JPS62291020A - Vapor growth device - Google Patents

Vapor growth device

Info

Publication number
JPS62291020A
JPS62291020A JP13410986A JP13410986A JPS62291020A JP S62291020 A JPS62291020 A JP S62291020A JP 13410986 A JP13410986 A JP 13410986A JP 13410986 A JP13410986 A JP 13410986A JP S62291020 A JPS62291020 A JP S62291020A
Authority
JP
Japan
Prior art keywords
tube
thin film
substrate
branched
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13410986A
Other languages
Japanese (ja)
Inventor
Mototsugu Ogura
基次 小倉
Yasuhito Takahashi
康仁 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP13410986A priority Critical patent/JPS62291020A/en
Publication of JPS62291020A publication Critical patent/JPS62291020A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable a growth layer to be formed particularly having steep and excellent layer impurity concentration in thin film lamination growth of a compound semiconductor, by making a reactant gas introduction tube branch via a branching valve and then introducing reactant gases to a chamber from the first branched introduction tube having impurities and from the second branched introduction tube having no impurity. CONSTITUTION:When lamination growth of a thin film is performed on a substrate 3 by introducing reactant gases into a reactor chamber 1, an introduction tube for reactant gases containing constituents for thin film semiconductor formation is made to branch via a branching valve 19. The reactant gases are introduced there from respective introduction tubes 21 and 22, with impurities added to the first branched tube 21 and with no impurity added to the second branched tube. When undoped GaAs is made to grow on the substrate 3, for example, the branching valve 19 is controlled to introduce TMG 17, AsH3 18, and H2 13 in the direction of the tube 20. When n<+>AlGaAs is then made to grow, TMG 17, TMA 16, AsH3 18, and H2 13 are introduced via the branching valve 19 to the tube 21 and to be supplied to the substrate 3 with H2Se 14 added via a valve 8.

Description

【発明の詳細な説明】 3、発明の詳細な説明 産業上の利用分野 本発明は化合物半導体の薄膜積層成長において特に層間
の不純物濃度が急峻で良好な成長層を提供することがで
きる気相成長装置に関するものである。
Detailed Description of the Invention 3. Detailed Description of the Invention Industrial Field of Application The present invention is directed to vapor phase growth, which can provide a good growth layer with a steep impurity concentration between layers, especially in the layered growth of thin films of compound semiconductors. It is related to the device.

従来の技術 最近、化合物半導体を用いたヘデ「コ接合デバイスの研
究開発が盛んに行なわれている3、薄膜のエピタキシャ
ル成長法としては、従来の液相成長(LPE)法にかわ
り、超薄膜多層構造の形成が容易な分子線エビタキソー
(MBE )法や気相成成(ハライドVPE、M○VP
E)法が主流を占めている。このうちMOVPE法は有
機金属を用いた有機金属気相成長法のことで、特に量産
性の高い方法として注目されている。第2図に従来の一
般的なMOVPE装置のリアクタチ□ン・(−=付近の
概略図を示す。1はリアクタチェンノ(−12は半導体
基板3を保持するサセプタ、4は誘導加熱用RFコイル
である。基板温度は熱電対5によりモニタされ、制御す
る。6は反応ガスをリアクタチェンバー1内に導入する
導入管、7はリアクタチェンバー1内の反応後のガスを
外部に排気する排気管である。ガス導入側において、8
,9,10゜11.12.は3ボートバルブでありメイ
ンのキャリアガスであるH213の導入に対し、各3ボ
ートパル〕゛をONさぜることに」二りドーパント型成
元素用ガスであるTMAI 6 、TMGl 7 。
Conventional technologyRecently, research and development of Hedeco-junction devices using compound semiconductors has been actively conducted3.As a thin film epitaxial growth method, instead of the conventional liquid phase epitaxy (LPE) method, ultra-thin film multilayer Molecular beam shrimp taxo (MBE) method and vapor phase formation (halide VPE, M○VP) method that facilitates structure formation
E) Law dominates. Among these, the MOVPE method is an organic metal vapor phase epitaxy method using an organic metal, and is attracting attention as a method with particularly high mass productivity. Figure 2 shows a schematic diagram of the reactor chain (-) of a conventional general MOVPE device. The substrate temperature is monitored and controlled by a thermocouple 5. 6 is an introduction pipe for introducing the reaction gas into the reactor chamber 1, and 7 is an exhaust pipe for exhausting the gas after the reaction in the reactor chamber 1 to the outside. Yes.On the gas introduction side, 8
,9,10°11.12. There are three boat valves, and in response to the introduction of H213, which is the main carrier gas, each of the three boat valves is turned on.

AsH318がギヤリアガスH213に付加される。AsH318 is added to gear rear gas H213.

例えば、Alo、3Gao、7AS/GaAS ダブル
へテロ接合レーザを作製する場合、n” G a A 
s基板に271m n GaAs(n)1 x 10 
 cm  ) +21trrr  n−1Aio、3G
ao、−rAs (n 、−i 1ン1o18cm−3
) ro、1μmアンドープGaAs (n<1016
cm ”) 。
For example, when fabricating Alo, 3Gao, 7AS/GaAS double heterojunction lasers, n” G a A
271m n GaAs(n) 1 x 10 on s substrate
cm) +21trrr n-1Aio, 3G
ao, -rAs (n, -i 1n1o18cm-3
) ro, 1μm undoped GaAs (n<1016
cm”).

2 pm  p’ Ae、3Gao、了As (p)1
 x 1018cm−5)+171m p−”GaAs
 (1)>I X 1018cm−6)  を順次エビ
タキシャ)li成長する。n−’−GaAs (n )
 1018cm−3)を形成する場合、TMGl7を1
0cc/min (0℃)。
2 pm p' Ae, 3Gao, 了As (p)1
x 1018cm-5)+171m p-”GaAs
(1) > I x 1018 cm-6) are grown sequentially. n-'-GaAs (n)
1018 cm-3), TMGl7 is added to 1
0cc/min (0°C).

AsHa 18を15 cc、//min 、 H2S
e 14を6CC(H2希釈200ppmボンベを用い
るとする)を各々バルブ11.12.8をONして、2
1/minのH213に合流させて導入管6を経由して
リアクタチェンバ1内に導入さil、RFコイル4にて
誘導加熱した基板3(基板温度780℃)」−にn″−
G a A s がエピタキシャル成長スル。
AsHa 18 at 15 cc, //min, H2S
Turn on valves 11, 12, 8, and 2
1/min of H213 and introduced into the reactor chamber 1 via the introduction pipe 6, and the substrate 3 (substrate temperature 780°C) heated by induction with the RF coil 4''-n''-
G a A s is epitaxial growth.

p +A l o 、3G a o 、7 A 8 (
P > I Xl 018cm−3)のエピタキシャル
成長の場合はTMAI6が10cc 7m i n(0
℃)、TMGl7が10 cc/mi n (0℃) 
、 AsH318が15 cc/min 、 D E 
Z 15が5 cc/min (0℃)の各反応ガスを
H213の2 /I! 7m i nのラインにそれぞ
れバルブ10,11.12.9をONI、て合6 べ−
7 流させて、基板3−にに混合反応ガスを供給する。
p + A lo , 3 G a o , 7 A 8 (
In the case of epitaxial growth of P > I
℃), TMGl7 is 10 cc/min (0℃)
, AsH318 is 15 cc/min, D E
Z 15 is 5 cc/min (0°C) of each reaction gas of H213 2 /I! Connect valves 10, 11, 12, and 9 to each line of 7 min.
7. Supply the mixed reaction gas to the substrate 3- by causing it to flow.

他の層も同様にして作製ijJ能である。Other layers can be manufactured in the same manner.

発明が解決し」:うとする問題点 しかしながら、この従来の方法だと上述したような半導
体レーザの場合、n″−−undope (アンドープ
)−p″−のような不純物濃度構成の積層成長が要求さ
れるので、これらの層間の不純物濃度の急峻性が極めて
悪くなる。例えばアンドープの層(半導体レーザのG 
a A s活性層に相当)はn GaAs(〜1017
cm−3)となりp″A 7 o 、3G a o 、
7 A 8層はn型不純物に補償された結晶性の悪いp
 At!(,3G’o、r’層になり、しきい値電流の
増大や量子効率の低下といっだ問題が生じてし捷う。こ
れは基板3上に反応ガスを供給する導入管6がn型半導
体、p型半導体、 undope半導体いずれのエピタ
キシャル成長の場合も兼用していることに起因している
However, in the case of the above-mentioned semiconductor laser, this conventional method requires laminated growth with an impurity concentration structure such as n''-undope-p''-. Therefore, the steepness of the impurity concentration between these layers becomes extremely poor. For example, an undoped layer (G of a semiconductor laser)
a As active layer) is n GaAs (~1017
cm-3) and p″A 7 o , 3G a o ,
7 A The 8th layer is a p layer with poor crystallinity compensated by n-type impurities.
At! (, 3G'o, r' layer, which causes problems such as an increase in threshold current and a decrease in quantum efficiency. This is because the introduction tube 6 that supplies the reactive gas onto the substrate 3 is n This is due to the fact that it is used for epitaxial growth of type semiconductors, p-type semiconductors, and undoped semiconductors.

導入管6の一部を1層8インチ径にして流速を速めて不
純物の残留ガスを抑制したり、バルブ8と導入管6の先
端部間にシーズヒータを巻いたりして不純物の残留を抑
制したりしても完全には除去し6ベ。
A portion of the introduction pipe 6 is made 8 inches in diameter per layer to increase the flow rate to suppress the residual gas of impurities, or a sheathed heater is wrapped between the valve 8 and the tip of the introduction pipe 6 to suppress the residue of impurities. Even if you do, it will not be completely removed.

きれない。H2S eのメモリ効果は特に大きいと言わ
れているがS IH4や512H6に不純物を換えても
本質的な解決には到らない。この問題は何も半導体レー
ザに限らず、HEMTのような電気デバイスを作製する
場合にも二次元電子ガス層の移動度の低下といっだゆゆ
しき問題となってくる。
I can't do it. It is said that the memory effect of H2S e is particularly large, but even if the impurity is replaced with SIH4 or 512H6, no essential solution will be reached. This problem is not limited to semiconductor lasers, but also becomes a serious problem when manufacturing electrical devices such as HEMTs due to the decrease in the mobility of the two-dimensional electron gas layer.

問題点を解決するだめの手段 上記のように半導体デバイスの性能劣化を引き起す層間
の不純物の急峻性の低下とい−った問題点を解決するだ
めの本発明の技術的手段は、n型。
Means for Solving the Problems The technical means of the present invention for solving the above-mentioned problem of the steep drop in interlayer impurities that causes performance deterioration of semiconductor devices is n-type.

p型、 undope型の3種類のドーパント型が必要
な場合はリアクタチェンバー内に導入する導入管を各々
独立とし、メインのギヤリアガス、構成元素用ガスが分
岐バルブによりそれぞれn型用導入管やp型用導入管、
 undope型導入管へと分岐することにある。n型
やp型ドーパント用不純物は分岐バルブ以降にて反応ガ
ス導入管に付加する。
If three types of dopant types, p-type and undoped type, are required, the introduction pipes introduced into the reactor chamber should be made independent, and the main gear gas and constituent element gases can be connected to the n-type introduction pipe and p-type respectively through branch valves. Introductory pipe for
The main purpose is to branch into an undope type introduction pipe. Impurities for n-type and p-type dopants are added to the reaction gas introduction pipe after the branch valve.

作  用 本発明の作用は以下のように説明できる。つ壕ゆ、n型
ドーパントとしてのH2S eを用いる導入7へ 管はn型半導体薄膜形成用にのみ用いらtする(反応ガ
スが流れる)ため、n型半導体中にはp型ドーハントと
]〜てのZn(DEZより形成される)は混入しえない
。この時はp型半導体形成用導入管からは反応ガス、キ
ャリアガスの類は供給されていない(5hutされてい
る)からである。
Function The function of the present invention can be explained as follows. Introduction using H2Se as an n-type dopant Since the tube is used only for forming an n-type semiconductor thin film (reactant gas flows), there is a p-type dopant in the n-type semiconductor. All Zn (formed from DEZ) cannot be mixed. This is because, at this time, no reaction gas or carrier gas is supplied from the p-type semiconductor formation introduction tube (5 huts are applied).

undope型半導体薄膜を形成する時はundope
型用導入管にのみギヤリアガス、構成元素用ガスが流れ
るので、p型、n型ドーパントが混入しない高純度はu
ndope型半導体薄膜が容易に得られることになる。
When forming an undoped type semiconductor thin film, undope
Since the gear gas and constituent element gas flow only through the mold introduction pipe, high purity without contamination with p-type and n-type dopants is achieved.
An ndope type semiconductor thin film can be easily obtained.

本発明を用いれば、導入管内の定期的パージや、空焼き
等の手間のかかる工程が省けるばかりか、単に分岐バル
ブを切り換えるだけで再現性のよい、不純物濃度の急峻
な良好な薄膜多層積層膜が得られる。
By using the present invention, not only can time-consuming processes such as periodic purging of the inlet tube and dry baking be eliminated, but also a good thin film multilayer laminated film with a steep impurity concentration can be produced with good reproducibility by simply switching the branch valve. is obtained.

実施例 本発明の実施例を第1図を用いて説明する。従来例と同
一番号は同一部材とする。キャリアガスのH213に化
合物半導体の構成元素となる、例えばT MA 16 
、 T MG 17 * A 5H318を用いて各々
バルブ10,11.12を介して分岐バルブ19丑で構
成元素ガス、キャリアガスが導かれる。
Embodiment An embodiment of the present invention will be described with reference to FIG. The same numbers as in the conventional example refer to the same members. For example, T MA 16, which is a constituent element of a compound semiconductor, is added to the carrier gas H213.
, TMG 17*A 5H318, constituent element gas and carrier gas are introduced by branch valve 19 through valves 10, 11, and 12, respectively.

今undope GaAsを基板3上にエピタキシャル
成長させる場合、導入管20の方向に構成元素ガス(T
 M G 、 A s Ha ) +キャリアガスが導
かれるように分岐バルブ19を制御する。次にn’A 
eo、3Gao、7ASをエピタキシャル成長させる場
合は、TMGl 7 。
When undoped GaAs is epitaxially grown on the substrate 3, the constituent element gas (T
The branch valve 19 is controlled so that the carrier gas is introduced. Next n'A
TMGl 7 when epitaxially growing eo, 3Gao, and 7AS.

TMA 16 、 A s H318を分岐バルブ19
を介して導入管21側に導かれ、バルブ8を介してH2
Se14がT M G 17 、 T M A 16 
、 A sH18、H213に付加されて各種反応ガス
が混合され、基板3−f:に供給され、n ”’ Al
o 、3Gao 、7 A8がエピタキシャル成長する
。又p’−G a A s を成長させる場合は7MG
17、A8H318,H213を分岐バルブ19を介し
て導入管22側へ導かれ、バルブ9を介してDEZ15
が7MG17.AsH18,H213に月加されて各種
反応ガスが混合され、基板上に供給すしてp+GaAs
  がエピタキシャル成長fる。
TMA 16, A s H318 branch valve 19
H2 is introduced into the inlet pipe 21 side through the valve 8.
Se14 is TMG 17, TMA 16
, A sH18, H213, various reaction gases are mixed, and supplied to the substrate 3-f: n''' Al
o, 3Gao, 7A8 are epitaxially grown. Also, when growing p'-G a A s, 7MG
17, A8H318, H213 are guided to the introduction pipe 22 side via the branch valve 19, and DEZ15 is introduced via the valve 9.
is 7MG17. Various reaction gases are added to AsH18 and H213, mixed, and supplied onto the substrate to form p+GaAs.
is epitaxially grown.

尚、上記に述べた各種ガスの供給量はそれぞれ、TMA
=3 cc/min (20℃) 、 TMG =10
 cc/m1n(0℃)。
In addition, the supply amounts of the various gases mentioned above are TMA
=3 cc/min (20℃), TMG =10
cc/m1n (0°C).

9ベー。9 be.

AsH3=15 cc/min、 H2Se=5cc 
(H2希釈2ooppm#度) 、 D E Z =6
 cc/min (0℃)。
AsH3=15 cc/min, H2Se=5cc
(H2 dilution 2ooppm# degrees), D E Z = 6
cc/min (0°C).

H2−213/ m1n  であり、基板温度は780
″C2成長レートは各層1μm/brである。各々の組
み合せにより、GaAs、AlGaAs、n型、p型。
H2-213/m1n, and the substrate temperature is 780
"The C2 growth rate is 1 μm/br for each layer. Depending on the combination, GaAs, AlGaAs, n-type, p-type.

undope型いずれの場合も成長可能である。尚、分
岐バルブ19以降の各導入管20,21.22をパージ
するために23.24.25の分岐バルブを設けておく
ことは、不純物濃度のより正確な制御、クリーニングの
ために有効である。又ガスの混合をよくするためや混合
ガスの流速を速めて、導入管内壁に残留するガス成分を
抑えるために20.21.22の各導入管は1Aインチ
径を用いるのも有効である。
Growth is possible in both undoped types. Note that it is effective to provide branch valves 23, 24, and 25 for purging each inlet pipe 20, 21, and 22 after branch valve 19 for more accurate control of impurity concentration and cleaning. . It is also effective to use a diameter of 1A inch for each of the inlet tubes 20, 21, and 22 in order to improve gas mixing, increase the flow rate of the mixed gas, and suppress gas components remaining on the inner wall of the inlet tube.

本実施例では常圧でのエピタキシャル気相成長装置につ
いて述べたが、圧力調整弁を各々導入管20.21.2
2にとりつければ減圧気相成長装置としても適用できる
。又単層のみを成長する場合にも1つの導入管のみを用
いればよく、この場合も十分適用できることは明らかで
ある。
In this embodiment, an epitaxial vapor phase growth apparatus at normal pressure has been described, but pressure regulating valves are installed in each of the inlet pipes 20, 21, and 2.
2, it can also be used as a reduced pressure vapor phase growth apparatus. Furthermore, even when only a single layer is grown, it is sufficient to use only one introduction tube, and it is clear that this method can be sufficiently applied in this case as well.

10べ−1・ 発明の効果 本発明を用いてn I−Alo 、3Gao 、 7A
8 (ni> 1 x 10’ 8cm ’ )/un
dope GaAs(n(1x10  cm  )/p
 ” Alo 、s Gao 、 7A s (p 2
1 x 10 ” 8crn、 3)のダブルペテロ接
合構造を形成し、不純物の急峻性をSIMS分析法を用
いて評価すると、p型ドーパントのZn及び、n型ドー
パントのSeの各々の不純物のへテロ界面での急峻性は
20Å以下で極めてJ:い結果を得ている。当然のこと
なからSsの不純物がundopeのG a A sや
その次のp ’ A10.3Gao、 7As層まで混
入することは皆無となった。
10B-1 Effects of the invention Using the present invention, n I-Alo, 3Gao, 7A
8 (ni> 1 x 10'8cm')/un
dope GaAs(n(1x10 cm)/p
” Alo, s Gao, 7A s (p 2
When a double Peter junction structure of 1 x 10" 8crn, 3) was formed and the steepness of the impurities was evaluated using SIMS analysis, it was found that the impurities of Zn as a p-type dopant and Se as an n-type dopant were heterogeneous. The steepness at the interface is less than 20 Å and extremely low J: results are obtained.As a matter of course, Ss impurities are mixed into the undoped GaAs and the subsequent p'A10.3Gao and 7As layers. All of them disappeared.

本発明はA73 G a A s /G a A s系
のD E Z 、 H2S eの不純物にとどまらず他
の不純物、例えばDMZ。
The present invention is not limited to impurities such as D E Z and H2S e in the A73 Ga As / Ga As system, but also other impurities such as DMZ.

SiH4,Cp2Mq 等どんなものにも適用できるこ
とはもちろんのこと、InGaAsP/InP等どんな
構成元素系にも適用でき更に不純物ドーピングで量子井
戸構造を形成できるn1pi構造にも適用でき化合物半
導体デバイスに必要不可欠な良好な薄膜多層へテロ構造
の形成に極めて有力なものである。
It can of course be applied to any material such as SiH4, Cp2Mq, etc., but it can also be applied to any constituent element system such as InGaAsP/InP, and it can also be applied to the n1pi structure where a quantum well structure can be formed by impurity doping, making it an essential component for compound semiconductor devices. It is extremely effective for forming a good thin film multilayer heterostructure.

11 ・\−11・\−

【図面の簡単な説明】[Brief explanation of the drawing]

図である。 1・・・・・・リアフタチェンノ(,2・・・・・・サ
セプタ、3・・・・・・基板、6・・・・・・導入管、
19・・・・・・分岐)(ル)゛、20.21.22・
・・・・・導入管。
It is a diagram. 1...Rear rear connector (, 2...Susceptor, 3...Substrate, 6...Introduction pipe,
19...branch)(ru)゛、20.21.22・
...Introduction pipe.

Claims (5)

【特許請求の範囲】[Claims] (1)基板を載置したリアクターチェンバー内に反応ガ
スを導入して薄膜を上記基板上に積層成長するに際し、
薄膜半導体形成用構成元素を含む反応ガス用ガス導入管
が少くとも2方向に分岐させる分岐バルブを経由して分
岐し、分岐した第1の導入管には第1の不純物を付加し
、第2の導入管には不純物を付加せず、各々の上記第1
、第2の導入管を経由して上記反応ガスを上記リアクタ
チェンバー内に導入して、上記基板上に薄膜を積層形成
することを特徴とする気相成長装置。
(1) When a reactive gas is introduced into a reactor chamber in which a substrate is placed and a thin film is layered and grown on the substrate,
A gas introduction pipe for a reaction gas containing constituent elements for forming a thin film semiconductor is branched into at least two directions via a branch valve, a first impurity is added to the branched first introduction pipe, and a second impurity is added to the branched first introduction pipe. No impurities were added to the inlet tube of each of the above first tubes.
. A vapor phase growth apparatus, characterized in that the reaction gas is introduced into the reactor chamber via a second introduction pipe to form a thin film on the substrate.
(2)分岐バルブが3方向分岐バルブとし、第3の導入
管には第2の不純物を付加することを特徴とする特許請
求の範囲第1項に記載の気相成長装置。
(2) The vapor phase growth apparatus according to claim 1, wherein the branch valve is a three-way branch valve, and a second impurity is added to the third introduction pipe.
(3)薄膜を基板上に積層する際、第1の薄膜は第1の
導入管を用い、第2の薄膜は第2の導入管を用いて形成
することを特徴とする特許請求の範囲第1項に記載の気
相成長装置。
(3) When laminating thin films on a substrate, the first thin film is formed using a first introduction tube, and the second thin film is formed using a second introduction tube. The vapor phase growth apparatus according to item 1.
(4)リアクタチェンバー内に導入された各々のガス導
入管の先端部は互いに隣接して具備されることを特徴と
する特許請求の範囲第1項に記載の気相成長装置。
(4) The vapor phase growth apparatus according to claim 1, wherein the tip portions of each gas introduction tube introduced into the reactor chamber are provided adjacent to each other.
(5)反応ガスには有機金属ガスを含むことを特徴とす
る特許請求の範囲第1項に記載の気相成長装置。
(5) The vapor phase growth apparatus according to claim 1, wherein the reaction gas contains an organometallic gas.
JP13410986A 1986-06-10 1986-06-10 Vapor growth device Pending JPS62291020A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13410986A JPS62291020A (en) 1986-06-10 1986-06-10 Vapor growth device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13410986A JPS62291020A (en) 1986-06-10 1986-06-10 Vapor growth device

Publications (1)

Publication Number Publication Date
JPS62291020A true JPS62291020A (en) 1987-12-17

Family

ID=15120662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13410986A Pending JPS62291020A (en) 1986-06-10 1986-06-10 Vapor growth device

Country Status (1)

Country Link
JP (1) JPS62291020A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5973496A (en) * 1982-10-19 1984-04-25 Matsushita Electric Ind Co Ltd Vapor-phase growth apparatus
JPS5988395A (en) * 1982-11-08 1984-05-22 Agency Of Ind Science & Technol Apparatus for growing compound semiconductor crystal in vapor phase

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5973496A (en) * 1982-10-19 1984-04-25 Matsushita Electric Ind Co Ltd Vapor-phase growth apparatus
JPS5988395A (en) * 1982-11-08 1984-05-22 Agency Of Ind Science & Technol Apparatus for growing compound semiconductor crystal in vapor phase

Similar Documents

Publication Publication Date Title
US4659401A (en) Growth of epitaxial films by plasma enchanced chemical vapor deposition (PE-CVD)
JP3279528B2 (en) Method for producing nitride III-V compound semiconductor
WO2001071813A1 (en) Multi color detector
KR20010090165A (en) Semiconductor Device with Quantum dot buffer in heterojunction structures
JPH08293505A (en) Compound semiconductor device and its manufacture
US4773355A (en) Growth of epitaxial films by chemical vapor deposition
TW201248897A (en) Light receiving element and method for manufacturing same
JPH0529218A (en) Organic metal molecular beam epitaxial growth method
JPS62291020A (en) Vapor growth device
JP3536699B2 (en) Compound semiconductor vapor phase epitaxial growth method
JP3189061B2 (en) Method for manufacturing compound semiconductor device
JP3109149B2 (en) Compound semiconductor crystal growth method
JP2587624B2 (en) Epitaxial crystal growth method for compound semiconductor
JP2000124444A (en) Semiconductor device and epitaxial wafer
JP3424315B2 (en) Vapor phase growth method of III-V compound mixed crystal semiconductor thin film
JPH02156522A (en) Manufacture of semiconductor device
JP2001044456A (en) Manufacture of solar cell
JPS6237000B2 (en)
JPH01100976A (en) Manufacture of semiconductor element
JPH03280419A (en) Method for formation of compound semiconductor thin film
JPH0566356B2 (en)
JP2008192830A (en) Third-fifth group compound semiconductor device and manufacturing method therefor
JPS6148917A (en) Forming method of selective pope-hetero structure of group iii-v compound semiconductor
JPH03241731A (en) Vapor growth method for compound semiconductor crystal
JPH0788276B2 (en) Vapor phase epitaxial growth method