JP3840555B2 - Ni-based single crystal superalloy - Google Patents

Ni-based single crystal superalloy Download PDF

Info

Publication number
JP3840555B2
JP3840555B2 JP2002143572A JP2002143572A JP3840555B2 JP 3840555 B2 JP3840555 B2 JP 3840555B2 JP 2002143572 A JP2002143572 A JP 2002143572A JP 2002143572 A JP2002143572 A JP 2002143572A JP 3840555 B2 JP3840555 B2 JP 3840555B2
Authority
JP
Japan
Prior art keywords
weight
phase
less
single crystal
lattice constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002143572A
Other languages
Japanese (ja)
Other versions
JP2003049231A (en
Inventor
裕 小泉
敏治 小林
忠晴 横川
広史 原田
祥宏 青木
幹也 荒井
彰樹 正木
良二 垣内
一義 筑後
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2002143572A priority Critical patent/JP3840555B2/en
Priority to DE60203562T priority patent/DE60203562T2/en
Priority to CA002387828A priority patent/CA2387828C/en
Priority to EP02253782A priority patent/EP1262569B1/en
Priority to US10/159,202 priority patent/US20030075247A1/en
Publication of JP2003049231A publication Critical patent/JP2003049231A/en
Priority to US10/899,167 priority patent/US6966956B2/en
Application granted granted Critical
Publication of JP3840555B2 publication Critical patent/JP3840555B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/057Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being less 10%

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、Ni基単結晶超合金に関するものであり、特に、クリープ特性の向上を目的としたNi基単結晶超合金の技術に関するものである。
【0002】
【従来の技術】
従来、航空機、ガスタービンなどの高温下の動・静翼用の材料として開発されているNi基単結晶超合金の代表的な組成は、例えば表1に示したものが挙げられる。
【0003】
【表1】

Figure 0003840555
【0004】
上記Ni基単結晶超合金は、所定の温度で溶体化処理を行った後、時効処理を行ってNi基単結晶超合金としている。この合金は、いわゆる析出硬化型合金と呼ばれており、母相であるγ相中に、析出相であるγ’相が析出した形態を有している。
【0005】
表1に挙げた合金のうち、CMSX−2(キャノン・マスケゴン社製、米国特許第4,582,548号公報)は第1世代合金、CMSX−4(キャノン・マスケゴン社製、米国特許第4643782号公報)は第2世代合金、Rene’N6(ゼネラル・エレクトリック社製、米国特許第5,455,120号公報)、CMSX−10K(キャノン・マスケゴン社製、米国特許第5,366,695号公報)は第3世代合金、3B(ゼネラル・エレクトリック社製、米国特許第5151249号公報)は第4世代合金とされている。
【0006】
【発明が解決しようとする課題】
上記の第1世代合金であるCMSX−2や、第2世代合金であるCMSX−4は、低温下でのクリープ強度は遜色ないものの、高温の溶体化処理後においても共晶γ’相が多量に残存し、第3世代合金と比較して高温下でのクリープ強度が劣る。
【0007】
また、上記の第3世代であるRene’N6やCMSX−10Kは、第2世代合金よりも高温下でのクリープ強度の向上を目指した合金であるが、Reの組成比(5重量%以上)が母相(γ相)へのRe固溶量を越えるため、余剰のReが他の元素と化合して高温下でいわゆるTCP相(Topologically Close Packed 相)を析出させ、高温下で長時間の使用によりこのTCP相の量が増加してクリープ強度が低下するという問題があった。
【0008】
また、Ni基単結晶超合金のクリープ強度を向上させるには、析出相(γ’相)の格子定数を母相(γ相)の格子定数よりわずかに小さくすることが有効であるが、各相の格子定数は合金の構成元素の組成比により大きく変動するため、格子定数の微妙な調整が困難であるためにクリープ強度の向上を図ることが難しいという問題があった。
【0009】
本発明は上記事情に鑑みてなされたものであって、高温下でのTCP相の析出を防止して強度の向上を図ることが可能なNi基単結晶超合金を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記の目的を達成するために、本発明は以下の構成を採用した。
本発明のNi基単結晶超合金は、成分が重量比で、Al:5.0重量%以上7.0重量%以下、Ta:4.0重量%以上8.0重量%以下、Mo:2.9重量%以上4.5重量%以下、W:4.0重量%以上8.0重量%以下、Re:3.0重量%以上6.0重量%以下、Hf:0.01重量%以上0.50重量%以下、Cr:2.0重量%以上5.0重量%以下、Co:5.9重量%、Ru:1.0重量%以上4.0重量%以下を含有し、残部がNiと不可避的不純物からなる組成を有しており、母相の格子定数をa 1 とし、析出相の格子定数をa 2 としたとき、a 2 ≦0.999a 1 である、ことを特徴とする。
【0011】
また、本発明のNi基単結晶超合金は、成分が重量比で、Al:5.0重量%以上7.0重量%以下、Ta:4.0重量%以上6.0重量%以下、Mo:1.0重量%以上4.5重量%以下、W:4.0重量%以上8.0重量%以下、Re:3.0重量%以上6.0重量%以下、Hf:0.01重量%以上0.50重量%以下、Cr:2.0重量%以上5.0重量%以下、Co:5.9重量%、Ru:1.0重量%以上4.0重量%以下を含有し、残部がNiと不可避的不純物からなる組成を有しており、母相の格子定数をa 1 とし、析出相の格子定数をa 2 としたとき、a 2 ≦0.999a 1 である、ことを特徴とする。
【0012】
また、本発明のNi基単結晶超合金は、成分が重量比で、Al:5.0重量%以上7.0重量%以下、Ta:4.0重量%以上6.0重量%以下、Mo:2.9重量%以上4.5重量%以下、W:4.0重量%以上8.0重量%以下、Re:3.0重量%以上6.0重量%以下、Hf:0.01重量%以上0.50重量%以下、Cr:2.0重量%以上5.0重量%以下、Co:5.9重量%、Ru:1.0重量%以上4.0重量%以下を含有し、残部がNiと不可避的不純物からなる組成を有しており、母相の格子定数をa 1 とし、析出相の格子定数をa 2 としたとき、a 2 ≦0.999a 1 である、ことを特徴とする。
【0014】
上記のNi基単結晶超合金によれば、Ruを添加することにより、強度低下の原因となるTCP相が高温使用時に析出するのが抑制される。また、他の構成元素の組成比を最適な範囲に設定することにより母相(γ相)の格子定数と析出相(γ’相)の格子定数とを最適な値にすることが可能になる。これらにより、高温下での強度を向上させることが可能になる。
【0015】
上記のNi基単結晶超合金によれば、母相の格子定数をa 1 とし、析出相の格子定数をa 2 としたとき、a 1 とa 2 の関係がa 2 ≦0.999a 1 であり、析出相の格子定数a 2 が母相の格子定数a 1 のマイナス0.1%以下であるので、母相中に析出する析出相が荷重方向の垂直方向に連続して延在するように析出するので、応力下で転位欠陥が合金組織中を移動することがなく、高温時の強度を高めることが可能になる。
【0016】
また、本発明のNi基単結晶超合金は、先に記載のNi基単結晶超合金であって、成分が重量比で、Alを5.9重量%、Taを5.9重量%、Moを2.9重量%、Wを5.9重量%、Reを4.9重量%、Hfを0.10重量%、Crを2.9重量%、Coを5.9重量%、Ruを2.0重量%を含有し、残部がNiと不可避的不純物からなる組成を有することを特徴とする。
【0017】
上記組成のNi基単結晶超合金によれば、137MPa、1000時間でのクリープ耐用温度を1356K(1083℃)とすることが可能になる。
【0018】
【発明の実施の形態】
以下、本発明の実施の形態を詳細に説明する。
本発明のNi基単結晶超合金は、Al、Ta、Mo、W、Re、Hf、Cr、Co、Ru、及びNi(残部)と不可避的不純物からなる合金である。
【0019】
上記のNi基単結晶超合金は、組成比がAl:5.0重量%以上7.0重量%以下、Ta:4.0重量%以上8.0重量%以下、Mo:2.9重量%以上4.5重量%以下、W:4.0重量%以上8.0重量%以下、Re:3.0重量%以上6.0重量%以下、Hf:0.01重量%以上0.5重量%以下、Cr:2.0重量%以上5.0重量%以下、Co:5.9重量%、Ru:1.0重量%以上4.0重量%以下であり、残部がNiと不可避的不純物からなる合金である。
【0020】
また上記のNi基単結晶超合金は、組成比がAl:5.0重量%以上7.0重量%以下、Ta:4.0重量%以上6.0重量%以下、Mo:1.0重量%以上4.5重量%以下、W:4.0重量%以上8.0重量%以下、Re:3.0重量%以上6.0重量%以下、Hf:0.01重量%以上0.5重量%以下、Cr:2.0重量%以上5.0重量%以下、Co:5.9重量%、Ru:1.0重量%以上4.0重量%以下であり、残部がNiと不可避的不純物からなる合金である。
【0021】
また上記のNi基単結晶超合金は、組成比がAl:5.0重量%以上7.0重量%以下、Ta:4.0重量%以上6.0重量%以下、Mo:2.9重量%以上4.5重量%以下、W:4.0重量%以上8.0重量%以下、Re:3.0重量%以上6.0重量%以下、Hf:0.01重量%以上0.5重量%以下、Cr:2.0重量%以上5.0重量%以下、Co:5.9重量%、Ru:1.0重量%以上4.0重量%以下であり、残部がNiと不可避的不純物からなる合金である。
【0022】
上記合金はいずれも、オーステナイト相たるγ相(母相)と、この母相中に分散析出した中間規則相たるγ’相(析出相)とを有している。γ’相は、主としてNi3Alで表される金属間化合物からなり、このγ’相によりNi基単結晶超合金の高温強度が向上する。
【0023】
Crは耐酸化性に優れた元素であり、Ni基単結晶超合金の高温耐食性を向上させる。
Crの組成比は、Cr:2.0重量%以上5.0重量%以下の範囲が好ましく、2.9重量%とすることが最も好ましい。
Crの組成比が2.0重量%未満であると、所望の高温耐食性を確保できないので好ましくなく、Crの組成比が5.0重量%を越えると、γ’相の析出が抑制されるとともにσ相やμ相などの有害相が生成し、高温強度が低下するので好ましくない。
【0024】
Moは、W及びTaとの共存下にて、母相であるγ相に固溶して高温強度を増加させるとともに析出硬化により高温強度に寄与する。
Moの組成比は、1.0重量%以上4.5重量%以下の範囲が好ましく、2.9重量%以上4.5重量%以下の範囲がより好ましく、2.9重量%とすることが最も好ましい。
Moの組成比が1.0重量%未満であると、所望の高温強度を確保できないので好ましくなく、一方、Moの組成比が4.5重量%を越えても、高温強度が低下し、更には高温耐食性も低下するので好ましくない。
【0025】
Wは、上記のようにMo及びTaとの共存下にて固溶強化と析出硬化の作用により、高温強度を向上させる。
Wの組成比は、4.0重量%以上8.0重量%以下の範囲が好ましく、5.9重量%とすることが最も好ましい。
Wの組成比が4.0重量%未満であると、所望の高温強度を確保できないので好ましくなく、Wの組成比が8.0重量%を越えると高温耐食性が低下するので好ましくない。
【0026】
Taは、上記のようにMo及びWとの共存下にて固溶強化と析出硬化の作用により高温強度を向上させ、また一部がγ’相に対して析出硬化し、高温強度を向上させる。
Taの組成比は、4.0重量%以上8.0重量%以下の範囲が好ましく、4.0重量%以上6.0重量%以下の範囲がより好ましく、5.9重量%とすることが最も好ましい。
Taの組成比が4.0重量%未満であると、所望の高温強度を確保できないので好ましくなく、Taの組成比が8.0重量%を越えると、σ相やμ相が生成するようになって高温強度が低下するので好ましくない。
【0027】
Alは、Niと化合し、母相中に微細均一に分散析出するγ’相を構成するNi3Al)で表される金属間化合物を、体積分率で60〜70%の割合で形成し、高温強度を向上させる。
Alの組成比は、5.0重量%以上7.0重量%以下の範囲が好ましく、5.9重量%とすることが最も好ましい。
Alの組成比が5.0重量%未満であると、γ’相の析出量が不十分となり、所望の高温強度を確保できないので好ましくなく、Alの組成比が7.0重量%を越えると、共晶γ’相と呼ばれる粗大なγ相が多く形成され、溶体化処理が不可能となり、高い高温強度を確保できなくなるので好ましくない。
【0028】
Hfは粒界偏析元素であり、γ相とγ’相の粒界に偏在して粒界を強化し、これにより高温強度を向上させる。
Hfの組成比は、0.01重量%以上0.50重量%以下の範囲が好ましく、0.10重量%とすることが最も好ましい。
Hfの組成比が0.01重量%未満であると、γ’相の析出量が不十分となり、所望の高温強度を確保できないので好ましくなく、Hfの組成比が0.50重量%を越えると、局部溶融を引き起こして高温強度を低下させるおそれがあるので好ましくない。
【0029】
Coは、Al、Ta等の母相に対する高温下での固溶限度を大きくし、熱処理によって微細なγ’相を分散析出させ、高温強度を向上させる。
Coの組成比は、0.1重量%以上15.0重量%以下の範囲が好ましく、5.9重量%とすることが最も好ましい。
Coの組成比が0.1重量%未満であると、γ’相の析出量が不十分となり、所望の高温強度を確保できないので好ましくなく、Coの組成比が15.0重量%を越えると、Al、Ta、Mo、W、Hf、Cr等の他の元素とのバランスがくずれ、有害相が析出して高温強度が低下するので好ましくない。
【0030】
Reは母相であるγ相に固溶し、固溶強化により高温強度を向上させる。また耐蝕性を向上させる効果もある。一方でReを多量に添加すると、高温時に有害相であるTCP相が析出し、高温強度が低下するおそれがある。
Reの組成比は、3.0重量%以上6.0重量%以下の範囲が好ましく、4.9重量%とすることが最も好ましい。
Reの組成比が3.0重量%未満であると、γ相の固溶強化が不十分となって所望の高温強度を確保できないので好ましくなく、Reの組成比が6.0重量%を越えると、高温時にTCP相が析出し、高い高温強度を確保できなくなるので好ましくない。
【0031】
Ruは、TCP相の析出を抑え、これにより高温強度を向上させる。
Ruの組成比は、1.0重量%以上4.0重量%以下の範囲が好ましく、2.0重量%とすることが最も好ましい。
Ruの組成比が1.0重量%未満であると、高温時にTCP相が析出し、高い高温強度を確保できなくなるので好ましくなく、Ruの組成比が4.0重量%を越えると、コストが高くなるので好ましくない。
【0032】
特に本発明では、Al、Ta、Mo、W、Hf、Cr、Co及びNiの組成比を最適なものに調整することにより、γ相の格子定数とγ’相の格子定数を最適な範囲に設定して高温強度を向上させるとともに、Ruを添加することにより、TCP相の析出を抑制できる。
【0033】
また、1273K(1000℃)から1373K(1100℃)のような高温での使用環境において、母相であるγ相を構成する結晶の格子定数をa1とし、析出相であるγ’相を構成する結晶の格子定数をa2としたとき、a1とa2の関係がa2≦0.999a1であることが好ましい。即ち、析出相の結晶の格子定数a2が母相の結晶の格子定数a1のマイナス0.1%以下であることが好ましい。また、析出相の結晶の格子定数a2が母相の結晶の格子定数a1のマイナス0.5%以上であるとよい。両者の格子定数が上記の関係を有する場合には、熱処理によって母相中に析出相が析出する際に、析出相が荷重方向の垂直方向に連続して延在するように析出するので、応力下で転位欠陥が合金組織中を移動することがなく、クリープ強度を高めることが可能になる。
格子定数a1と格子定数a2の関係をa2≦0.999a1とするには、Ni基単結晶超合金を構成する構成元素の組成を適宜調整することによって行われる。
【0034】
上記のNi基単結晶超合金によれば、Ruを添加することにより、クリープ強度低下の原因となるTCP相が高温使用時に析出するのが抑制される。また、他の構成元素の組成比を最適な範囲に設定することにより、母相(γ相)の格子定数と析出相(γ’相)の格子定数とを最適な値にすることが可能になる。これらにより、高温下でのクリープ強度を向上できる。
【0035】
【実施例】
次に、真空溶解炉を用いて各種のNi基単結晶超合金の溶湯を調整し、この合金溶湯を用いて合金インゴットを鋳造した。本実施例の合金インゴット(TM138)の組成比を表2に示す。
【0036】
【表2】
Figure 0003840555
【0037】
次に、合金インゴットに対して溶体化処理及び時効処理を行い、合金組織の状態を走査型電子顕微鏡(SEM)で観察した。溶体化処理は、1573K(1300℃)で1時間保持した後、1613K(1340℃)まで昇温し、5時間保持した。また、時効処理は、1150℃で4時間保持する1次時効処理と、870℃で20時間保持する2次時効処理を連続して行った。
その結果、組織中にTCP相は確認されなかった。
【0038】
次に、溶体化処理及び時効処理を施した本実施例の試料(TMS−138)に対して、クリープ試験を行った。クリープ試験は、表3に示す温度及び応力の各条件下で試料がクリープ破断するまでの時間を寿命として測定した。
【0039】
【表3】
Figure 0003840555
【0040】
表3から明らかなように、本実施例の試料は、1273K(1000℃)以上の高温の条件下であっても高い強度を有していることがわかる。
【0041】
また、表1に示した従来の合金(比較例1〜比較例5)、及び表2に示した本実施例の試料(TMS−138)に対して、クリープランチャー特性(耐用温度)を比較した。クリープランチャー特性は、137MPaの応力を1000時間印加した条件で試料が破断するまでの温度を測定した結果、または試料の破断温度をその条件下に換算したものを用いている。
【0042】
【表4】
Figure 0003840555
【0043】
表4から明らかなように、本実施例の試料は、比較例1〜比較例5に比べて同等以上の高い耐用温度(1356K(1083℃))を有していることがわかる。
【0044】
従って、この合金(TMS138)は、従来のNi基単結晶超合金と比較して高い耐熱温度を有しており、優れた高温強度を有していることがわかる。
【0045】
また、表1に示した比較例2(CMSX−4)、及び表2に示した本実施例の試料(TMS−138)に対して、疲労強度を比較した。疲労強度は、高サイクル疲労(HCF)及び低サイクル疲労(LCF)のそれぞれについて計測した。高サイクル疲労強度は、1373K(1100℃)の高温下において、疲労破壊サイクル数Nfを106及び107とし、荷重制御方式により最大荷重(Max stress)を計測した。低サイクル疲労強度は、1073K(800℃)の高温下において、疲労破壊サイクル数Nfを103及び104とし、歪み制御方式により疑弾性荷重(Alt. pseudostress)を計測した。
【0046】
【表5】
Figure 0003840555
【0047】
表5から明らかなように、本実施例の試料は、比較例2に比べて、疲労強度が優れていることがわかる。
【0048】
従って、この合金(TMS138)は、従来のNi基単結晶超合金と比較して高温下でのクリープ強度に加え、疲労強度にも向上が見られることがわかる。
【0049】
【発明の効果】
以上、詳細に説明したように、本発明のNi基単結晶超合金によれば、構成元素の組成比を最適な範囲に設定することにより母相(γ相)の格子定数と析出相(γ’相)の格子定数とを最適な値にすることが可能になり、高温下での強度を向上できる。また、Ruの組成比が1.0重量%以上4.0重量%以下であるので、クリープ強度低下の原因となるTCP相が高温使用時に析出するのが抑制される。
【0050】
また、本発明のNi基単結晶超合金によれば、母相の格子定数をa1とし、析出相の格子定数をa2としたとき、a1とa2の関係がa2≦0.999a1であり、即ち析出相の格子定数a2が母相の格子定数a1のマイナス0.1%以下であるので、母相中に析出する析出相が荷重方向の垂直方向に連続して延在するように析出し、応力下で転位欠陥が合金組織中を移動することがなく、従来のNi基単結晶超合金よりも強度を大幅に高めることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a Ni-based single crystal superalloy, and particularly to a technique for a Ni-based single crystal superalloy for the purpose of improving creep characteristics.
[0002]
[Prior art]
Conventional compositions of Ni-based single crystal superalloys that have been developed as materials for moving and stationary blades at high temperatures, such as aircraft and gas turbines, include those shown in Table 1, for example.
[0003]
[Table 1]
Figure 0003840555
[0004]
The Ni-based single crystal superalloy is subjected to a solution treatment at a predetermined temperature and then an aging treatment to form a Ni-based single crystal superalloy. This alloy is called a so-called precipitation hardening type alloy, and has a form in which a γ ′ phase as a precipitation phase is precipitated in a γ phase as a parent phase.
[0005]
Among the alloys listed in Table 1, CMSX-2 (Canon Maskegon, U.S. Pat. No. 4,582,548) is a first generation alloy, CMSX-4 (Canon Maskegon, U.S. Pat. No. 4,643,782). Is a second generation alloy, Rene'N6 (manufactured by General Electric, US Pat. No. 5,455,120), CMSX-10K (manufactured by Canon Muskegon, US Pat. No. 5,366,695). Publication 3) is a third generation alloy, and 3B (General Electric Company, US Pat. No. 5,151,249) is a fourth generation alloy.
[0006]
[Problems to be solved by the invention]
CMSX-2, the first generation alloy, and CMSX-4, the second generation alloy, have a high eutectic γ 'phase even after high temperature solution treatment, although the creep strength at low temperatures is comparable. The creep strength at high temperatures is inferior to that of the third generation alloy.
[0007]
In addition, the above-mentioned third generation Rene'N6 and CMSX-10K are alloys aiming to improve the creep strength at a higher temperature than the second generation alloy, but the composition ratio of Re (5 wt% or more) Exceeds the amount of Re solid solution in the parent phase (γ phase), so excess Re combines with other elements to precipitate a so-called TCP phase (Topologically Close Packed phase) at high temperatures, There was a problem that the amount of the TCP phase was increased by use and the creep strength was lowered.
[0008]
In order to improve the creep strength of the Ni-based single crystal superalloy, it is effective to make the lattice constant of the precipitated phase (γ ′ phase) slightly smaller than the lattice constant of the parent phase (γ phase). Since the lattice constant of the phase largely fluctuates depending on the composition ratio of the constituent elements of the alloy, there is a problem that it is difficult to improve the creep strength because fine adjustment of the lattice constant is difficult.
[0009]
The present invention has been made in view of the above circumstances, and an object thereof is to provide a Ni-based single crystal superalloy capable of preventing the precipitation of a TCP phase at a high temperature and improving the strength. .
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the present invention employs the following configuration.
In the Ni-based single crystal superalloy of the present invention, the components are in a weight ratio of Al: 5.0% by weight to 7.0% by weight, Ta: 4.0% by weight to 8.0% by weight, Mo: 2 0.9 wt% or more and 4.5 wt% or less, W: 4.0 wt% or more and 8.0 wt% or less, Re: 3.0 wt% or more and 6.0 wt% or less, Hf: 0.01 wt% or more 0.50 wt% or less, Cr: 2.0 wt% or more and 5.0 wt% or less, Co: 5.9 wt% , Ru: 1.0 wt% or more and 4.0 wt% or less, and the balance and have a composition consisting of Ni and unavoidable impurities, when the lattice constant of the matrix phase and a 1, the lattice constant of the precipitation phase was a 2, a a 2 0.999a 1, and characterized in that To do.
[0011]
In addition, the Ni-based single crystal superalloy of the present invention has components in a weight ratio of Al: 5.0 wt% or more and 7.0 wt% or less, Ta: 4.0 wt% or more and 6.0 wt% or less, Mo : 1.0 wt% to 4.5 wt%, W: 4.0 wt% to 8.0 wt%, Re: 3.0 wt% to 6.0 wt%, Hf: 0.01 wt% %: 0.5% to 0.50%, Cr: 2.0% to 5.0% by weight, Co: 5.9% by weight , Ru: 1.0% to 4.0% by weight, balance and have a composition consisting of Ni and unavoidable impurities, when the lattice constant of the matrix phase and a 1, the lattice constant of the precipitation phase was a 2, a a 2 0.999a 1, that Features.
[0012]
In addition, the Ni-based single crystal superalloy of the present invention has components in a weight ratio of Al: 5.0 wt% or more and 7.0 wt% or less, Ta: 4.0 wt% or more and 6.0 wt% or less, Mo : 2.9 wt% to 4.5 wt%, W: 4.0 wt% to 8.0 wt%, Re: 3.0 wt% to 6.0 wt%, Hf: 0.01 wt% %: 0.5% to 0.50%, Cr: 2.0% to 5.0% by weight, Co: 5.9% by weight , Ru: 1.0% to 4.0% by weight, balance and have a composition consisting of Ni and unavoidable impurities, when the lattice constant of the matrix phase and a 1, the lattice constant of the precipitation phase was a 2, a a 2 0.999a 1, that Features.
[0014]
According to the Ni-based single crystal superalloy described above, the addition of Ru suppresses the precipitation of the TCP phase that causes a decrease in strength when used at high temperatures. In addition, by setting the composition ratio of other constituent elements in an optimum range, it is possible to optimize the lattice constant of the parent phase (γ phase) and the lattice constant of the precipitated phase (γ ′ phase). . As a result, the strength at high temperature can be improved.
[0015]
According to the above Ni-based single crystal superalloy, the lattice constant of the matrix phase and a 1, the lattice constant of the precipitation phase when the a 2, with a 1 and the relationship a 2 is a 2 0.999a 1 Yes, since the lattice constant a 2 of the precipitated phase is minus 0.1% or less of the lattice constant a 1 of the parent phase, the precipitated phase precipitated in the parent phase seems to continuously extend in the direction perpendicular to the load direction. Therefore, dislocation defects do not move in the alloy structure under stress, and the strength at high temperatures can be increased.
[0016]
Further, the Ni-based single crystal superalloy of the present invention is the Ni-based single crystal superalloy described above, wherein the components are in a weight ratio, 5.9% by weight of Al, 5.9% by weight of Ta, Mo 2.9 wt%, W 5.9 wt%, Re 4.9 wt%, Hf 0.10 wt%, Cr 2.9 wt%, Co 5.9 wt%, Ru 2 0.0% by weight, and the balance is composed of Ni and inevitable impurities.
[0017]
According to the Ni-based single crystal superalloy having the above composition, the creep durability temperature at 137 MPa and 1000 hours can be set to 1356 K (1083 ° C.).
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
The Ni-based single crystal superalloy of the present invention is an alloy composed of Al, Ta, Mo, W, Re, Hf, Cr, Co, Ru, and Ni (remainder) and inevitable impurities.
[0019]
The above-mentioned Ni-based single crystal superalloy has a composition ratio of Al: 5.0 wt% or more and 7.0 wt% or less, Ta: 4.0 wt% or more and 8.0 wt% or less, Mo: 2.9 wt% 4.5 wt% or less, W: 4.0 wt% or more and 8.0 wt% or less, Re: 3.0 wt% or more and 6.0 wt% or less, Hf: 0.01 wt% or more and 0.5 wt% or less %: Cr: 2.0 wt% or more and 5.0 wt% or less, Co: 5.9 wt% , Ru: 1.0 wt% or more and 4.0 wt% or less, with the balance being Ni and inevitable impurities An alloy consisting of
[0020]
The Ni-based single crystal superalloy has a composition ratio of Al: 5.0% by weight to 7.0% by weight, Ta: 4.0% by weight to 6.0% by weight, Mo: 1.0% by weight. % To 4.5% by weight, W: 4.0% to 8.0% by weight, Re: 3.0% to 6.0% by weight, Hf: 0.01% to 0.5% Wt% or less, Cr: 2.0 wt% or more and 5.0 wt% or less, Co: 5.9 wt% , Ru: 1.0 wt% or more and 4.0 wt% or less, and the balance is inevitable with Ni. An alloy made of impurities.
[0021]
The Ni-based single crystal superalloy has a composition ratio of Al: 5.0% by weight to 7.0% by weight, Ta: 4.0% by weight to 6.0% by weight, Mo: 2.9% by weight. % To 4.5% by weight, W: 4.0% to 8.0% by weight, Re: 3.0% to 6.0% by weight, Hf: 0.01% to 0.5% Wt% or less, Cr: 2.0 wt% or more and 5.0 wt% or less, Co: 5.9 wt% , Ru: 1.0 wt% or more and 4.0 wt% or less, and the balance is inevitable with Ni. An alloy made of impurities.
[0022]
Each of the alloys has a γ phase (parent phase) that is an austenite phase and a γ ′ phase (precipitation phase) that is an intermediate ordered phase dispersed and precipitated in the parent phase. The γ ′ phase is mainly composed of an intermetallic compound represented by Ni 3 Al, and the high temperature strength of the Ni-based single crystal superalloy is improved by this γ ′ phase.
[0023]
Cr is an element excellent in oxidation resistance, and improves the high temperature corrosion resistance of the Ni-based single crystal superalloy.
The composition ratio of Cr is preferably in the range of Cr: 2.0 wt% or more and 5.0 wt% or less, and most preferably 2.9 wt%.
If the Cr composition ratio is less than 2.0% by weight, the desired high-temperature corrosion resistance cannot be ensured, which is not preferable. If the Cr composition ratio exceeds 5.0% by weight, precipitation of the γ ′ phase is suppressed. Since harmful phases such as σ phase and μ phase are generated and high temperature strength is lowered, it is not preferable.
[0024]
In the presence of W and Ta, Mo dissolves in the γ phase, which is the parent phase, to increase the high temperature strength and contribute to the high temperature strength by precipitation hardening.
The composition ratio of Mo is preferably in the range of 1.0% by weight to 4.5% by weight, more preferably in the range of 2.9% by weight to 4.5% by weight, and more preferably 2.9% by weight. Most preferred.
If the Mo composition ratio is less than 1.0% by weight, the desired high temperature strength cannot be ensured, which is not preferable. On the other hand, even if the Mo composition ratio exceeds 4.5% by weight, the high temperature strength decreases. Is not preferable because the high-temperature corrosion resistance also decreases.
[0025]
W improves the high-temperature strength by the action of solid solution strengthening and precipitation hardening in the presence of Mo and Ta as described above.
The composition ratio of W is preferably in the range of 4.0 wt% to 8.0 wt%, and most preferably 5.9 wt%.
If the W composition ratio is less than 4.0% by weight, the desired high-temperature strength cannot be ensured, which is not preferable. If the W composition ratio exceeds 8.0% by weight, the high-temperature corrosion resistance decreases, which is not preferable.
[0026]
Ta improves the high-temperature strength by the action of solid solution strengthening and precipitation hardening in the presence of Mo and W as described above, and partly precipitates and hardens against the γ 'phase to improve the high-temperature strength. .
The composition ratio of Ta is preferably in the range of 4.0% by weight to 8.0% by weight, more preferably in the range of 4.0% by weight to 6.0% by weight, and more preferably 5.9% by weight. Most preferred.
If the Ta composition ratio is less than 4.0% by weight, the desired high-temperature strength cannot be secured, which is not preferable. If the Ta composition ratio exceeds 8.0% by weight, a σ phase or μ phase is generated. This is not preferable because the high temperature strength decreases.
[0027]
Al is combined with Ni to form an intermetallic compound represented by Ni 3 Al) that constitutes a γ ′ phase that is finely and uniformly dispersed and precipitated in the matrix at a volume fraction of 60 to 70%. , Improve high temperature strength.
The composition ratio of Al is preferably in the range of 5.0 wt% to 7.0 wt%, and most preferably 5.9 wt%.
If the Al composition ratio is less than 5.0% by weight, the amount of precipitation of the γ ′ phase becomes insufficient, and the desired high-temperature strength cannot be secured, which is not preferable. If the Al composition ratio exceeds 7.0% by weight, A large amount of coarse γ phase called a eutectic γ ′ phase is formed, so that solution treatment is impossible and high temperature strength cannot be secured.
[0028]
Hf is a grain boundary segregation element and is unevenly distributed in the grain boundaries of the γ phase and the γ ′ phase to strengthen the grain boundaries, thereby improving the high temperature strength.
The composition ratio of Hf is preferably in the range of 0.01 wt% to 0.50 wt%, and most preferably 0.10 wt%.
If the Hf composition ratio is less than 0.01% by weight, the amount of precipitation of the γ ′ phase becomes insufficient, and the desired high-temperature strength cannot be secured, which is not preferred. If the Hf composition ratio exceeds 0.50% by weight, This is not preferable because local melting may be caused to lower the high temperature strength.
[0029]
Co increases the solid solution limit of Al, Ta, and other parent phases at high temperatures, disperses and precipitates fine γ ′ phases by heat treatment, and improves high-temperature strength.
The composition ratio of Co is preferably in the range of 0.1 wt% to 15.0 wt%, and most preferably 5.9 wt%.
If the Co composition ratio is less than 0.1% by weight, the amount of precipitation of the γ ′ phase becomes insufficient, and the desired high-temperature strength cannot be ensured, which is not preferable. If the Co composition ratio exceeds 15.0% by weight, , Al, Ta, Mo, W, Hf, and other elements such as Cr are unbalanced, and a harmful phase is precipitated to lower the high temperature strength.
[0030]
Re dissolves in the γ phase, which is the parent phase, and improves high-temperature strength by solid solution strengthening. It also has the effect of improving corrosion resistance. On the other hand, when a large amount of Re is added, a TCP phase, which is a harmful phase, precipitates at a high temperature, and the high-temperature strength may be reduced.
The Re composition ratio is preferably in the range of 3.0 wt% to 6.0 wt%, and most preferably 4.9 wt%.
If the Re composition ratio is less than 3.0% by weight, the solid solution strengthening of the γ phase is insufficient and the desired high-temperature strength cannot be ensured, so the Re composition ratio exceeds 6.0% by weight. In this case, the TCP phase is precipitated at high temperatures, and high high-temperature strength cannot be secured.
[0031]
Ru suppresses the precipitation of the TCP phase, thereby improving the high temperature strength.
The composition ratio of Ru is preferably in the range of 1.0% by weight to 4.0% by weight, and most preferably 2.0% by weight.
If the Ru composition ratio is less than 1.0% by weight, the TCP phase precipitates at a high temperature and it becomes impossible to secure a high high-temperature strength, which is not preferable. If the Ru composition ratio exceeds 4.0% by weight, the cost is reduced. Since it becomes high, it is not preferable.
[0032]
In particular, in the present invention, by adjusting the composition ratio of Al, Ta, Mo, W, Hf, Cr, Co, and Ni to an optimum one, the lattice constant of the γ phase and the lattice constant of the γ ′ phase are set to an optimum range. While increasing the high temperature strength by setting, the precipitation of the TCP phase can be suppressed by adding Ru.
[0033]
Further, in a use environment at a high temperature such as 1273 K (1000 ° C.) to 1373 K (1100 ° C.), the lattice constant of the crystal constituting the γ phase as the parent phase is a1, and the γ ′ phase as the precipitated phase is constituted. When the lattice constant of the crystal is a2, the relationship between a1 and a2 is preferably a2 ≦ 0.999a1. That is, the lattice constant a2 of the crystal of the precipitated phase is preferably minus 0.1% or less of the lattice constant a1 of the parent phase crystal. Further, the lattice constant a2 of the crystal of the precipitation phase is preferably minus 0.5% or more of the lattice constant a1 of the crystal of the parent phase. When both lattice constants have the above relationship, when the precipitated phase precipitates in the matrix by heat treatment, the precipitated phase precipitates so as to continuously extend in the direction perpendicular to the load direction. Under this condition, dislocation defects do not move through the alloy structure, and the creep strength can be increased.
The relationship between the lattice constant a1 and the lattice constant a2 is set to a2 ≦ 0.999a1 by appropriately adjusting the composition of the constituent elements constituting the Ni-based single crystal superalloy.
[0034]
According to the Ni-based single crystal superalloy described above, the addition of Ru suppresses the precipitation of the TCP phase that causes a decrease in creep strength during high temperature use. In addition, by setting the composition ratio of other constituent elements in the optimum range, it is possible to optimize the lattice constant of the parent phase (γ phase) and the lattice constant of the precipitated phase (γ 'phase). Become. As a result, the creep strength at high temperatures can be improved.
[0035]
【Example】
Next, various melts of Ni-based single crystal superalloys were prepared using a vacuum melting furnace, and alloy ingots were cast using these molten alloys. Table 2 shows the composition ratio of the alloy ingot (TM138) of this example.
[0036]
[Table 2]
Figure 0003840555
[0037]
Next, solution treatment and aging treatment were performed on the alloy ingot, and the state of the alloy structure was observed with a scanning electron microscope (SEM). The solution treatment was held at 1573 K (1300 ° C.) for 1 hour, then heated to 1613 K (1340 ° C.) and held for 5 hours. In addition, the aging treatment was carried out continuously by a primary aging treatment held at 1150 ° C. for 4 hours and a secondary aging treatment held at 870 ° C. for 20 hours.
As a result, no TCP phase was confirmed in the tissue.
[0038]
Next, a creep test was performed on the sample (TMS-138) of this example that was subjected to solution treatment and aging treatment. In the creep test, the time until the sample creep ruptured under each temperature and stress condition shown in Table 3 was measured as the lifetime.
[0039]
[Table 3]
Figure 0003840555
[0040]
As is apparent from Table 3, the sample of this example has high strength even under high temperature conditions of 1273 K (1000 ° C.) or higher.
[0041]
In addition, the creeper characteristics (durable temperature) were compared to the conventional alloys shown in Table 1 (Comparative Examples 1 to 5) and the sample (TMS-138) of this example shown in Table 2. . Creepture characteristics are obtained by measuring the temperature until the sample breaks under a condition where a stress of 137 MPa is applied for 1000 hours, or by converting the breaking temperature of the sample into the conditions.
[0042]
[Table 4]
Figure 0003840555
[0043]
As is apparent from Table 4, it can be seen that the sample of this example has a higher service temperature (1356 K (1083 ° C.)) equal to or higher than that of Comparative Examples 1 to 5.
[0044]
Therefore, it can be seen that this alloy (TMS138) has a higher heat-resistant temperature than the conventional Ni-based single crystal superalloy and has an excellent high-temperature strength.
[0045]
Moreover, fatigue strength was compared with Comparative Example 2 (CMSX-4) shown in Table 1 and the sample (TMS-138) of this example shown in Table 2. Fatigue strength was measured for each of high cycle fatigue (HCF) and low cycle fatigue (LCF). The high cycle fatigue strength was measured at a maximum load (Max stress) by a load control method at a high temperature of 1373 K (1100 ° C.) with fatigue failure cycle numbers Nf of 10 6 and 10 7 . For low cycle fatigue strength, the fatigue fracture cycle number Nf was set to 10 3 and 10 4 at a high temperature of 1073 K (800 ° C.), and a pseudo elastic load (Alt. Pseudostress) was measured by a strain control method.
[0046]
[Table 5]
Figure 0003840555
[0047]
As is clear from Table 5, it can be seen that the sample of this example is superior in fatigue strength to Comparative Example 2.
[0048]
Therefore, it can be seen that this alloy (TMS138) shows an improvement in fatigue strength in addition to the creep strength at a high temperature as compared with the conventional Ni-based single crystal superalloy.
[0049]
【The invention's effect】
As described above in detail, according to the Ni-based single crystal superalloy of the present invention, the lattice constant of the parent phase (γ phase) and the precipitation phase (γ The 'phase' lattice constant can be optimized and the strength at high temperatures can be improved. Moreover, since the composition ratio of Ru is 1.0 wt% or more and 4.0 wt% or less, it is possible to suppress the precipitation of the TCP phase that causes a decrease in creep strength when used at a high temperature.
[0050]
Further, according to the Ni-based single crystal superalloy of the present invention, when the lattice constant of the parent phase is a1 and the lattice constant of the precipitated phase is a2, the relationship between a1 and a2 is a2 ≦ 0.999a1, Since the lattice constant a2 of the precipitated phase is minus 0.1% or less of the lattice constant a1 of the parent phase, the precipitated phase that precipitates in the parent phase is precipitated so as to continuously extend in the direction perpendicular to the load direction, Under the stress, dislocation defects do not move in the alloy structure, and the strength can be significantly increased as compared with conventional Ni-based single crystal superalloys.

Claims (4)

成分が重量比で、Al:5.0重量%以上7.0重量%以下、Ta:4.0重量%以上8.0重量%以下、Mo:2.9重量%以上4.5重量%以下、W:4.0重量%以上8.0重量%以下、Re:3.0重量%以上6.0重量%以下、Hf:0.01重量%以上0.50重量%以下、Cr:2.0重量%以上5.0重量%以下、Co:5.9重量%、Ru:1.0重量%以上4.0重量%以下を含有し、残部がNiと不可避的不純物からなる組成を有しており、
母相の格子定数をa 1 とし、析出相の格子定数をa 2 としたとき、a 2 ≦0.999a 1 である、ことを特徴とするNi基単結晶超合金。
Ingredients in weight ratio: Al: 5.0% to 7.0% by weight, Ta: 4.0% to 8.0% by weight, Mo: 2.9% to 4.5% by weight W: 4.0% by weight or more and 8.0% by weight or less, Re: 3.0% by weight or more and 6.0% by weight or less, Hf: 0.01% by weight or more and 0.50% by weight or less, Cr: 2.% by weight. 0 wt% to 5.0 wt% or less, Co: 5.9 wt%, Ru: 1.0 wt% or more and 4.0 contained wt% or less, have the balance consisting of Ni and unavoidable impurities And
The lattice constant of the matrix phase and a 1, when the lattice constant of the precipitation phase was a 2, a a 2 0.999a 1, Ni-based single crystal superalloy, characterized in that.
成分が重量比で、Al:5.0重量%以上7.0重量%以下、Ta:4.0重量%以上6.0重量%以下、Mo:1.0重量%以上4.5重量%以下、W:4.0重量%以上8.0重量%以下、Re:3.0重量%以上6.0重量%以下、Hf:0.01重量%以上0.50重量%以下、Cr:2.0重量%以上5.0重量%以下、Co:5.9重量%、Ru:1.0重量%以上4.0重量%以下を含有し、残部がNiと不可避的不純物からなる組成を有しており、
母相の格子定数をa 1 とし、析出相の格子定数をa 2 としたとき、a 2 ≦0.999a 1 である、ことを特徴とするNi基単結晶超合金。
Ingredients in weight ratio: Al: 5.0% to 7.0% by weight, Ta: 4.0% to 6.0% by weight, Mo: 1.0% to 4.5% by weight W: 4.0% by weight or more and 8.0% by weight or less, Re: 3.0% by weight or more and 6.0% by weight or less, Hf: 0.01% by weight or more and 0.50% by weight or less, Cr: 2.% by weight. 0 wt% to 5.0 wt% or less, Co: 5.9 wt%, Ru: 1.0 wt% or more and 4.0 contained wt% or less, have the balance consisting of Ni and unavoidable impurities And
The lattice constant of the matrix phase and a 1, when the lattice constant of the precipitation phase was a 2, a a 2 0.999a 1, Ni-based single crystal superalloy, characterized in that.
成分が重量比で、Al:5.0重量%以上7.0重量%以下、Ta:4.0重量%以上6.0重量%以下、Mo:2.9重量%以上4.5重量%以下、W:4.0重量%以上8.0重量%以下、Re:3.0重量%以上6.0重量%以下、Hf:0.01重量%以上0.50重量%以下、Cr:2.0重量%以上5.0重量%以下、Co:5.9重量%、Ru:1.0重量%以上4.0重量%以下を含有し、残部がNiと不可避的不純物からなる組成を有しており、
母相の格子定数をa 1 とし、析出相の格子定数をa 2 としたとき、a 2 ≦0.999a 1 である、ことを特徴とするNi基単結晶超合金。
Components are by weight: Al: 5.0% to 7.0% by weight, Ta: 4.0% to 6.0% by weight, Mo: 2.9% to 4.5% by weight W: 4.0% by weight or more and 8.0% by weight or less, Re: 3.0% by weight or more and 6.0% by weight or less, Hf: 0.01% by weight or more and 0.50% by weight or less, Cr: 2.% by weight. 0 wt% to 5.0 wt% or less, Co: 5.9 wt%, Ru: 1.0 wt% or more and 4.0 contained wt% or less, have the balance consisting of Ni and unavoidable impurities And
The lattice constant of the matrix phase and a 1, when the lattice constant of the precipitation phase was a 2, a a 2 0.999a 1, Ni-based single crystal superalloy, characterized in that.
成分が重量比で、Alを5.9重量%、Taを5.9重量%、Moを2.9重量%、Wを5.9重量%、Reを4.9重量%、Hfを0.10重量%、Crを2.9重量%、Coを5.9重量%、Ruを2.0重量%を含有し、残部がNiと不可避的不純物からなる組成を有することを特徴とする請求項1から請求項3のうちのいずれか一項に記載のNi基単結晶超合金。 The components were 5.9 wt% Al, 5.9 wt% Ta, 2.9 wt% Mo, 5.9 wt% W, 4.9 wt% Re, and 0.0 wt. 10. A composition comprising 10% by weight, Cr of 2.9% by weight, Co of 5.9% by weight, Ru of 2.0% by weight, and the balance comprising Ni and inevitable impurities. The Ni-based single crystal superalloy according to any one of claims 1 to 3.
JP2002143572A 2001-05-30 2002-05-17 Ni-based single crystal superalloy Expired - Lifetime JP3840555B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2002143572A JP3840555B2 (en) 2001-05-30 2002-05-17 Ni-based single crystal superalloy
DE60203562T DE60203562T2 (en) 2001-05-30 2002-05-29 Monocrystalline nickel-based superalloy
CA002387828A CA2387828C (en) 2001-05-30 2002-05-29 Ni-based single crystal super alloy
EP02253782A EP1262569B1 (en) 2001-05-30 2002-05-29 Ni-based single crystal super alloy
US10/159,202 US20030075247A1 (en) 2001-05-30 2002-05-30 Ni-based single crystal super alloy
US10/899,167 US6966956B2 (en) 2001-05-30 2004-07-26 Ni-based single crystal super alloy

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-161919 2001-05-30
JP2001161919 2001-05-30
JP2002143572A JP3840555B2 (en) 2001-05-30 2002-05-17 Ni-based single crystal superalloy

Publications (2)

Publication Number Publication Date
JP2003049231A JP2003049231A (en) 2003-02-21
JP3840555B2 true JP3840555B2 (en) 2006-11-01

Family

ID=26615930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002143572A Expired - Lifetime JP3840555B2 (en) 2001-05-30 2002-05-17 Ni-based single crystal superalloy

Country Status (5)

Country Link
US (1) US20030075247A1 (en)
EP (1) EP1262569B1 (en)
JP (1) JP3840555B2 (en)
CA (1) CA2387828C (en)
DE (1) DE60203562T2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6966956B2 (en) * 2001-05-30 2005-11-22 National Institute For Materials Science Ni-based single crystal super alloy
US8968643B2 (en) * 2002-12-06 2015-03-03 National Institute For Materials Science Ni-based single crystal super alloy
US7273662B2 (en) * 2003-05-16 2007-09-25 Iowa State University Research Foundation, Inc. High-temperature coatings with Pt metal modified γ-Ni+γ′-Ni3Al alloy compositions
JP3944582B2 (en) * 2003-09-22 2007-07-11 独立行政法人物質・材料研究機構 Ni-base superalloy
GB0412584D0 (en) * 2004-06-05 2004-07-07 Rolls Royce Plc Composition of matter
EP1876263B1 (en) * 2005-03-28 2014-05-14 National Institute for Materials Science Heat-resistant member
WO2007037277A1 (en) * 2005-09-27 2007-04-05 National Institute For Materials Science Nickel-base superalloy with excellent unsusceptibility to oxidation
US8123872B2 (en) * 2006-02-22 2012-02-28 General Electric Company Carburization process for stabilizing nickel-based superalloys
JP4773303B2 (en) * 2006-08-22 2011-09-14 株式会社日立製作所 Nickel-based single crystal superalloy excellent in strength, corrosion resistance, and oxidation resistance and method for producing the same
EP2062990B1 (en) * 2006-09-13 2016-01-13 National Institute for Materials Science Ni-BASE SINGLE CRYSTAL SUPERALLOY
JP4557079B2 (en) * 2007-03-12 2010-10-06 株式会社Ihi Ni-based single crystal superalloy and turbine blade using the same
JP5467306B2 (en) 2008-06-26 2014-04-09 独立行政法人物質・材料研究機構 Ni-based single crystal superalloy and alloy member based thereon
JP5467307B2 (en) 2008-06-26 2014-04-09 独立行政法人物質・材料研究機構 Ni-based single crystal superalloy and alloy member obtained therefrom
US8821654B2 (en) 2008-07-15 2014-09-02 Iowa State University Research Foundation, Inc. Pt metal modified γ-Ni+γ′-Ni3Al alloy compositions for high temperature degradation resistant structural alloys
US20100135846A1 (en) 2008-12-01 2010-06-03 United Technologies Corporation Lower cost high strength single crystal superalloys with reduced re and ru content
US20160214350A1 (en) 2012-08-20 2016-07-28 Pratt & Whitney Canada Corp. Oxidation-Resistant Coated Superalloy
US8858876B2 (en) 2012-10-31 2014-10-14 General Electric Company Nickel-based superalloy and articles
DE102016203724A1 (en) * 2016-03-08 2017-09-14 Siemens Aktiengesellschaft SX-nickel alloy with improved TMF properties, raw material and component
TWI663263B (en) * 2016-11-25 2019-06-21 國家中山科學研究院 High creep-resistant equiaxed grain nickel-based superalloy
CN112522543A (en) * 2020-11-18 2021-03-19 贵州工程应用技术学院 High-concentration Re/Ru high-temperature-bearing-capacity high-creep-resistance nickel-based single crystal superalloy

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4719080A (en) * 1985-06-10 1988-01-12 United Technologies Corporation Advanced high strength single crystal superalloy compositions
CA1315572C (en) * 1986-05-13 1993-04-06 Xuan Nguyen-Dinh Phase stable single crystal materials
US5151249A (en) * 1989-12-29 1992-09-29 General Electric Company Nickel-based single crystal superalloy and method of making
US5482789A (en) * 1994-01-03 1996-01-09 General Electric Company Nickel base superalloy and article
US6007645A (en) * 1996-12-11 1999-12-28 United Technologies Corporation Advanced high strength, highly oxidation resistant single crystal superalloy compositions having low chromium content
JPH11256258A (en) * 1998-03-13 1999-09-21 Toshiba Corp Ni base single crystal superalloy and gas turbine parts
JPH11310839A (en) * 1998-04-28 1999-11-09 Hitachi Ltd Grain-oriented solidification casting of high strength nickel-base superalloy
FR2780983B1 (en) * 1998-07-09 2000-08-04 Snecma SINGLE-CRYSTAL NICKEL-BASED SUPERALLOY WITH HIGHER TEMPERATURE RESISTANCE
JP4028122B2 (en) * 1999-02-25 2007-12-26 独立行政法人物質・材料研究機構 Ni-base superalloy, manufacturing method thereof, and gas turbine component
US6444057B1 (en) * 1999-05-26 2002-09-03 General Electric Company Compositions and single-crystal articles of hafnium-modified and/or zirconium-modified nickel-base superalloys
EP1184473B1 (en) * 2000-08-30 2005-01-05 Kabushiki Kaisha Toshiba Nickel-base single-crystal superalloys, method of manufacturing same and gas turbine high temperature parts made thereof

Also Published As

Publication number Publication date
EP1262569B1 (en) 2005-04-06
DE60203562D1 (en) 2005-05-12
JP2003049231A (en) 2003-02-21
DE60203562T2 (en) 2006-02-09
CA2387828A1 (en) 2002-11-30
US20030075247A1 (en) 2003-04-24
EP1262569A8 (en) 2003-05-21
EP1262569A1 (en) 2002-12-04
CA2387828C (en) 2009-09-15

Similar Documents

Publication Publication Date Title
JP3814662B2 (en) Ni-based single crystal superalloy
JP3840555B2 (en) Ni-based single crystal superalloy
JP5177559B2 (en) Ni-based single crystal superalloy
US7169241B2 (en) Ni-based superalloy having high oxidation resistance and gas turbine part
RU2415959C1 (en) MONO-CRYSTAL SUPER-ALLOY ON BASE OF Ni AND TURBINE BLADE CONTAINING IT
US8696979B2 (en) Ni-base superalloy and method for producing the same
JP5467307B2 (en) Ni-based single crystal superalloy and alloy member obtained therefrom
JP5133453B2 (en) Ni-based single crystal superalloy and turbine blade
JP5418589B2 (en) Ni-based single crystal superalloy and turbine blade using the same
US6966956B2 (en) Ni-based single crystal super alloy
JP4115369B2 (en) Ni-base superalloy
KR20150044879A (en) Ni-BASED SINGLE CRYSTAL SUPERALLOY
JP3559670B2 (en) High-strength Ni-base superalloy for directional solidification
JP2005097649A (en) Ni-BASED SUPERALLOY
JPH09268337A (en) Forged high corrosion resistant superalloy alloy
JP2552351B2 (en) Single crystal Ni-based super heat resistant alloy
JPH0310039A (en) Ni-base single crystal superalloy having excellent high temperature strength and high temperature corrosion resistance
JP6803573B2 (en) Ni-based unidirectional solidified alloy
JPH0711365A (en) Single crystal nickel base superalloy
JPH0920600A (en) Nickel-based single crystal super alloy, its production and gas turbine part
JPH0941058A (en) Nickel base single crystal alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050411

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20050411

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20050510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050725

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051124

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20051129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060719

R150 Certificate of patent or registration of utility model

Ref document number: 3840555

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130818

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term