JPH0941058A - Nickel base single crystal alloy - Google Patents
Nickel base single crystal alloyInfo
- Publication number
- JPH0941058A JPH0941058A JP7195493A JP19549395A JPH0941058A JP H0941058 A JPH0941058 A JP H0941058A JP 7195493 A JP7195493 A JP 7195493A JP 19549395 A JP19549395 A JP 19549395A JP H0941058 A JPH0941058 A JP H0941058A
- Authority
- JP
- Japan
- Prior art keywords
- single crystal
- alloy
- crystal alloy
- strength
- based single
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、航空機や発電用ガ
スタ−ビンのブレ−ドのように、高温下で高強度を要求
される耐熱合金に係り、特にNi基単結晶合金に関する
ものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat-resistant alloy which is required to have high strength at high temperature, such as a blade of an aircraft or a gas turbine for power generation, and more particularly to a Ni-based single crystal alloy. .
【0002】[0002]
【従来の技術】γ′析出強化型のNi基合金は、航空機
や発電用ガスタ−ビンのブレ−ドのように、高温下で高
強度を要求される超耐熱合金として多用されている。2. Description of the Prior Art γ'precipitation-strengthened Ni-based alloys are widely used as super heat-resistant alloys required to have high strength at high temperatures, such as blades of aircraft and gas turbines for power generation.
【0003】図2は、γ′(Ni3 Al)に第3元素
(C)を添加したときの固溶挙動を示している。FIG. 2 shows the solid solution behavior when the third element (C) is added to γ '(Ni 3 Al).
【0004】Ni基合金が超耐熱合金の主流となってい
る理由は、まず第1にNiが多種類の元素を固溶し得る
ことであり、第2には図2に示すように、析出強化相で
あるγ′(Ni3 Al)もまた多種類の元素を固溶し、
しかもこのγ′は高温においても長時間比較的安定に微
細に保たれるためである。γ′は強さが温度の上昇と共
に増大する(正の温度依存性)という普通の金属・合金
には見出せない特異な性質を持っており、この相の析出
強化がNi基耐熱合金の基本となっている。The reason why Ni-based alloys have become the mainstream of super-heat-resistant alloys is that first, Ni can dissolve many kinds of elements in solid solution, and secondly, as shown in FIG. The strengthening phase γ '(Ni 3 Al) also forms a solid solution with many kinds of elements,
Moreover, this γ'is maintained in a fine state relatively stably for a long time even at a high temperature. γ ′ has a unique property that strength increases with increasing temperature (positive temperature dependence), which cannot be found in ordinary metals and alloys, and precipitation strengthening of this phase is the basis of Ni-based heat-resistant alloys. Has become.
【0005】図2において、CoのようにNi3 Alの
Niサイトに置換する元素、Ti,Ta,Moのように
Alサイトに置換するもの、Crのように両サイトに置
換するものと固溶の仕方も様々であり、γ′析出強化型
Ni基合金の高温強さを支配する因子は、γやγ′の強
さと共に、γマトリックス中に整合性を保って析出する
γ′の量・寸法・ミスフィット(格子定数の差)等であ
る。つまり、Ni基耐熱合金の性能向上の歴史は、添加
元素の種類と量をかえることであったともいえる。In FIG. 2, a solid solution is formed with an element such as Co that substitutes for the Ni site of Ni 3 Al, an element that substitutes for the Al site such as Ti, Ta, Mo, or an element that substitutes for both sites such as Cr. There are various methods for controlling the high temperature strength of the γ'precipitation strengthened Ni-based alloy, and the strength of γ and γ ', as well as the amount of γ'precipitated in the γ matrix while maintaining consistency. These include dimensions and misfit (difference in lattice constant). In other words, it can be said that the history of performance improvement of Ni-based heat-resistant alloys was to change the type and amount of additive elements.
【0006】Ni基単結晶合金の強化の主要点は、γ′
相(Ni3 Al)による析出強化と母相であるγ相の固
溶強化である。The main point of strengthening the Ni-based single crystal alloy is γ '.
It is precipitation strengthening by the phase (Ni 3 Al) and solid solution strengthening of the γ phase which is the parent phase.
【0007】γ′相による析出強化については、γ′相
の体積量は、既存のNi基単結晶合金の場合でも60〜
65%に達しており、これ以上の体積量にしても、粗大
な共晶γ′相の析出等により、強度は横這いもしくは低
下するため、析出強化による強度向上は限界にきてい
る。Regarding the precipitation strengthening by the γ'phase, the volume amount of the γ'phase is 60 to 60 even in the case of the existing Ni-based single crystal alloy.
The strength has reached 65%, and even if the volume is larger than this, the strength is leveled off or lowered due to the precipitation of a coarse eutectic γ'phase, etc., so that the strength improvement by precipitation strengthening has reached the limit.
【0008】一方、γ相の固溶強化については、有害相
(α,μ,σ等)の析出を抑えながらγ相の強化に有効
な元素の添加によって、まだまだ強度向上の余地がある
と思われる。On the other hand, regarding solid solution strengthening of the γ phase, it seems that there is still room for improvement in strength by adding an element effective for strengthening the γ phase while suppressing precipitation of harmful phases (α, μ, σ, etc.). Be done.
【0009】これまでに開発された代表的な既存のNi
基単結晶合金を表1に示す。Representative existing Ni developed so far
The base single crystal alloy is shown in Table 1.
【0010】[0010]
【表1】 [Table 1]
【0011】表1は、各Ni基単結晶合金の化学組成お
よび熱処理条件も併記している。Table 1 also shows the chemical composition and heat treatment conditions of each Ni-based single crystal alloy.
【0012】表1に示すように、Alloy454(Un
ited Technology 製)、CMSX−2(Cannon-Muskego
n 製)は第1世代と呼ばれるNi基単結晶合金で、Al
loy454の化学組成はwt%で、Co:5.0 ,C
r:10.0,Al:5.0 ,Ti:1.5 ,Ta:12.0,W:
9.0 ,残部がNiおよび不可避不純物からなり、熱処理
条件は1316℃で3hr保持した後に急冷し、次に9
82℃で5hr保持した後に急冷し、最後に871℃で
20hr空冷したものである。CMSX−2の化学組成
はwt%でCo:4.6 ,Cr:7.8 ,Al:5.6 ,T
i:1.0 ,Ta:6.0 ,W:8.0 ,Mo:0.5 ,残部が
Niおよび不可避不純物からなり、熱処理条件は128
8℃で4hr保持した後に急冷し、次に1080℃で4
hr保持した後に急冷し、最後に871℃で20hr空
冷したものである。As shown in Table 1, Alloy 454 (Un
ited Technology), CMSX-2 (Cannon-Muskego
n-made) is a Ni-based single crystal alloy called the first generation,
The chemical composition of loy454 is wt%, Co: 5.0, C
r: 10.0, Al: 5.0, Ti: 1.5, Ta: 12.0, W:
9.0, the balance consisting of Ni and unavoidable impurities, and the heat treatment condition was 1316 ° C. for 3 hours, followed by rapid cooling, then 9
After being held at 82 ° C. for 5 hours, it was rapidly cooled and finally air-cooled at 871 ° C. for 20 hours. The chemical composition of CMSX-2 is wt%: Co: 4.6, Cr: 7.8, Al: 5.6, T
i: 1.0, Ta: 6.0, W: 8.0, Mo: 0.5, balance of Ni and inevitable impurities, heat treatment condition is 128
Hold at 8 ° C for 4 hours, then quench, then at 1080 ° C for 4 hours.
After holding for an hour, it was rapidly cooled, and finally air-cooled at 871 ° C. for 20 hours.
【0013】CMSX−4は第2世代と呼ばれるNi基
単結晶合金で、その化学組成はwt%で、Co:9.6 ,
Cr:6.5 ,Al:5.6 ,Ti:1.0 ,Ta:6.5 ,
W:6.4 ,Mo:0.6 ,Re:3.0 ,Hf:0.1 ,残部
がNiおよび不可避不純物からなり、熱処理条件は12
77℃で2hr保持した後、1288℃で2hr保持し
た後、1296℃で3hr保持した後、1304℃で3
hr保持した後、1313℃で2hr保持した後、13
16℃で2hr保持した後、1080℃で4hr保持し
た後に急冷し、最後に870℃で20hr空冷したもの
である。CMSX-4 is a Ni-based single crystal alloy called the second generation, whose chemical composition is wt%, Co: 9.6,
Cr: 6.5, Al: 5.6, Ti: 1.0, Ta: 6.5,
W: 6.4, Mo: 0.6, Re: 3.0, Hf: 0.1, balance of Ni and inevitable impurities, heat treatment condition is 12
Hold at 77 ° C for 2 hours, hold at 1288 ° C for 2 hours, hold at 1296 ° C for 3 hours, and hold at 1304 ° C for 3 hours.
After holding for 1 hour, at 1313 ° C for 2 hours, then 13
After being held at 16 ° C. for 2 hours, held at 1080 ° C. for 4 hours, rapidly cooled, and finally air-cooled at 870 ° C. for 20 hours.
【0014】[0014]
【発明が解決しようとする課題】しかしながら、All
oy454においては、Ta量が過大なため、共晶γ′
が多量に析出し、固溶化処理後も共晶γ′が残留し、高
温強度を低くしている。CMSX−2は、固溶強化に寄
与するW,Mo,Ta量が少ないため、十分な強度を発
揮していない。However, All
In oy454, the amount of Ta is too large, so that the eutectic γ '
Of eutectic γ'remains after the solid solution treatment, and the high temperature strength is lowered. Since CMSX-2 has a small amount of W, Mo and Ta contributing to solid solution strengthening, it does not exhibit sufficient strength.
【0015】この様に、第1世代のNi基単結晶合金は
強度的に不足していたため、第2世代のNi基単結晶合
金が開発された。As described above, since the first-generation Ni-based single crystal alloy was insufficient in strength, the second-generation Ni-based single crystal alloy was developed.
【0016】CMSX−4は高温強度の改善を指向した
合金で、強度的には優れているが、表1に示すように添
加元素の組み合わせが複雑であり、また、W,Reの均
質化(デンドライト模様の消失と共晶γ′の固溶)のた
めに、6段階にも上る溶体化処理を必要とし、温度勾配
条件も細かく規定されるため、作製が容易ではない。CMSX-4 is an alloy aiming at improvement of high temperature strength and is excellent in strength, but as shown in Table 1, the combination of additional elements is complicated, and homogenization of W and Re ( Due to the disappearance of the dendrite pattern and the solid solution of eutectic γ ′), solution treatment of up to 6 steps is required, and the temperature gradient conditions are finely defined, so that the production is not easy.
【0017】この様に、第2世代のNi基単結晶合金に
は一長一短があるが、高温強度を図るには、均質性は悪
いが高温強度に特に優れたReを排除することができな
い。As described above, the second-generation Ni-based single crystal alloy has advantages and disadvantages, but in order to attain high-temperature strength, Re, which has poor homogeneity but is particularly excellent in high-temperature strength, cannot be excluded.
【0018】本発明者等の研究によると、Reを排除せ
ずに溶体化処理を容易にするためには、Cr,Coを排
除することが良いと判明した。According to the study by the present inventors, it has been found that Cr and Co should be eliminated in order to facilitate the solution treatment without eliminating Re.
【0019】本発明の目的は、上記課題を解決し、高温
強度に優れ、かつ溶体化処理が容易なNi基単結晶合金
を提供することにある。An object of the present invention is to solve the above problems and to provide a Ni-based single crystal alloy which is excellent in high-temperature strength and easy to undergo solution treatment.
【0020】[0020]
【課題を解決するための手段】上記目的を達成するため
に請求項1の発明は、重量百分率でMo:8.0 〜11.5%
,Ta:4.5 〜6.5%,Re:2.0 〜4.0%,Al:5.5
〜6.5%,Ti:0.5 〜1.5%を含有し、残部がNiおよび
不可避不純物からなり、溶体化処理を1300〜135
0℃で行い、引き続いて850〜1100℃において時
効処理を行うこものである。In order to achieve the above object, the invention of claim 1 has a weight percentage of Mo: 8.0 to 11.5%.
, Ta: 4.5 to 6.5%, Re: 2.0 to 4.0%, Al: 5.5
-6.5%, Ti: 0.5-1.5%, the balance consisting of Ni and unavoidable impurities.
The aging treatment is performed at 0 ° C. and subsequently at 850 to 1100 ° C.
【0021】[0021]
【発明の実施の形態】本発明に係るNi基単結晶合金の
特徴は、Ti,Ta,MoのようにAlサイトに置換す
る元素のみを添加しCr,Coを添加しないことによっ
て、その分、固溶強化に寄与し、かつCrよりも高温強
度に優れたMoの添加量を増すことができ、高温強度を
維持したまま溶体化処理を容易にしたことにある。BEST MODE FOR CARRYING OUT THE INVENTION A feature of the Ni-based single crystal alloy according to the present invention is that only elements such as Ti, Ta, and Mo that substitute for Al sites are added, and Cr and Co are not added. This is because it is possible to increase the amount of addition of Mo, which contributes to solid solution strengthening and has higher high-temperature strength than Cr, and facilitates solution treatment while maintaining high-temperature strength.
【0022】Alサイトに置換する元素、すなわち、同
じような固溶を示す元素のみを添加するのは、溶体化処
理が容易になると思われるからである。The reason for adding only the element substituting to the Al site, that is, the element showing a similar solid solution, is that the solution treatment is considered to be easy.
【0023】また、添加元素の内、W,Reは均質性が
悪く、溶体化処理を煩雑にする元素であるが、Reは耐
火金属(Refractory Metals )の中でも、高温で優れた
引張強さ(1000℃で約580MPa)を有するため
に、既存のNi基単結晶合金(第2世代)と同程度を添
加することにしたが、Wは高温での引張強さ(1000
℃で約230MPa)があまり良好でないため排除する
ことにした。Among the additive elements, W and Re are elements that have poor homogeneity and complicate the solution treatment, but Re is one of refractory metals that has excellent tensile strength at high temperature ( In order to have a tensile strength of about 580 MPa at 1000 ° C., it was decided to add about the same amount as the existing Ni-based single crystal alloy (second generation), but W is the tensile strength at high temperature (1000
(About 230 MPa at ℃) is not very good, so it was decided to eliminate it.
【0024】上記の構成によれば、Ni基単結晶合金に
添加する元素を単純化し、γ相の強化にさほど寄与せ
ず、しかもγ相への固溶が支配的であるCrを添加しな
いことで、γ相の強化に寄与するMo,Ta,Reが、
固溶範囲内で過大・過少とならないように多量に添加で
き、また、Crを添加しないことに伴う耐食性の低下
は、Re,Tiの添加により抑制するため、既存のNi
基単結晶合金の特性を損なうことなく、高温強度に優
れ、かつ溶体化処理が容易なNi基単結晶合金を作製す
ることができる。According to the above constitution, the elements added to the Ni-based single crystal alloy are simplified, Cr is not added so much that it does not contribute so much to the strengthening of the γ phase, and the solid solution to the γ phase is dominant. And Mo, Ta, and Re that contribute to strengthening the γ phase are
A large amount can be added so as not to become too large or too small within the solid solution range, and the decrease in corrosion resistance due to the addition of no Cr is suppressed by the addition of Re and Ti.
It is possible to produce a Ni-based single crystal alloy that is excellent in high-temperature strength and that can be easily solution-treated without impairing the characteristics of the base single-crystal alloy.
【0025】本発明に係るNi基単結晶合金の組成範囲
の限定は、以下の理由による。The reason why the composition range of the Ni-based single crystal alloy according to the present invention is limited is as follows.
【0026】Moは固溶強化に有効な元素である。Mo
添加量が11.5%を超えるとα相等の有害相が析出
し、8.0%未満だと強度的に有効でなくなる。Mo is an element effective for solid solution strengthening. Mo
If the addition amount exceeds 11.5%, harmful phases such as α phase are precipitated, and if it is less than 8.0%, strength becomes ineffective.
【0027】ReはMoと同様に固溶強化に有効であ
る。Reの添加量が2.0%未満だと固溶強化の効果が
なく、4.0%を超えると固溶量を上回ってしまう。ま
た、Reは耐食性、高温強度の向上にも寄与する。Mo
の添加量を減少させることによりReの添加量の増加は
可能であるが、Reは高価な金属元素であるため、4.
0%を超えることは好ましくない。Re, like Mo, is effective for solid solution strengthening. If the added amount of Re is less than 2.0%, the solid solution strengthening effect is not obtained, and if it exceeds 4.0%, the solid solution amount is exceeded. Re also contributes to the improvement of corrosion resistance and high temperature strength. Mo
It is possible to increase the added amount of Re by decreasing the added amount of Re, but since Re is an expensive metal element, 4.
It is not preferable to exceed 0%.
【0028】Taはγ′相の体積量を増加させると共に
固溶強化にも寄与する。Taの添加量が6.5%を超え
ると共晶γ′相が過大となり、4.5%未満だとγ′相
の体積量が過少となり析出強化に寄与しなくなる。Ta increases the volume of the γ'phase and contributes to solid solution strengthening. If the addition amount of Ta exceeds 6.5%, the eutectic γ'phase becomes too large, and if it is less than 4.5%, the volume amount of the γ'phase becomes too small to contribute to precipitation strengthening.
【0029】Alはγ′相を生成させるために必要な元
素である。Alの添加量が6.5%を超えると共晶γ′
相が過大となり、5.5%未満だとγ′相の体積量が過
少となり析出強化に寄与しなくなる。Al is an element necessary for producing the γ'phase. When the added amount of Al exceeds 6.5%, eutectic γ ′
If the phase becomes too large and is less than 5.5%, the volume of the γ'phase becomes too small to contribute to precipitation strengthening.
【0030】TiもAlと同様な効果を持ち、Tiの添
加量が0.5〜1.5%の範囲内で耐食性の向上に寄与
する。Ti also has the same effect as Al, and contributes to the improvement of corrosion resistance when the amount of Ti added is in the range of 0.5 to 1.5%.
【0031】以下、本発明の好適実施の形態を添付図面
に基づいて詳しく説明する。Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
【0032】本発明者等は、化学組成の異なる本発明の
Ni基単結晶合金の試験材を一方向凝固法によって作製
し、熱処理を施した後に特性試験を実施した。The inventors of the present invention produced test materials of the Ni-based single crystal alloys of the present invention having different chemical compositions by the unidirectional solidification method, heat-treated them, and then conducted characteristic tests.
【0033】表2は、試験に供した各試験材の化学組成
の一例を示している。Table 2 shows an example of the chemical composition of each test material used in the test.
【0034】[0034]
【表2】 [Table 2]
【0035】表2は、各試験材の熱処理条件も併記して
いる。Table 2 also shows the heat treatment conditions for each test material.
【0036】表2において、NA−1の化学組成はwt
%で、Mo:11.1,Re:3.9,Ta:5.2,
Ti:1.0,Al:5.9,残部がNiおよび不可避
不純物からなるものである。NA−2の化学組成はwt
%で、Mo:10.1,Re:4.0,Ta:5.2,
Ti:1.0,Al:5.9,残部がNiおよび不可避
不純物からなるものである。NA−3の化学組成はwt
%で、Mo:10.3,Re:3.0,Ta:5.2,
Ti:1.1,Al:5.8,残部がNiおよび不可避
不純物からなるものである。In Table 2, the chemical composition of NA-1 is wt.
%, Mo: 11.1, Re: 3.9, Ta: 5.2,
Ti: 1.0, Al: 5.9, the balance being Ni and inevitable impurities. The chemical composition of NA-2 is wt
%, Mo: 10.1, Re: 4.0, Ta: 5.2
Ti: 1.0, Al: 5.9, the balance being Ni and inevitable impurities. The chemical composition of NA-3 is wt
%, Mo: 10.3, Re: 3.0, Ta: 5.2,
Ti: 1.1, Al: 5.8, and the balance Ni and unavoidable impurities.
【0037】NA−1の熱処理条件は、1320℃で4
hr保持した後に急冷し、次に1080℃で2hr保持
した後に急冷し、最後に870℃で20hr空冷するも
のである。NA−2およびNA−3の熱処理条件は、1
300℃で4hr保持した後に急冷し、次に1080℃
で2hr保持した後に急冷し、最後に870℃で20h
r空冷するものである。The heat treatment condition of NA-1 is 1320 ° C. and 4
After being held for an hour, it is rapidly cooled, then held at 1080 ° C. for 2 hours, then rapidly cooled, and finally air-cooled at 870 ° C. for 20 hours. The heat treatment conditions for NA-2 and NA-3 are 1
Hold at 300 ° C for 4 hours, then quench, then 1080 ° C
Hold for 2 hours, then cool rapidly, and finally at 870 ° C for 20 hours
r It is cooled by air.
【0038】表3および表4は、特性試験の結果の一例
である。Tables 3 and 4 are examples of the results of the characteristic test.
【0039】[0039]
【表3】 [Table 3]
【0040】表3は、表2に示した本実施例(NA−
1、NA−2、NA−3)、表1に示した比較例1(第
1世代合金であるAlloy454、CMSX−2)、
同じく表1に示した比較例2(第2世代合金であるCM
SX−4)における、高温引張試験(900℃における
0.2%耐力、引張強さ、破断伸び、破断絞り)の結果
を示している。Table 3 shows the present embodiment (NA-
1, NA-2, NA-3), Comparative Example 1 shown in Table 1 (Alloy 454 which is a first generation alloy, CMSX-2),
Comparative Example 2 (CM, which is a second generation alloy, also shown in Table 1)
The result of the high temperature tensile test (0.2% proof stress at 900 ° C., tensile strength, breaking elongation, breaking reduction) in SX-4) is shown.
【0041】表3に示すように、本実施例の高温引張特
性は、比較例1よりかなり優れているのは勿論のこと、
比較例2と比べてみても、NA−3における破断伸びが
やや劣る程度で、ほとんど同等もしくはそれ以上であ
る。As shown in Table 3, it goes without saying that the high temperature tensile properties of this example are considerably superior to those of Comparative Example 1,
Even when compared with Comparative Example 2, the elongation at break in NA-3 is slightly inferior and almost equal or higher.
【0042】[0042]
【表4】 [Table 4]
【0043】表4は、表2に示した本実施例(NA−
1、NA−2、NA−3)、表1に示した比較例1(第
1世代合金であるAlloy454、CMSX−2)、
同じく表1に示した比較例2(第2世代合金であるCM
SX−4)における、高温クリ−プ強度試験(900
℃,400MPa、1050℃,160MPaそれぞれ
におけるクリ−プ破断寿命、伸び、絞り)の結果を示し
ている。Table 4 shows the present embodiment (NA-shown in Table 2).
1, NA-2, NA-3), Comparative Example 1 shown in Table 1 (Alloy 454 which is a first generation alloy, CMSX-2),
Comparative Example 2 (CM, which is a second generation alloy, also shown in Table 1)
SX-4) high temperature creep strength test (900
The results of creep rupture life, elongation, and reduction at 400 ° C., 400 MPa, 1050 ° C., and 160 MPa are shown.
【0044】表4に示すように、900℃,400MP
aにおける本実施例の高温クリ−プ強度は、本実施例の
NA−3が比較例1より優れており、比較例2とは特性
的にほぼ同程度である。しかし、より高温の1050
℃,160MPaにおいては、本実施例が比較例1より
かなり優れているのは勿論のこと、比較例2と比べてみ
ても、NA−1における伸びと絞りがやや劣る程度で、
ほとんど同等もしくはそれ以上と優れた特性を示す。As shown in Table 4, 900 ° C, 400MP
Regarding the high temperature creep strength of this example in a, NA-3 of this example is superior to Comparative Example 1 and is substantially the same in characteristics as Comparative Example 2. But the higher temperature of 1050
At 160 ° C. and 160 ° C., it is needless to say that the present example is considerably superior to Comparative Example 1, and even when compared with Comparative Example 2, the elongation and drawing at NA-1 are slightly inferior.
It shows excellent characteristics that are almost equal or better.
【0045】本発明のNi基単結晶合金は、耐火金属で
あるMoの添加量を既存のNi基単結晶合金よりも大幅
に増加させたため、特に高温側においてのクリ−プ強度
に優れた特性を示す結果となった。The Ni-based single crystal alloy of the present invention has a significantly increased addition amount of Mo, which is a refractory metal, as compared with the existing Ni-based single crystal alloy, and therefore has excellent creep strength particularly at high temperatures. The result is shown.
【0046】次に本発明の他の実施例を示す。Next, another embodiment of the present invention will be described.
【0047】図1は大気中における酸化試験結果を示し
ている。酸化試験は1100℃の大気中雰囲気で200
hr行った。図1における上側の棒グラフは酸素浸透層
の厚さ(μm)を、下側の棒グラフは重量の減少(mg
/cm2 )を示している。FIG. 1 shows the result of an oxidation test in the atmosphere. Oxidation test is conducted at 1100 ° C in the atmosphere at 200
I went for an hour. The upper bar graph in FIG. 1 indicates the thickness of the oxygen permeation layer (μm), and the lower bar graph indicates the decrease in weight (mg).
/ Cm 2 ).
【0048】図1(A)、(B)に示すように、本発明
のNi基単結晶合金(B)の耐酸化性は、Crを添加し
ていないために、Crを添加したNi基単結晶合金
(A)に比べてやや劣っているが、それ程大きな差異は
ない。As shown in FIGS. 1A and 1B, the oxidation resistance of the Ni-based single crystal alloy (B) of the present invention is as follows. It is slightly inferior to the crystalline alloy (A), but there is not much difference.
【0049】しかし、耐酸化性が強く要求される場合に
おいては、本発明のNi基単結晶合金は、耐酸化性を向
上させるためにYを添加している。YはO2 との結合が
強いために、合金中に100〜300ppm含有される
ことにより耐酸化性の向上に寄与するが、歩留りが約1
/10と悪いため、0.1〜0.3wt%添加する。Y
の添加はY単体の他、Ni−Y等の母合金であってもよ
い。However, when the oxidation resistance is strongly required, Y is added to the Ni-based single crystal alloy of the present invention in order to improve the oxidation resistance. Since Y has a strong bond with O 2 , its content in the alloy of 100 to 300 ppm contributes to the improvement of oxidation resistance, but the yield is about 1
Since it is as bad as / 10, 0.1 to 0.3 wt% is added. Y
In addition to Y alone, a mother alloy such as Ni-Y may be added.
【0050】図1(A)、(C)に示すように、Yを添
加することでCrを添加しないNi基単結晶合金(C)
においても、Crを添加したNi基単結晶合金(A)と
同等の耐酸化性を有するようになる。As shown in FIGS. 1 (A) and 1 (C), a Ni-based single crystal alloy (C) in which Cr is not added by adding Y is added.
Also, in this case, it has the same oxidation resistance as the Ni-based single crystal alloy (A) to which Cr is added.
【0051】[0051]
【発明の効果】以上述べたように、本発明に係るNi基
単結晶合金は、次のような優れた効果を発揮する。As described above, the Ni-based single crystal alloy according to the present invention exhibits the following excellent effects.
【0052】(1) 一方向凝固法によって単結晶試料
を作製した後に熱処理を施して、既存合金と同一条件下
で高温引張試験および高温クリープ強度試験の特性比較
を行った。その結果、本実施例のNi基単結晶合金の高
温における特性は、第1世代合金よりも優れており、第
2世代合金とほぼ同等かそれ以上に優れていた。(1) After preparing a single crystal sample by the unidirectional solidification method, heat treatment was performed, and the characteristics of the high temperature tensile test and the high temperature creep strength test were compared under the same conditions as the existing alloy. As a result, the characteristics of the Ni-based single crystal alloy of this example at high temperature were superior to those of the first-generation alloy, and were substantially equal to or higher than those of the second-generation alloy.
【0053】(2) 本実施例のNi基単結晶合金は、
1300〜1350℃の高温において部分溶融(Incipi
ent Melting )を生ずることなく、溶体化処理が容易で
あった。また、850〜1100℃における時効処理に
より、γ′の微細析出が可能であった。(2) The Ni-based single crystal alloy of this example is
Partial melting (Incipi
The solution treatment was easy without causing ent Melting). Further, by aging treatment at 850 to 1100 ° C., fine precipitation of γ ′ was possible.
【0054】(3) 本実施例のNi基単結晶合金は、
高温強度を指向するために耐酸化性の優れたCrを添加
していないが、ReやTaの添加により既存合金と比較
して高温酸化特性はやや劣るものの大きな差異はなかっ
た。また、実用的にはコーティング処理を施して用いる
ため全然問題にはならない。(3) The Ni-based single crystal alloy of this example is
Although Cr, which has excellent oxidation resistance, was not added in order to direct the high temperature strength, the addition of Re and Ta did not make a big difference although the high temperature oxidation characteristics were slightly inferior to the existing alloys. In addition, since it is practically used after being subjected to coating treatment, there is no problem at all.
【0055】(4) 本実施例のNi基単結晶合金は、
Mo、Re、Taといった固溶強化元素の添加量の合計
値に上限を設けているため、長時間加熱後も有害相の析
出は認められなかった。(4) The Ni-based single crystal alloy of this example is
Since the upper limit was set for the total amount of solid solution strengthening elements such as Mo, Re, and Ta, no precipitation of harmful phase was observed even after heating for a long time.
【0056】(5) 本実施例のNi基単結晶合金は、
主にMoを固溶強化元素として添加しているため、比強
度(強度を密度で除した値)に優れている。(5) The Ni-based single crystal alloy of this example is
Since Mo is mainly added as a solid solution strengthening element, the specific strength (value obtained by dividing strength by density) is excellent.
【0057】(6) 本実施例のNi基単結晶合金は鋳
造性も良好であるため、複雑形状部材であるタービン動
翼に用いても単結晶化が可能である。(6) Since the Ni-based single crystal alloy of this embodiment has good castability, it can be single-crystallized even when used in a turbine rotor blade having a complicated shape.
【図1】本実施例の大気中における酸化試験結果を示す
図である。FIG. 1 is a diagram showing the results of an oxidation test in the atmosphere of this example.
【図2】本発明の析出相であるγ′に、第3元素を添加
したときの固溶挙動を示す図である。FIG. 2 is a diagram showing a solid solution behavior when a third element is added to γ ′ which is a precipitation phase of the present invention.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 太田 芳雄 東京都江東区豊洲三丁目1番15号 石川島 播磨重工業株式会社技術研究所内 (72)発明者 大井 成人 東京都田無市向台町三丁目5番1号 石川 島播磨重工業株式会社田無工場内 (72)発明者 服部 博 東京都田無市向台町三丁目5番1号 石川 島播磨重工業株式会社田無工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshio Ota 3-1-1-15 Toyosu, Koto-ku, Tokyo Ishikawajima Harima Heavy Industries Ltd. Technical Research Institute (72) Inventor Oi Adult 3-5 Mukaidaicho, Tanashi City, Tokyo No. 1 Ishikawa Shima Harima Heavy Industries Ltd. Tanashi Factory (72) Inventor Hiroshi Hattori 3-5-1, Mukaidaicho, Tanashi City, Tokyo Ishikawa Shima Harima Heavy Industries Ltd. Tanashi Factory
Claims (1)
a:4.5 〜6.5%,Re:2.0 〜4.0%,Al:5.5 〜6.5
%,Ti:0.5 〜1.5%を含有し、残部がNiおよび不可
避不純物からなり、溶体化処理を1300〜1350℃
で行い、引き続いて850〜1100℃において時効処
理を行うことを特徴とするNi基単結晶合金。1. Mo: 8.0 to 11.5% by weight percentage, T
a: 4.5 to 6.5%, Re: 2.0 to 4.0%, Al: 5.5 to 6.5
%, Ti: 0.5 to 1.5%, the balance consisting of Ni and unavoidable impurities, and solution treatment at 1300 to 1350 ° C.
And a subsequent aging treatment at 850 to 1100 ° C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7195493A JPH0941058A (en) | 1995-07-31 | 1995-07-31 | Nickel base single crystal alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7195493A JPH0941058A (en) | 1995-07-31 | 1995-07-31 | Nickel base single crystal alloy |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0941058A true JPH0941058A (en) | 1997-02-10 |
Family
ID=16342010
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7195493A Pending JPH0941058A (en) | 1995-07-31 | 1995-07-31 | Nickel base single crystal alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0941058A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104975248A (en) * | 2015-06-30 | 2015-10-14 | 西北工业大学 | Solution treatment method of third generation nickel-base single crystal high temperature alloy |
-
1995
- 1995-07-31 JP JP7195493A patent/JPH0941058A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104975248A (en) * | 2015-06-30 | 2015-10-14 | 西北工业大学 | Solution treatment method of third generation nickel-base single crystal high temperature alloy |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3814662B2 (en) | Ni-based single crystal superalloy | |
JP5467306B2 (en) | Ni-based single crystal superalloy and alloy member based thereon | |
JP5467307B2 (en) | Ni-based single crystal superalloy and alloy member obtained therefrom | |
JP5696995B2 (en) | Heat resistant superalloy | |
JP4521610B2 (en) | Ni-based unidirectionally solidified superalloy and Ni-based single crystal superalloy | |
JP3184882B2 (en) | Ni-based single crystal alloy and method for producing the same | |
JPWO2007122931A1 (en) | Ni-base superalloy and manufacturing method thereof | |
JP5252348B2 (en) | Ni-base superalloy, manufacturing method thereof, and turbine blade or turbine vane component | |
JPH0245694B2 (en) | ||
JP5235383B2 (en) | Ni-based single crystal alloy and casting | |
EP1262569B1 (en) | Ni-based single crystal super alloy | |
US6966956B2 (en) | Ni-based single crystal super alloy | |
JP4115369B2 (en) | Ni-base superalloy | |
JP3820430B2 (en) | Ni-based single crystal superalloy, manufacturing method thereof, and gas turbine component | |
JPS6219500B2 (en) | ||
JP2000063969A (en) | Nickel base superalloy, its production and gas turbine part | |
JP2905473B1 (en) | Method for producing Ni-based directionally solidified alloy | |
JPH1121645A (en) | Ni-base superalloy having heat resistance, production of ni-base superalloy having heat resistance, and ni-base superalloy parts having heat resistance | |
US4830679A (en) | Heat-resistant Ni-base single crystal alloy | |
JP6095237B2 (en) | Ni-base alloy having excellent high-temperature creep characteristics and gas turbine member using this Ni-base alloy | |
JP2552351B2 (en) | Single crystal Ni-based super heat resistant alloy | |
JPH0941058A (en) | Nickel base single crystal alloy | |
KR102142439B1 (en) | Nickel-based alloy with excellent creep property and oxidation resistance at high temperature and method for manufacturing the same | |
JPH10317080A (en) | Ni(nickel)-base superalloy, production of ni-base superalloy, and ni-base superalloy parts | |
JPH0310039A (en) | Ni-base single crystal superalloy having excellent high temperature strength and high temperature corrosion resistance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 10 Free format text: PAYMENT UNTIL: 20071219 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 11 Free format text: PAYMENT UNTIL: 20081219 |
|
LAPS | Cancellation because of no payment of annual fees |