレジスト、1
1・・・フィールド絶縁膜、12.1.3・・・チャネ
ルストッパ、12’、13′・・・イオン注入領域。
FIGS. 1(a) to (d) are cross-sectional views of a semiconductor chip shown in the order of steps to explain one embodiment of the present invention, and FIGS. 2 and 3(a) to (d) are cross-sectional views of a conventional semiconductor chip, respectively. FIG. 2 is a cross-sectional view of a semiconductor chip shown in order of steps to explain first and second examples of a method for manufacturing a device. DESCRIPTION OF SYMBOLS 1... Semiconductor substrate, 2... Well, 3... First insulating film, 4... Second insulating film, 5... Metal layer, 6.7°7', 7'', 8. 8', 8''...Photoresist, 1
1... Field insulating film, 12.1.3... Channel stopper, 12', 13'... Ion implantation region.

Claims (1)

【特許請求の範囲】[Claims] 一導電型の半導体基板に反対導電型のウェルを形成する
工程と、前記半導体基板と前記ウェルとの表面に第1絶
縁膜、第2絶縁膜及び金属層を順次形成する工程と、前
記金属層上に所定のパターンで第1のホトレジストを形
成して前記第1のホトレジストをマスクとして前記金属
層及び前記第2絶縁膜を順次除去して前記ウェル上及び
前記半導体基板上にそれぞれ所定のパターンで前記第2
絶縁膜と前記金属層を残す工程と、前記第1のホトレジ
ストを除去した後に前記半導体基板上の前記第1絶縁膜
の一部及び前記金属層を覆うようにして第2のホトレジ
ストを形成して前記ウェル上の前記金属層と前記第2の
ホトレジストとをマスクとして反対導電型の不純物をイ
オン注入し前記ウェル表面と前記ウェル周辺の半導体基
板表面に反対導電型の第1のイオン注入領域を形成する
工程と、前記第2のホトレジストを除去した後に前記ウ
ェル上の前記金属層と前記第1のイオン注入領域上の前
記第1絶縁膜との上に第3のホトレジストを形成して前
記半導体基板上の前記金属層と前記第3のホトレジスト
をマスクとして一導電型の不純物をイオン注入し前記半
導体基板表面に一導電型の第2のイオン注入領域を形成
する工程と、前記ホトレジスト及び前記金属層を除去し
て前記第1及び第2のイオン注入領域上にフィールド絶
縁膜を形成すると共に前記第1及び第2のイオン注入領
域をそれぞれ第1及び第2のチャネルストッパとする工
程とを含むことを特徴とする半導体装置の製造方法。
a step of forming a well of an opposite conductivity type on a semiconductor substrate of one conductivity type; a step of sequentially forming a first insulating film, a second insulating film, and a metal layer on the surfaces of the semiconductor substrate and the well; and a step of forming the metal layer on the surface of the semiconductor substrate and the well. A first photoresist is formed on the well in a predetermined pattern, and the metal layer and the second insulating film are sequentially removed using the first photoresist as a mask to form a predetermined pattern on the well and the semiconductor substrate, respectively. Said second
a step of leaving an insulating film and the metal layer, and forming a second photoresist so as to cover a part of the first insulating film and the metal layer on the semiconductor substrate after removing the first photoresist. Ion-implanting impurities of opposite conductivity type using the metal layer on the well and the second photoresist as a mask to form a first ion implantation region of opposite conductivity type on the well surface and the semiconductor substrate surface around the well. and forming a third photoresist on the metal layer on the well and the first insulating film on the first ion implantation region after removing the second photoresist, and removing the second photoresist from the semiconductor substrate. ion-implanting impurities of one conductivity type using the upper metal layer and the third photoresist as masks to form a second ion implantation region of one conductivity type on the surface of the semiconductor substrate; and the photoresist and the metal layer. forming a field insulating film on the first and second ion-implanted regions, and using the first and second ion-implanted regions as first and second channel stoppers, respectively. A method for manufacturing a semiconductor device, characterized by:
JP61136616A 1986-06-11 1986-06-11 Manufacture of semiconductor device Pending JPS62291166A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61136616A JPS62291166A (en) 1986-06-11 1986-06-11 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61136616A JPS62291166A (en) 1986-06-11 1986-06-11 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS62291166A true JPS62291166A (en) 1987-12-17

Family

ID=15179466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61136616A Pending JPS62291166A (en) 1986-06-11 1986-06-11 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS62291166A (en)

Similar Documents

Publication Publication Date Title
JP2521611B2 (en) Method of manufacturing CMOS having twin well
JPS6080269A (en) Method of producing semiconductor element
US4046606A (en) Simultaneous location of areas having different conductivities
JPH0397261A (en) Semiconductor device and manufacture thereof
JPS61242064A (en) Manufacture of complementary type semiconductor device
JPH0324727A (en) Manufacture of semiconductor device
US20060205139A1 (en) Method for forming plural kinds of wells on a single semiconductor substrate
JPS62291166A (en) Manufacture of semiconductor device
KR980012560A (en) Semiconductor device manufacturing method
JPH0846026A (en) Manufacture of semiconductor device with element isolation region
JPS596559A (en) Semiconductor device
JPS63122156A (en) Manufacture of semiconductor integrated circuit
JPH07321015A (en) Manufacture of semiconductor device
JPH0479336A (en) Production of semiconductor device
JPS6331097B2 (en)
JPS62131538A (en) Manufacture of semiconductor device
JPS6281051A (en) Semiconductor device and manufacture thereof
JPH0117256B2 (en)
JPH02218164A (en) Mis type field-effect transistor
JPS6089940A (en) Manufacture of semiconductor device
JPH0480927A (en) Manufacture of semiconductor device
JPS61219150A (en) Manufacture of semiconductor device
JPS59169172A (en) Manufacture of semiconductor memory device
JPS6312380B2 (en)
JPS6111466B2 (en)