JPS62291007A - Superconducting magnet - Google Patents

Superconducting magnet

Info

Publication number
JPS62291007A
JPS62291007A JP61134600A JP13460086A JPS62291007A JP S62291007 A JPS62291007 A JP S62291007A JP 61134600 A JP61134600 A JP 61134600A JP 13460086 A JP13460086 A JP 13460086A JP S62291007 A JPS62291007 A JP S62291007A
Authority
JP
Japan
Prior art keywords
cryogenic refrigerant
superconducting
container
refrigerant container
electromagnetic force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61134600A
Other languages
Japanese (ja)
Inventor
Takashi Sasaki
高士 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61134600A priority Critical patent/JPS62291007A/en
Publication of JPS62291007A publication Critical patent/JPS62291007A/en
Pending legal-status Critical Current

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PURPOSE:To enable reducing the thickness of a container member by mechanically or metallurgically jointing a coil support member for supporting a superconducting coil to the container member provided along the direction wherein the electromagnetic force generated by the superconducting coil mutually affects. CONSTITUTION:The mutually attracting electromagnetic force between superconducting coils 7, 8 is affected to an upper plate 3 and a lower plate 4 since the coil support members 11, 12 for supporting each superconducting coil 7, 8 are jointed to the upper plate 3 and the lower plate 4 of container members provided in parallel along the direction wherein the electromagnetic force generated by each superconducting coil 7, 8 mutually affects. In this case, the thickness of all the members of a cryogenic refrigerant container 5, especially that of an inner cylinder 1, can be reduced since the upper plate 3 and the lower plate 4 have high rigidity against the electromagnetic force. This can reduce not only the weight of the cryogenic refrigerant container 5 but also can miniaturize the whole of the cryogenic refrigerant container 5.

Description

【発明の詳細な説明】 3、発明の詳細な説明 [発明の目的] (産業上の利用分野) 本発明は同心状に縦配置された内筒、外筒。[Detailed description of the invention] 3. Detailed description of the invention [Purpose of the invention] (Industrial application field) The present invention relates to an inner cylinder and an outer cylinder arranged vertically in a concentric manner.

およびこれら内筒、外筒の上、下各開口部を閉塞する上
板、下板から成り、内部に極低温冷媒が収容された極低
温冷媒容器内の極低温冷媒中に、内筒を挟むように少な
くとも2個の超電導コイルを対向配置して構成される超
電導マグネットに係り、特にコイル支持構成の改良を図
った超電導マグネットに関するものである。
It consists of an upper plate and a lower plate that close the upper and lower openings of the inner cylinder and the outer cylinder, and the inner cylinder is sandwiched in the cryogenic refrigerant in the cryogenic refrigerant container that contains the cryogenic refrigerant inside. The present invention relates to a superconducting magnet constructed by disposing at least two superconducting coils facing each other, and particularly relates to a superconducting magnet with an improved coil support structure.

(従来の技術) 近年、例えばMRI用超N導マグネット等のように、液
体ヘリウム等の極低温冷媒を使用する超電導マグネット
は、クライオ゛スタットと称される真空断熱容器の中で
使用されている。すなわちこの種の超電導マグネットは
、同心状に縦配置された内筒、外筒、およびこれら内筒
、外筒の上。
(Prior Art) In recent years, superconducting magnets that use cryogenic coolants such as liquid helium, such as super N-conducting magnets for MRI, have been used in vacuum insulation containers called cryostats. . In other words, this type of superconducting magnet consists of an inner cylinder and an outer cylinder arranged vertically in a concentric manner, and above these inner cylinder and outer cylinder.

下各開口部を閉塞する上板、下板から成り、内部に液体
ヘリウム等の極低温冷媒が収容された極低温冷媒容器内
の極低温冷媒中に、超電導線材を例えば円筒状に巻回し
てなる2個の超電導コイルを内筒を挟むように対向配置
したものを、真空断熱容器の中に収納して構成されてい
る。
The superconducting wire is wound into a cylindrical shape, for example, in a cryogenic refrigerant container that consists of an upper plate and a lower plate that close the lower openings, and contains a cryogenic refrigerant such as liquid helium inside. It consists of two superconducting coils arranged facing each other with an inner tube in between, which are housed in a vacuum insulation container.

第3図(a)および(b)は、この種の従来の超電導マ
グネットの構成例を平面断面図および正面断面図にて夫
々示したものである。第3図(a)および(b)におい
て、1はステンレス等の非磁性材からなり縦に配置され
た内筒、2は同じくステンレス等の非磁性材からなり、
上記内@1と同心状に配置された外筒、3および4は同
じくステンレス等の非磁性材からなり、これら内筒1.
外筒2の上、下各開口部を閉塞するように当該筒に溶接
接合された円板状の上板および下板であり、これらによ
り極低温冷媒容器5が構成されている。
FIGS. 3(a) and 3(b) show an example of the structure of a conventional superconducting magnet of this kind in a plan sectional view and a front sectional view, respectively. In FIGS. 3(a) and (b), 1 is a vertically arranged inner cylinder made of a non-magnetic material such as stainless steel, 2 is also made of a non-magnetic material such as stainless steel,
The outer cylinders 3 and 4, which are arranged concentrically with the inner cylinder 1, are also made of non-magnetic material such as stainless steel.
A disc-shaped upper plate and a lower plate are welded to the outer cylinder 2 so as to close the upper and lower openings thereof, and the cryogenic refrigerant container 5 is constituted by these plates.

また、この極低温冷媒容器5の内部には極低温冷媒であ
る液体ヘリウム6が収容されており、この液体ヘリウム
6の中には超電導線材を例えば円筒状に巻回してなる2
個の超電導コイル7.8が。
In addition, liquid helium 6, which is a cryogenic refrigerant, is stored inside the cryogenic refrigerant container 5, and in this liquid helium 6, a superconducting wire is wound into a cylindrical shape, for example.
7.8 superconducting coils.

図示のように内筒1を挟むような状態で対向配置されて
いる。さらに、9.10は上記各超電導コイル7.8を
支持するためのコイル支持部材であり、上記極低温冷媒
容器5の一部を構成する内筒1に1例えば溶接により治
金的に接合されている。
As shown in the figure, they are placed opposite each other with the inner cylinder 1 interposed therebetween. Furthermore, 9.10 is a coil support member for supporting each of the superconducting coils 7.8, which is metallurgically joined to the inner cylinder 1 constituting a part of the cryogenic refrigerant container 5 by, for example, welding. ing.

そして、このように構成したものが図示しない真空断熱
容器の中に、支持部材(通常サポートと称される)によ
り支持されている。なおコイル支持部材9.10は、超
電導コイル7.8の電磁力を支持するため、および超電
導コイル7.8の取付は位置を決めるためのものである
The device configured as described above is supported by a support member (usually referred to as a support) in a vacuum insulated container (not shown). The coil support member 9.10 is used to support the electromagnetic force of the superconducting coil 7.8, and to determine the mounting position of the superconducting coil 7.8.

ところで、この種の超11マグネットにおいては次のよ
うな問題がある。すなわち、極低温冷媒容器5内の液体
ヘリウム6に浸漬されている互いに向い合った2個の超
電導コイル9,10の間には、互いにくっつき合おうと
する力つまり吸引電磁力が作用しく互いに逆向きの磁場
となるように電流を流せば、互いに離れようとする力つ
まり反発電磁力が作用するが、通常超電導マグネットと
して使用する場合にはこのようにしている)、その吸引
電磁力の大きさは数トン−数十トン程度になる場合があ
る。しかしながら、従来では上述のように各超電導コイ
ル7.8を支持するためのコイル支持部材9,10を、
極低温冷媒容器5の一部を構成する内筒1に接合して、
電磁力を内筒1に伝えるようにしていることから、大き
な吸引電磁力によって内筒1が潰れないようにするため
に。
By the way, this type of Super 11 magnet has the following problems. That is, between the two mutually facing superconducting coils 9 and 10 that are immersed in liquid helium 6 in the cryogenic refrigerant container 5, a force that tries to stick to each other, that is, an attractive electromagnetic force acts, so that the two superconducting coils 9 and 10 are immersed in liquid helium 6 in the cryogenic refrigerant container 5, and the two superconducting coils 9 and 10 are immersed in liquid helium 6 in the cryogenic refrigerant container 5. When currents flow in such a way that the magnetic field is It may weigh several tons to several tens of tons. However, in the past, as described above, the coil support members 9 and 10 for supporting each superconducting coil 7.8 are
Joined to the inner cylinder 1 constituting a part of the cryogenic refrigerant container 5,
Since the electromagnetic force is transmitted to the inner cylinder 1, this is to prevent the inner cylinder 1 from being crushed by the large attraction electromagnetic force.

内筒1の肉厚を厚くする必要があった。その結果、極低
温冷媒容器5の重石が重くなるばかりでなく容器全体が
大形化し、また極低温冷媒容器5が重くなることから、
極低温冷媒容器5を真空断熱容器に支持するための支持
部材としても断面積の大きなものを使用しなければなら
ず、これにより常温側から極低温側への熱侵入量が増加
して液体ヘリウム6の蒸発崩が多くなってしまう。
It was necessary to increase the wall thickness of the inner cylinder 1. As a result, not only does the weight of the cryogenic refrigerant container 5 become heavier, but also the entire container becomes larger, and the cryogenic refrigerant container 5 becomes heavier.
A support member with a large cross-sectional area must also be used to support the cryogenic refrigerant container 5 in the vacuum insulation container, which increases the amount of heat intrusion from the room temperature side to the cryogenic side, causing liquid helium There will be a lot of evaporation of 6.

(発明が解決しようとする問題点) 以上のように、従来の超電導マグネットにお一5= いては、超電導コイルを支持するコイル支持部材を極低
温冷媒容器の一部を構成する内筒に接合して電磁力を内
筒に伝えるようにしていることがら。
(Problems to be Solved by the Invention) As described above, in the conventional superconducting magnet, the coil support member that supports the superconducting coil is joined to the inner cylinder that constitutes a part of the cryogenic refrigerant container. to transmit electromagnetic force to the inner cylinder.

内筒の肉厚を厚くしなければならず、結果的に極低温冷
媒容器の重(至)が重くかつ容器が大形なものとなり、
極低温冷媒容器を支持する支持部材も太くなって、極低
温冷媒容器l\の熱侵入量が増加してしまうという問題
があった。
The wall thickness of the inner cylinder must be made thicker, and as a result, the cryogenic refrigerant container becomes heavier and larger.
There is a problem in that the support member that supports the cryogenic refrigerant container also becomes thicker, and the amount of heat entering the cryogenic refrigerant container l\ increases.

そこで本発明では、極低温冷媒容器の内筒の肉厚を厚く
することなく超電導コイルをコイル支持部材により確実
に支持し、極低温冷媒容器の軽開化および小形化を図る
と共に、m低温冷媒容器を支持する支持部材を細知化し
てlii低温冷媒容器への熱侵入量を低減させることが
可能な超電導マグネットを提供することを目的とするも
のである。
Therefore, in the present invention, the superconducting coil is reliably supported by the coil support member without increasing the wall thickness of the inner cylinder of the cryogenic refrigerant container, and the cryogenic refrigerant container is made easier to open and smaller. An object of the present invention is to provide a superconducting magnet that can reduce the amount of heat intrusion into a low-temperature refrigerant container by making the support member that supports the refrigerant smaller.

[発明の構成] (問題点を解決するための手段) 上記の目的を達成するために本発明では、同心状に縦配
置された内筒、外筒、およびこれら内筒、外筒の上、下
各開口部を閉塞する上板、下板6一 から成り、内部に極低温冷媒が収容された極低温冷媒容
器内の極低温冷媒中に、上記内筒を挟むような状態で少
なくとも2個の超電導フィルを対向配置して構成される
超電導マグネットにおいて、上記各超電導コイルを支持
するためのコイル支持部材を、上記各超電導コイルの発
生ずる電磁力が互いに作用する方向に沿って配置された
容器部材に、!1!械的または治金的に接合するように
したことを特徴とする。
[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above object, the present invention includes an inner cylinder and an outer cylinder arranged vertically in a concentric manner, and on the inner cylinder and the outer cylinder, At least two of the above-mentioned inner cylinders are placed in the cryogenic refrigerant in the cryogenic refrigerant container in which the cryogenic refrigerant is housed, and are composed of an upper plate that closes each lower opening and a lower plate 6. In a superconducting magnet configured by arranging two superconducting films facing each other, a coil support member for supporting each of the superconducting coils is arranged in a container arranged along the direction in which electromagnetic forces generated by the superconducting coils act on each other. To the parts! 1! It is characterized by being joined mechanically or metallurgically.

(作用) 上述の超電導マグネットにおいては、各超電導コイルを
支持するためのコイル支持部材を、上記各超電導コイル
の発生するN磁力が互いに作用する方向に沿って配置さ
れた容器部材に接合していることから、前述した各超電
導コイル相互間の吸引電磁力は、当該電磁力の作用方向
にγaって平行に配置された容器部材に伝わることにな
る。この場合、容器部材にはその平面上に上述の電磁力
が働くために極めて剛性が高いことから、容器部材の肉
厚は薄くすることが可能となり、これにより極低温冷媒
容器は@鰻が小さくかつ小形なものとすることができる
(Function) In the above-mentioned superconducting magnet, the coil support member for supporting each superconducting coil is joined to the container member arranged along the direction in which the N magnetic force generated by each of the superconducting coils acts on each other. Therefore, the attraction electromagnetic force between the superconducting coils described above is transmitted to the container member arranged parallel to the direction of action of the electromagnetic force with γa. In this case, the container member has extremely high rigidity due to the above-mentioned electromagnetic force acting on its plane, so it is possible to reduce the wall thickness of the container member, which makes the cryogenic refrigerant container smaller. Moreover, it can be made small.

(実施例) 以下、本発明を図面に示す一実施例を参照して説明する
(Example) The present invention will be described below with reference to an example shown in the drawings.

第1図は、本発明による超電導マグネットの要部構成例
平面断面図にて示すものであり、第3図(a)(b>と
同一部分には同一符号を付して示している。
FIG. 1 is a plan sectional view showing an example of the configuration of essential parts of a superconducting magnet according to the present invention, and the same parts as in FIGS. 3(a) and 3(b) are designated by the same reference numerals.

第1図において、1はステンレス等の非磁性材からなり
縦に配置した内筒、2は同じくステンレス等の非@牲材
からなり、上記内筒1と同心状に配置した外筒、3およ
び4は同じくステンレス等の非磁性材からなり、これら
内筒1.外筒2の上。
In FIG. 1, 1 is an inner cylinder made of a non-magnetic material such as stainless steel and arranged vertically, 2 is an outer cylinder made of a non-magnetic material such as stainless steel and arranged concentrically with the inner cylinder 1, 3 and 4 is also made of a non-magnetic material such as stainless steel, and these inner cylinders 1. On top of outer cylinder 2.

下各開口部を閉塞するように当該筒に溶接接合した円板
状の上板および下板であり、これらにより極低温冷媒容
器5を構成している。また、この極低温冷媒容器5の内
部には極低温冷媒である液体ヘリウム6を収容しており
、この液体ヘリウム6の中には超電導線材を例えば円筒
状に巻回してなる2個の超電導コイル7.8を9図示の
ように内筒1を挟むような状態で対向配置している。さ
らに、11.12は上記各超電導コイル7.8を支持す
るためのコイル支持部材であり、夫々の端部を上記極低
温冷媒容器5の一部を構成する上板3および下板4に1
例えば溶接により治金的に接合している。そして、この
ように構成したものを図示しない真空断熱容器の中に、
支持部材(通常サポートと称される)により支持してい
る。
A disk-shaped upper plate and a lower plate are welded to the cylinder so as to close the lower openings, and constitute the cryogenic refrigerant container 5. Moreover, liquid helium 6, which is a cryogenic refrigerant, is stored inside the cryogenic refrigerant container 5, and two superconducting coils each made of a superconducting wire wound into a cylindrical shape, for example, are contained in the liquid helium 6. 7 and 8 are arranged facing each other with the inner cylinder 1 sandwiched therebetween as shown in FIG. Further, reference numeral 11.12 is a coil support member for supporting each of the superconducting coils 7.8, and each end is connected to the upper plate 3 and the lower plate 4 forming a part of the cryogenic refrigerant container 5.
For example, they are joined metallurgically by welding. Then, the structure configured in this way is placed in a vacuum insulated container (not shown).
It is supported by a support member (usually called a support).

かかる構成の超電導マグネットにおいては、各超電導コ
イル7.8を支持するためのコイル支持部材11.12
を、各超電導コイル7.8の発生ずる電磁力が互いに作
用する方向に沿って平行に配置された容器部材である上
板3および下板4に接合していることから、前述した各
超電導コイル7.8相互間の吸引電磁力は当該上板3お
よび下板4に伝わることになる。この場合、上板3およ
び下板4は上述の電磁力に対して円筒よりもかなり剛性
が高いため、その肉厚が比較的滑いものでも十分に支持
することができる。すなわち、上板3および下板4には
その平面上、換言すれば電磁力が作用する方向と平行に
働くため剛性が高く、極低温冷媒容器5を構成する全て
の部材、特に内筒1の肉厚を従来よりも薄くすることが
可能となる。これにより、極低温冷媒容器5の重量を小
さくすることができるばかりでなく、極低温冷媒容器5
全体を小形化することができる。また、極低温冷媒容器
5の重量が小さくなることから、極低温冷媒容器5を真
空断熱容器に支持するための支持部材としても断面積が
小さく短寸法のものを使用することが可能となり、結果
的に常温側から極低温側つまり極低温冷媒容器5への熱
侵入量を減少させ、液体ヘリウム6の蒸Rfiを著しく
低減することができるものである。
In a superconducting magnet having such a configuration, coil support members 11.12 for supporting each superconducting coil 7.8 are provided.
are connected to the upper plate 3 and the lower plate 4, which are container members arranged in parallel along the direction in which the electromagnetic force generated by each superconducting coil 7.8 acts on each other. 7.8 The mutual attraction electromagnetic force will be transmitted to the upper plate 3 and lower plate 4. In this case, since the upper plate 3 and the lower plate 4 have considerably higher rigidity than a cylinder against the above-mentioned electromagnetic force, even if the wall thickness thereof is relatively smooth, they can be sufficiently supported. That is, the upper plate 3 and the lower plate 4 have high rigidity because they act on their planes, in other words, parallel to the direction in which electromagnetic force acts, and all the members constituting the cryogenic refrigerant container 5, especially the inner cylinder 1, have high rigidity. It becomes possible to make the wall thickness thinner than before. As a result, not only the weight of the cryogenic refrigerant container 5 can be reduced, but also the weight of the cryogenic refrigerant container 5 can be reduced.
The whole can be made smaller. In addition, since the weight of the cryogenic refrigerant container 5 is reduced, it is possible to use a support member with a small cross-sectional area and short dimensions as a supporting member for supporting the cryogenic refrigerant container 5 in the vacuum insulation container. In other words, the amount of heat entering from the room temperature side to the cryogenic side, that is, the cryogenic refrigerant container 5, can be reduced, and the evaporation Rfi of the liquid helium 6 can be significantly reduced.

尚、本発明は上述した実施例に限定されるものではなく
、次のようにしても同様に実施することができるもので
ある。
It should be noted that the present invention is not limited to the embodiments described above, but can be similarly implemented in the following manner.

(a)上記実施例では、超1!導マグネット7゜8を支
持するためのコイル支持部材11.12を、極低温冷媒
容器5の上板3.下板4に溶接接合したが、これに限ら
ず例えば第2図にイの平面断面図を示すように対向配置
された各超電導コイル7゜8同士を、電磁力の作用方向
に沿って配置された板状のコイル支持部材13.14に
より互いに接合して、電磁力を当該コイル支持部材13
.14により受けるようにしてもよいものである。
(a) In the above example, super 1! A coil support member 11.12 for supporting the conductive magnet 7.8 is attached to the upper plate 3.1 of the cryogenic refrigerant container 5. Although they are welded and joined to the lower plate 4, the present invention is not limited thereto. For example, as shown in the plan cross-sectional view of FIG. They are connected to each other by plate-shaped coil support members 13 and 14, and the electromagnetic force is transferred to the coil support members 13 and 14.
.. 14 may be used.

(b ) J=記実施例では、超電導線材を円筒状に巻
回した超電導コイルに本発明を適用した場合を述べたが
、これに限らずその池の所定の形状に巻回した超電導マ
グネットについても本発明を同様に適用することができ
るものである。
(b) J= In the example, the present invention is applied to a superconducting coil in which a superconducting wire is wound into a cylindrical shape, but the present invention is not limited to this, and the present invention is applicable to a superconducting magnet wound in a predetermined shape of the pond. The present invention can also be applied to the following.

(C)上記実施例では、超電導マグネツ1〜7゜8を支
持するためのコイル支持部材11.12を、極低温冷媒
容器5の上板3.下板4に溶接により治金的に接合した
場合を述べたが、これに限らず例えばボルトスタッドに
より機械的に接合するようにしてもよいものである。
(C) In the above embodiment, the coil support members 11, 12 for supporting the superconducting magnets 1 to 7°8 are placed on the upper plate 3.1 of the cryogenic refrigerant container 5. Although the case has been described in which the lower plate 4 is metallurgically joined by welding, the present invention is not limited to this, and mechanically joining may be performed using, for example, bolt studs.

(d)上記実施例では、2個の超電導コイルを対向配置
した場合を述べたが、これに限らず例えば2uA以上の
偶数個の超電導コイルを対向配置したものについても、
同様に本発明を適用づることができものである。
(d) In the above embodiment, a case was described in which two superconducting coils were arranged facing each other, but the invention is not limited to this, and a case in which an even number of superconducting coils of 2 uA or more, for example, are arranged facing each other, can also be used.
The present invention can be applied in the same way.

<8)上記実施例では、極低温冷媒容器5を構成する内
筒1.外筒2、上板3.下板4の材料としてステンレス
を用いたが、これに限らず例えばアルミニウム、マンガ
ン、FRP等のようなぞの催の非磁性材料を使用するよ
うにしてもよいものである。
<8) In the above embodiment, the inner cylinder 1 configuring the cryogenic refrigerant container 5. Outer cylinder 2, upper plate 3. Although stainless steel is used as the material for the lower plate 4, the material is not limited to this, and any non-magnetic material such as aluminum, manganese, FRP, etc. may be used.

その他、本発明はその要旨を疫更しない範囲で、種々に
変形して実施することができるものである。
In addition, the present invention can be implemented with various modifications without departing from the gist thereof.

[発明の効ψ] 以上説明したように本発明によれば、同心状に縦配置さ
れた内筒、外筒、およびこれら内筒。
[Effects of the Invention ψ] As explained above, according to the present invention, an inner cylinder, an outer cylinder, and these inner cylinders are arranged vertically in a concentric manner.

外筒の上、下各開1]部を閉塞する上板、下板から成り
、内部に極低温冷媒が収容された極低温冷媒容器内の極
(11瀾冷媒中に、上記内筒を挟むような状態で少なく
とも2個の超電導コイルを対向配置して構成される超電
導マグネットにおいて、上記各超電導コイルを支持する
ためのコイル支持部材を、上記各超電導コイルの発生す
る電磁力が互いに作用する方向に沿って配置された容器
部材に。
It consists of an upper plate and a lower plate that close the upper and lower openings of the outer cylinder, and the inner cylinder is sandwiched between the cryogenic refrigerant container and the cryogenic refrigerant inside. In a superconducting magnet configured by disposing at least two superconducting coils facing each other in such a state, the coil support member for supporting each of the superconducting coils is arranged in a direction in which the electromagnetic force generated by each of the superconducting coils acts on each other. to a container member placed along.

機械的または治金的に接合するようにしたので、極低温
冷媒容器の内筒の肉厚を厚くすることなく超電導コイル
をコイル支持部材により確実に支持し、極低温冷媒容器
の1lli化および小形化を図ると共に、極低温冷媒容
器を支持する支持部材を縮短化して極低温冷媒容器への
熱侵入量を低減させることが可能な極めて信頼性の高い
超電導マグネットが提供できる。
Since the bonding is done mechanically or metallurgically, the superconducting coil can be reliably supported by the coil support member without increasing the wall thickness of the inner cylinder of the cryogenic refrigerant container, making it possible to make the cryogenic refrigerant container smaller and smaller. In addition, it is possible to provide an extremely reliable superconducting magnet that can reduce the amount of heat entering the cryogenic refrigerant container by shortening the support member that supports the cryogenic refrigerant container.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実流例を示す正面断面図、第2図は
本発明の他の実施例を示す平面断面図、第3図(a)(
b)は従来の超電導マグネットを示す平面断面図、正面
断面図である。 1・・・内筒、2・・・外筒、3・・・上板、4・・・
下板、5・・・極低温冷媒容器、6・・・液体ヘリウム
、7,8・・・超電導コイル、9,10・・・コイル支
持部材、11゜12.13.14・・・コイル支持部材
。 出願人代理人 弁理士 鈴 江 武 彦第1図 第3図(a)
FIG. 1 is a front sectional view showing one example of the actual flow of the present invention, FIG. 2 is a plan sectional view showing another embodiment of the invention, and FIG. 3(a) (
b) is a plan sectional view and a front sectional view showing a conventional superconducting magnet. 1... Inner cylinder, 2... Outer cylinder, 3... Top plate, 4...
Lower plate, 5... Cryogenic refrigerant container, 6... Liquid helium, 7, 8... Superconducting coil, 9, 10... Coil support member, 11゜12.13.14... Coil support Element. Applicant's representative Patent attorney Takehiko Suzue Figure 1 Figure 3 (a)

Claims (3)

【特許請求の範囲】[Claims] (1)同心状に縦配置された内筒、外筒、およびこれら
内筒、外筒の上、下各開口部を閉塞する上板、下板から
成り、内部に極低温冷媒が収容された極低温冷媒容器内
の極低温冷媒中に、前記内筒を挟むような状態で少なく
とも2個の超電導コイルを対向配置して構成される超電
導マグネットにおいて、前記各超電導コイルを支持する
ためのコイル支持部材を、前記各超電導コイルの発生す
る電磁力が互いに作用する方向に沿つて配置された容器
部材に、機械的または治金的に接合するようにしたこと
を特徴とする超電導マグネット。
(1) It consists of an inner cylinder and an outer cylinder arranged vertically in a concentric manner, and an upper plate and a lower plate that close the upper and lower openings of these inner cylinders and outer cylinders, and a cryogenic refrigerant is stored inside. A superconducting magnet configured by disposing at least two superconducting coils facing each other with the inner tube sandwiched in a cryogenic refrigerant in a cryogenic refrigerant container, a coil support for supporting each of the superconducting coils. A superconducting magnet, characterized in that the member is mechanically or metallurgically joined to a container member arranged along a direction in which electromagnetic forces generated by the superconducting coils act on each other.
(2)コイル支持部材を、極低温冷媒容器の上板、下板
に溶接接合するようにしたことを特徴とする特許請求の
範囲第(1)項記載の超電導マグネット。
(2) The superconducting magnet according to claim (1), wherein the coil support member is welded to the upper plate and lower plate of the cryogenic refrigerant container.
(3)対向配置された各超電導コイル同士を、電磁力の
作用方向に沿つて配置された板状のコイル支持部材によ
り互いに接合するようにしたことを特徴とする特許請求
の範囲第(1)項記載の超電導マグネット。
(3) Claim (1) characterized in that the superconducting coils arranged facing each other are connected to each other by a plate-shaped coil support member arranged along the direction of action of electromagnetic force. Superconducting magnet as described in section.
JP61134600A 1986-06-10 1986-06-10 Superconducting magnet Pending JPS62291007A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61134600A JPS62291007A (en) 1986-06-10 1986-06-10 Superconducting magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61134600A JPS62291007A (en) 1986-06-10 1986-06-10 Superconducting magnet

Publications (1)

Publication Number Publication Date
JPS62291007A true JPS62291007A (en) 1987-12-17

Family

ID=15132189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61134600A Pending JPS62291007A (en) 1986-06-10 1986-06-10 Superconducting magnet

Country Status (1)

Country Link
JP (1) JPS62291007A (en)

Similar Documents

Publication Publication Date Title
US4707663A (en) Nuclear magnetic resonance apparatus using low energy magnetic elements
US7323963B2 (en) MRI superconductive magnet
JPH09168527A (en) Magnet device for magnetic resonance apparatus for diagnosis
US3358463A (en) Integrated superconducting magnetcryostat system
CA1273561A (en) Low cost intermediate radiation shield for a magnet cryostat
JPS62291007A (en) Superconducting magnet
US6147579A (en) Superconducting magnet non-uniform thermal insulation blankets
JP2588284B2 (en) Superconductive magnet
JPS5856242B2 (en) Superconducting magnet device
JPH03174706A (en) Superconductive coil device, nuclear fusion reactor including the same and energy storage apparatus
US6504372B1 (en) High field open magnetic resonance magnet with reduced vibration
JP2731210B2 (en) Superconducting magnet
JP4117372B2 (en) Superconducting coil
JP2001167923A (en) Refrigerator cooled superconducting magnet
JPS6112647Y2 (en)
JPS6254982A (en) Cryostat
JPH02248800A (en) Low temperature container
JPH0799111A (en) Current lead using oxide superconductor
JPH10256614A (en) Magnetic shield
JPS6111680Y2 (en)
JPH09153407A (en) Support structure of oxide superconducting current lead
JP2744672B2 (en) Superconducting magnet device
JPS60241280A (en) Superconductive electromagnet device
JPH0656901B2 (en) Cryogenic container
JPH031507A (en) Superconducting magnet