JPS62290839A - Single-crystal ni-based super heat-resisting alloy - Google Patents

Single-crystal ni-based super heat-resisting alloy

Info

Publication number
JPS62290839A
JPS62290839A JP13539086A JP13539086A JPS62290839A JP S62290839 A JPS62290839 A JP S62290839A JP 13539086 A JP13539086 A JP 13539086A JP 13539086 A JP13539086 A JP 13539086A JP S62290839 A JPS62290839 A JP S62290839A
Authority
JP
Japan
Prior art keywords
creep rupture
alloy
phase
crystal
super heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13539086A
Other languages
Japanese (ja)
Other versions
JPH0765134B2 (en
Inventor
Takehiro Oono
丈博 大野
Rikizo Watanabe
力蔵 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP61135390A priority Critical patent/JPH0765134B2/en
Priority to US06/927,109 priority patent/US4802934A/en
Priority to GB08626679A priority patent/GB2184456B/en
Publication of JPS62290839A publication Critical patent/JPS62290839A/en
Publication of JPH0765134B2 publication Critical patent/JPH0765134B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a single-crystal Ni-based super heat-resisting alloy combining superior creep rupture strength with creep rupture ductility, by providing a composition which contains prescribed percentages of Cr, Al, W, Ta, Mo, and Co and in which total additive quantity of W, Ta, and Mo is specified. CONSTITUTION:The single-crystal Ni-based super heat-resisting alloy has a composition consisting of, by weight, 4-10% Cr, 4-6.5% Al, 4-10% W, 4-9% Ta, 1.5-6% Mo, <=12% Co, and the balance Ni with impurities and satisfying an equation with regard to W, Ta, and Mo. Owing to its creep rupture strength and creep rupture ductility superior to those of existing alloys, the alloy of this convention can be used for gas-turbine blades and greatly contribute to the improvement of efficiency.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は主としてガスタービンエンジンのプレートに用
いられる、クリープ破断強度及びクリープ破断延性の優
れた単結晶N1基超耐熱合金に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a single-crystal N1-base heat-resistant alloy with excellent creep rupture strength and creep rupture ductility, which is mainly used for gas turbine engine plates.

〔従来の技術〕[Conventional technology]

一般に金属の高温での破壊は、結晶粒界で起こるため、
タービンブレードを結晶粒界の存在しない単結晶組織と
し、かつ適切な熱処理を行なうことにより、その高温で
のクリープ破断強度は大幅に向上する。この概念に基づ
き、ユナイテッドテクノロジー社より、 A11.oy 444(米国特許第4,116,723
号に2砂)、A1.loy 454(米国特許第4,2
09,348号に記載)、A11oy 203E(米国
特許第4,222,794号1こ記載)、エアリサーチ
社より、 NASAIRloo、 またキヤノンマスケゴン社より、 CMSX−2(特開昭57−89451号に記載)、C
MSX−3(特開昭59−190342号に記gり。
Generally, fracture of metals at high temperatures occurs at grain boundaries, so
By making turbine blades have a single-crystalline structure without grain boundaries and performing appropriate heat treatment, their creep rupture strength at high temperatures can be significantly improved. Based on this concept, United Technologies has proposed A11. oy 444 (U.S. Pat. No. 4,116,723)
2 sand per issue), A1. loy 454 (U.S. Pat. No. 4,2
09,348), A11oy 203E (described in U.S. Pat. No. 4,222,794), NASA Airloo from Air Research, and CMSX-2 (Japanese Unexamined Patent Publication No. 57-89451) from Canon Muskegon. ), C
MSX-3 (described in JP-A-59-190342).

等の単結晶専用Ni基超超耐熱合金開発された。Ni-based super super heat-resistant alloys exclusively for single crystals have been developed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記の低結晶合金は、従来の多結晶合金に比へると遥か
に優れたクリープ破断強度を有するが。
The low-crystalline alloys described above have far superior creep rupture strength compared to conventional polycrystalline alloys.

まだ、成分バランス、組織制御等の点で十分とは君えな
い。例えばNASAIRlooは、α−W相やμ相など
の有害用が析出し、クリープ破断強度を低下させること
が見出されている。α−W相等の有害札の析出を防ぐた
めにはW、Mo、Ta等の添加量を少なくすることが必
要であるが、これらは合金強化元素であるため必要以上
に少なくするとクリープ破断強度を低下させる。
It is still not satisfactory in terms of component balance, tissue control, etc. For example, it has been found that in NASAIRloo, harmful substances such as α-W phase and μ phase precipitate, reducing the creep rupture strength. In order to prevent the precipitation of harmful tags such as α-W phase, it is necessary to reduce the amount of added W, Mo, Ta, etc., but since these are alloy-strengthening elements, if they are reduced more than necessary, the creep rupture strength will decrease. let

こうした合金元素の個々の添加量ならびに合金元素相互
の成分バランスについて、本発明者らはクリープ破断強
度を向上するべく詳細な検討を行なった結果、重量%で
Cr 4〜10%、 Al 4〜6.5%、W 4〜1
0%、 Ta 4〜9%、 Mo 1.5〜6%、残部
Ni及び不純物から成り、かつl/2W+1/2Ta+
Mo=9.5〜13.5%であることを特徴とする単結
晶合金が、クリープ破断強度が優れ、かつ組織的に安定
していることを見出し目的を達成した。前記合金につい
て本出願人は既に、特願昭60−258078号にて、
特許出願中である。
The present inventors conducted a detailed study on the individual addition amounts of these alloying elements and the mutual composition balance of the alloying elements in order to improve the creep rupture strength.As a result, the results showed that Cr: 4-10%, Al: 4-6% by weight .5%, W 4-1
0%, Ta 4-9%, Mo 1.5-6%, balance Ni and impurities, and 1/2W+1/2Ta+
The objective was achieved by discovering that a single crystal alloy characterized by Mo being 9.5 to 13.5% has excellent creep rupture strength and is structurally stable. Regarding the above alloy, the present applicant has already disclosed in Japanese Patent Application No. 60-258078,
Patent pending.

ところで、タービンブレードの信頼性を高めるためには
クリープ破断強度のみならずクリープ破断延性が大きい
ことが要望される。
Incidentally, in order to improve the reliability of turbine blades, it is desired that not only creep rupture strength but also creep rupture ductility be high.

前記合金は優れたクリープ破断強度を有しているが、ク
リープ破断伸びの点で必ずしも満足できる特性を具備し
ていないことがその後次第に明らかになってきた。
Although these alloys have excellent creep rupture strength, it has become increasingly clear that they do not necessarily have satisfactory properties in terms of creep rupture elongation.

本発明者らは以上の要望に答えるべく前記合金について
更に検討を行なったもので、即ち本発明の目的は優れた
クリープ破断強度及びクリープ破断延性を兼備した単結
晶Ni基超超耐熱合金提供することにある。
The present inventors have further investigated the above-mentioned alloy in order to meet the above-mentioned needs, and the object of the present invention is to provide a single-crystal Ni-based super super heat-resistant alloy that has both excellent creep rupture strength and creep rupture ductility. There is a particular thing.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、重量%でCr4〜10%、Al 4〜6.5
%、W 4〜1o%、Ta 4〜9L Mo 1.5〜
6%、 Co 12%以下。
In the present invention, Cr4-10%, Al 4-6.5% by weight
%, W 4-1o%, Ta 4-9L Mo 1.5-
6%, Co 12% or less.

残部Ni及び不純物からなり、かつl/2W+1/2T
a+Mo=9.5〜13.5%であることを特徴とする
単結晶Ni基超超耐熱合金ある。
The remainder consists of Ni and impurities, and 1/2W + 1/2T
There is a single-crystal Ni-based super super heat-resistant alloy characterized by a+Mo=9.5 to 13.5%.

以下に本発明合金の成分限定理由について述べる。The reasons for limiting the composition of the alloy of the present invention will be described below.

Crは合金の耐酸化性、耐食性を向上させる作用を持つ
が、過度の添加はσ相などの有害析出相を生じクリープ
破断強度を低下させるため、4〜10%に限定する。
Cr has the effect of improving the oxidation resistance and corrosion resistance of the alloy, but excessive addition produces harmful precipitated phases such as σ phase and reduces creep rupture strength, so it is limited to 4 to 10%.

A1はNi基超超耐熱合金析出強化するγ′相と呼ばれ
る金属間化合物を形成する主要元素である。
A1 is a main element that forms an intermetallic compound called γ' phase that strengthens the Ni-based super super heat-resistant alloy by precipitation.

γ′相は基本組成はNi、Alで表わされるがA1以外
でもTi、Ta、W、Moなどを固溶することにより更
に強化される。これらの元素の作用は後述する。単結晶
合金は通常体積率で50%以上もの多量のγ′相を含む
が、凝固終了時には共晶γ′相と呼ばれる粗大γ′相が
存在するので、これを母相(γ相と呼ばれる。)中へ一
旦固溶させるため高温で固溶化処理を行なう。固溶化処
理で固溶したγ′相は、冷却中及びその後の時効処理に
より均一微細に析出することにより合金を強化する。
The basic composition of the γ' phase is represented by Ni and Al, but it can be further strengthened by solid solution of Ti, Ta, W, Mo, etc. other than A1. The effects of these elements will be described later. Single-crystal alloys usually contain a large amount of γ' phase, as much as 50% or more in terms of volume fraction, but at the end of solidification, a coarse γ' phase called the eutectic γ' phase is present, which is called the parent phase (γ phase). ) In order to temporarily dissolve it into solid solution, perform solid solution treatment at high temperature. The γ' phase dissolved in the solid solution treatment strengthens the alloy by precipitating uniformly and finely during cooling and the subsequent aging treatment.

A1は4%未満ではγ′相の生成量が十分でなく、また
6、5%を越えるとγ′相が多過ぎ、共晶γ′相を固溶
化処理で完全に固溶させることができないためクリープ
破断強度は低下する。従ってA1は4〜6.5%に限定
する。
If A1 is less than 4%, the amount of γ' phase produced is insufficient, and if it exceeds 6.5%, there is too much γ' phase, and the eutectic γ' phase cannot be completely dissolved in the solid solution treatment. Therefore, the creep rupture strength decreases. Therefore, A1 is limited to 4 to 6.5%.

Wはγ相およびγ′相に固溶して、両相を強化する元素
であり最低4%は必要である。しかしながら過度の添加
はα−W相と呼ばれろ相を析出し、却ってクリープ破断
強度を低下させる。従ってWは4〜10%に限定する。
W is an element that forms a solid solution in the γ phase and the γ' phase to strengthen both phases, and must be present in an amount of at least 4%. However, excessive addition causes precipitation of a filter phase called α-W phase, which actually reduces creep rupture strength. Therefore, W is limited to 4 to 10%.

′1゛aは主として、γ′相に固溶してγ′相を強化す
ると共にγ′相の量も増加させる。従って、Taは最低
4%は必要であるが、過度に添加すると共晶γ′相を固
溶させることが困難となり、またγ′相の形態も変化す
ることによりクリープ破断強度は低下する。従ってTa
は4〜9%に限定する。
'1'a mainly forms a solid solution in the γ' phase to strengthen the γ' phase and also increases the amount of the γ' phase. Therefore, at least 4% of Ta is required, but if excessively added, it becomes difficult to form a solid solution of the eutectic γ' phase, and the form of the γ' phase also changes, resulting in a decrease in creep rupture strength. Therefore, Ta
is limited to 4-9%.

MOは主としてγ相に固溶してγ相を強化するので最低
13部必要であるが、過度の添加はα−Mo相を生じて
クリープ破断強度を低下させるため、1.5〜6%に限
定する。
MO is mainly dissolved in the γ phase and strengthens the γ phase, so a minimum of 13 parts is required, but excessive addition produces an α-Mo phase and reduces the creep rupture strength, so it is added to 1.5 to 6%. limit.

以上述べたW、Ta、Moの3元素はそれぞれ異なった
強化作用を持つため、3元素を共に添加することが重要
である。本発明においてはこの3元、素の添加量の合計
をl/2W+1/2Ta+Moという量で規定した。こ
こでW、Taをそれぞれ1/2としたのは本発明が重量
2よりも原子2によって行なわれたことに基づく。l/
2W+1/2Ta+Moが9.5%より低いとγ、γ′
両相の固溶強化は十分でなく、13.5%より多いとα
−(W、Mo)などの有害相が析出する。またl/2W
+1/2Ta+ Moが13.5%以下であっても各元
素の添加量が規定する範囲以外の場合、α−(W、Mo
)相が析出することがある。これは、例えばWの添加量
が非常に高く、Ta、M。
Since the three elements W, Ta, and Mo mentioned above have different strengthening effects, it is important to add all three elements together. In the present invention, the total amount of these three elements added is defined as 1/2W+1/2Ta+Mo. The reason why W and Ta are each reduced to 1/2 is that the present invention is carried out using 2 atoms rather than 2 weights. l/
When 2W+1/2Ta+Mo is lower than 9.5%, γ, γ'
Solid solution strengthening of both phases is not sufficient, and if it exceeds 13.5%, α
- Harmful phases such as (W, Mo) are precipitated. Also l/2W
Even if +1/2Ta+Mo is 13.5% or less, if the amount of each element added is outside the specified range, α-(W, Mo
) phase may precipitate. This is because, for example, the amount of W added is very high, and the amount of Ta and M added is very high.

が無添加あるいは添加量が低い場合に見られるものであ
り、3元素を一定量以上共に添加することはα−(W、
Mo)の析出を防止し、組織を安定化することからも重
要である。
This is seen when no additives are added or the amounts added are low, and adding more than a certain amount of the three elements together increases α-(W,
It is also important because it prevents the precipitation of Mo) and stabilizes the structure.

前述のNASAIR100合金は、α−W相の析出が見
られるが、これはWが10.5%とかなり高いことによ
るものであり、これを改良したCMSX−2合金は、W
を低め、代わりにTaを増加することにより、α−Wの
析出を抑えているが、W、Ta、Moによる固溶強化は
まだ十分でない。本発明合金はW、TalMoの3元素
のうち特にMoの添加量を従来合金より高くし、各元素
の個々ならびに総計の添加量を規定することにより、α
−(W、Mo)等の有害用を生じない範囲でγ、γ′相
の固溶強化を最大としたものである。
The aforementioned NASA AIR 100 alloy shows precipitation of α-W phase, but this is due to the fairly high W content of 10.5%, and the improved CMSX-2 alloy
Although the precipitation of α-W is suppressed by decreasing the amount of Ta and increasing the amount of Ta, the solid solution strengthening by W, Ta, and Mo is still not sufficient. The alloy of the present invention has a higher content of Mo among the three elements W and TalMo than the conventional alloy, and by specifying the individual and total content of each element, α
- (W, Mo) etc., solid solution strengthening of the γ and γ' phases is maximized within a range that does not cause harmful effects.

本発明の要点は、COの添加によってクリープ破断伸び
が改善されることを見出したことにある。
The gist of the invention is the discovery that creep rupture elongation is improved by the addition of CO.

これは、Coの添加により、合金の積層欠陥エネルギー
が低下するからであると考えられる。しかしながら、過
度のCo添加は合金の耐摩耗性を悪くするので、COは
12%以下と規定する。
This is considered to be because the addition of Co lowers the stacking fault energy of the alloy. However, since excessive addition of Co deteriorates the wear resistance of the alloy, the CO content is specified to be 12% or less.

なお、従来の単結晶合金にはTiが添加されていること
が多い。Tiはγ′相に固溶し、γ′相の形成ならびに
固溶強化に役立つが、共晶γ′相をつくりやすく、かつ
合金の融点を下げるため、固溶化処理温度を十分高くす
ることができず、共晶γ′相を固溶させることが困雅で
ある。従って、本発明合金にはTiを無添加とした。
Note that Ti is often added to conventional single crystal alloys. Ti forms a solid solution in the γ' phase and is useful for the formation of the γ' phase and solid solution strengthening.However, in order to facilitate the formation of the eutectic γ' phase and to lower the melting point of the alloy, the solution treatment temperature must be set sufficiently high. However, it is difficult to form a solid solution of the eutectic γ' phase. Therefore, no Ti was added to the alloy of the present invention.

他の単結晶合金と同様、本発明合金においても、C,B
、Zr等は合金の初期溶融温度を低めるため、不純物レ
ベルに抑えることが必要である。
Similar to other single crystal alloys, the alloy of the present invention also contains C, B
, Zr, etc., lower the initial melting temperature of the alloy, and therefore need to be suppressed to an impurity level.

〔実施例〕〔Example〕

第1表に本発明合金、比較合金および従来合金の特性を
比較するために用いた試料の化学成分、および温度10
50℃、応力15 、0 kg f / m ”で行な
ったクリープ破断試験結果における破断時間およびクリ
ープ破断伸びを示す。なお、クリープ破断試験に用いた
試料は単結晶にSit後、以下の熱処理を行なった。す
なわち、本発明合金および比較合金はすべて1310〜
1345℃で4時間加熱後空冷、さらに1080℃で5
時間加熱後空冷、さらに870℃で20時間加熱後空冷
の熱処理を施した。従来合金であるNASAIRloo
は、1320℃で4時間加熱後空冷、さらに980℃で
5時間加熱後空冷、さらに870℃で20時間加熱後空
冷の熱処理、またCMSX−2は、1316℃で4時間
加熱後空冷、さらに980℃で5時間加熱後空冷、さら
に870℃で20時間加熱後空冷の熱処理を施した。
Table 1 shows the chemical composition and temperature 10 of the samples used to compare the properties of the invention alloy, comparative alloy, and conventional alloy.
The rupture time and creep rupture elongation are shown in the results of a creep rupture test conducted at 50°C, stress 15, and 0 kg f/m. The samples used in the creep rupture test were single crystals subjected to the following heat treatment after Sitting. That is, the alloys of the present invention and comparative alloys all had 1310~
After heating at 1345℃ for 4 hours, air cooling, and then heating at 1080℃ for 5 hours.
Heat treatment was performed by heating for an hour, cooling in air, and then heating at 870° C. for 20 hours, and cooling in air. NASA AIRloo, a conventional alloy
For CMSX-2, heat treatment was performed by heating at 1320°C for 4 hours, then air cooling, then heating at 980°C for 5 hours, then air cooling, and then heating at 870°C for 20 hours, then air cooling. Heat treatment was performed by heating at 870° C. for 5 hours and then air cooling, and then heating at 870° C. for 20 hours and air cooling.

第1表における比較合金は、特願昭60−258078
号に記載の合金であり、Co以外は本発明α金に非常に
近い組成を持つ合金である。比較合金のクリープ破断時
間は、従来合金に比べると格段に長いことがわかる。こ
れに対し本発明合金は、従来合金に比べ、クリープ破断
時間およびクリープ破断伸び共、優れた値を示している
Comparative alloys in Table 1 are listed in Japanese Patent Application No. 60-258078.
This alloy is described in No. 1, and has a composition very close to that of the α-gold of the present invention except for Co. It can be seen that the creep rupture time of the comparative alloy is much longer than that of the conventional alloy. On the other hand, the alloy of the present invention exhibits superior values in both creep rupture time and creep rupture elongation as compared to the conventional alloy.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明合金は既存合金に比べて優れたク
リープ破断強度ならびに十分なりリープ破断延性を有す
るため、ガスタービンブレードに用いてその効率向上に
大きく寄与するものである。
As described above, since the alloy of the present invention has superior creep rupture strength and sufficient leap rupture ductility compared to existing alloys, it can be used in gas turbine blades and greatly contribute to improving the efficiency thereof.

X−ノX-no

Claims (1)

【特許請求の範囲】[Claims] 1 重量%にてCr4〜10%、Al4〜6.5%、W
4〜10%、Ta4〜9%、Mo1.5〜6%、Co1
2%以下、残部Niおよび不純物からなり、かつ1/2
W+1/2Ta+Mo=9.5〜13.5%であること
を特徴とする単結晶Ni基超耐熱合金。
1% by weight Cr4-10%, Al4-6.5%, W
4-10%, Ta4-9%, Mo1.5-6%, Co1
2% or less, the balance consists of Ni and impurities, and 1/2
A single crystal Ni-based super heat-resistant alloy characterized in that W+1/2Ta+Mo=9.5 to 13.5%.
JP61135390A 1985-11-18 1986-06-11 Single crystal Ni-based super heat resistant alloy Expired - Lifetime JPH0765134B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP61135390A JPH0765134B2 (en) 1986-06-11 1986-06-11 Single crystal Ni-based super heat resistant alloy
US06/927,109 US4802934A (en) 1985-11-18 1986-11-05 Single-crystal Ni-based super-heat-resistant alloy
GB08626679A GB2184456B (en) 1985-11-18 1986-11-07 Heat resistant alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61135390A JPH0765134B2 (en) 1986-06-11 1986-06-11 Single crystal Ni-based super heat resistant alloy

Publications (2)

Publication Number Publication Date
JPS62290839A true JPS62290839A (en) 1987-12-17
JPH0765134B2 JPH0765134B2 (en) 1995-07-12

Family

ID=15150587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61135390A Expired - Lifetime JPH0765134B2 (en) 1985-11-18 1986-06-11 Single crystal Ni-based super heat resistant alloy

Country Status (1)

Country Link
JP (1) JPH0765134B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4976791A (en) * 1988-05-17 1990-12-11 Hitachi Metals, Ltd. Heat resistant single crystal nickel-base super alloy

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60125342A (en) * 1983-11-18 1985-07-04 オフイス ナシヨナル デチユード エ ドウ ルシエルシユ アエロスパシヤル Low density nickel superalloy, member therefrom and manufacture thereof
JPS60159143A (en) * 1983-12-29 1985-08-20 アソシアシオン・プール・ラ・ルシエルシユ・エ・ル・デヴロプマン・デ・メトド・エ・プロセシユ・アンデユストリエル(ア.エール.エム.イ.エヌ.ウ.エス.) Single crystal metal using nickel-base mother material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60125342A (en) * 1983-11-18 1985-07-04 オフイス ナシヨナル デチユード エ ドウ ルシエルシユ アエロスパシヤル Low density nickel superalloy, member therefrom and manufacture thereof
JPS60159143A (en) * 1983-12-29 1985-08-20 アソシアシオン・プール・ラ・ルシエルシユ・エ・ル・デヴロプマン・デ・メトド・エ・プロセシユ・アンデユストリエル(ア.エール.エム.イ.エヌ.ウ.エス.) Single crystal metal using nickel-base mother material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4976791A (en) * 1988-05-17 1990-12-11 Hitachi Metals, Ltd. Heat resistant single crystal nickel-base super alloy

Also Published As

Publication number Publication date
JPH0765134B2 (en) 1995-07-12

Similar Documents

Publication Publication Date Title
JP5582532B2 (en) Co-based alloy
JP3049767B2 (en) Ti alloy with excellent heat resistance
JP3814662B2 (en) Ni-based single crystal superalloy
JP4557079B2 (en) Ni-based single crystal superalloy and turbine blade using the same
US4207098A (en) Nickel-base superalloys
WO2014142089A1 (en) HEAT-RESISTANT Ni-BASED ALLOY AND METHOD FOR MANUFACTURING SAME
JP5299899B2 (en) Ni-base superalloy and manufacturing method thereof
JPH0297634A (en) Ni base superalloy and its manufacture
JPWO2006059805A1 (en) Heat resistant superalloy
JP2010507016A (en) Nickel-base superalloy
JP3840555B2 (en) Ni-based single crystal superalloy
TWI248975B (en) Nickel-base superalloy for high temperature, high strain application
JPH01104738A (en) Nickel base alloy
WO2010119709A1 (en) Nickel-base single-crystal superalloy and turbine wing using same
JP3944582B2 (en) Ni-base superalloy
JP4115369B2 (en) Ni-base superalloy
US5167732A (en) Nickel aluminide base single crystal alloys
JP5595495B2 (en) Nickel-base superalloy
US4802934A (en) Single-crystal Ni-based super-heat-resistant alloy
JPS62116748A (en) Superheat resistant single crystalline ni alloy
US20050067062A1 (en) Single-crystal Ni-based superalloy with high temperature strength, oxidation resistance and hot corrosion resistance
JP2552351B2 (en) Single crystal Ni-based super heat resistant alloy
JP2546324B2 (en) Ni-based single crystal superalloy with excellent high temperature corrosion resistance
JP4230970B2 (en) Ni-base superalloys for unidirectional solidification with excellent solidification direction strength and grain boundary strength, castings and high-temperature parts for gas turbines
JPS62290839A (en) Single-crystal ni-based super heat-resisting alloy