JPH0765134B2 - Single crystal Ni-based super heat resistant alloy - Google Patents

Single crystal Ni-based super heat resistant alloy

Info

Publication number
JPH0765134B2
JPH0765134B2 JP61135390A JP13539086A JPH0765134B2 JP H0765134 B2 JPH0765134 B2 JP H0765134B2 JP 61135390 A JP61135390 A JP 61135390A JP 13539086 A JP13539086 A JP 13539086A JP H0765134 B2 JPH0765134 B2 JP H0765134B2
Authority
JP
Japan
Prior art keywords
phase
alloy
creep rupture
single crystal
alloys
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61135390A
Other languages
Japanese (ja)
Other versions
JPS62290839A (en
Inventor
丈博 大野
力蔵 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP61135390A priority Critical patent/JPH0765134B2/en
Priority to US06/927,109 priority patent/US4802934A/en
Priority to GB08626679A priority patent/GB2184456B/en
Publication of JPS62290839A publication Critical patent/JPS62290839A/en
Publication of JPH0765134B2 publication Critical patent/JPH0765134B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は主としてガスタービンエンジンのブレードに用
いられる、クリープ破断強度及びクリープ破断延性の優
れた単結晶Ni基超耐熱合金に関するものである。
TECHNICAL FIELD The present invention relates to a single crystal Ni-base superalloy having excellent creep rupture strength and creep rupture ductility, which is mainly used for gas turbine engine blades.

〔従来の技術〕[Conventional technology]

一般に金属の高温での破壊は、結晶粒界で起こるため、
タービンブレードを結晶粒界の存在しない単結晶組織と
し、かつ適切な熱処理を行なうことにより、その高温で
のクリープ破断強度は大幅に向上する。この概念に基づ
き、ユナイテッドテクノロジー社より、 Alloy 444(米国特許第4,116,723号に記載)、 Alloy 454(米国特許第4,209,348号に記載)、 Alloy 203E(米国特許第4,222,794号に記載)、 エアリサーチ社より、 NASAIR100、 またキャノンマスケゴン社より、 CMSX−2(特開昭57−89451号に記載)、 CMSX−3(特開昭59−190342号に記載)、 等の単結晶専用Ni基超耐熱合金が開発された。
In general, metal fracture at high temperature occurs at grain boundaries,
The creep rupture strength at high temperatures is significantly improved by making the turbine blade a single crystal structure without grain boundaries and performing appropriate heat treatment. Based on this concept, United Technology Corporation, Alloy 444 (described in US Patent No. 4,116,723), Alloy 454 (described in US Patent No. 4,209,348), Alloy 203E (described in US Patent No. 4,222,794), Air Research Inc. , NASAIR100, Ni-based super heat-resistant alloys for single crystals such as CMSX-2 (described in JP-A-57-89451), CMSX-3 (described in JP-A-59-190342), Canon Canon Skeggon. Was developed.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記の単結晶合金は、従来の多結晶合金に比べると遥か
に優れたクリープ破断強度を有するが、まだ、成分バラ
ンス、組織制御等の点で十分とは言えない。例えばNASA
IR100は、α−W相やμ相などの有害相が析出し、クリ
ープ破断強度を低下させることが見出されている。α−
W相等の有害相の析出を防ぐためにはW、Mo、Ta等の添
加量を少なくすることが必要であるが、これらは合金強
化元素であるため必要以上に少なくするとクリープ破断
強度を低下させる。
The above-mentioned single crystal alloy has far superior creep rupture strength as compared with conventional polycrystalline alloys, but it is still not sufficient in terms of component balance, microstructure control and the like. For example NASA
It has been found that IR100 precipitates harmful phases such as α-W phase and μ phase and reduces creep rupture strength. α-
In order to prevent the precipitation of harmful phases such as W phase, it is necessary to reduce the amount of W, Mo, Ta, etc. added, but since these are alloy strengthening elements, the creep rupture strength decreases if the amount is added more than necessary.

こうした合金元素の個々の添加量ならびに合金元素相互
の成分バランスについて、本発明者らはクリープ破断強
度を向上するべく詳細な検討を行なった結果、重量%で
Cr4〜10%、Al4〜6.5%、W4〜10%,Ta4〜9%、Mo1.5〜
6%、残部Ni及び不純物から成り、かつ1/2W+1/2Ta+M
o=9.5〜13.5%であることを特徴とする単結晶合金が、
クリープ破断強度が優れ、かつ組織的に安定しているこ
とを見出し目的を達成した。前記合金について本出願人
は既に、特願昭60−258078号にて、特許出願中である。
Regarding the individual addition amount of such alloying elements and the component balance among the alloying elements, the present inventors have made detailed studies to improve the creep rupture strength, and as a result,
Cr4-10%, Al4-6.5%, W4-10%, Ta4-9%, Mo1.5-
6%, balance Ni and impurities, and 1 / 2W + 1 / 2Ta + M
o = 9.5 to 13.5%, a single crystal alloy,
They have found that they have excellent creep rupture strength and are structurally stable, and achieved the purpose. The applicant has already applied for a patent for the above alloy in Japanese Patent Application No. 60-258078.

ところで、タービンブレードの信頼性を高めるためには
クリープ破断強度のみならずクリープ破断延性が大きい
ことが要望される。
By the way, in order to improve the reliability of the turbine blade, not only creep rupture strength but also creep rupture ductility is required to be large.

前記合金は優れたクリープ破断強度を有しているが、ク
リープ破断伸びの点で必ずしも満足できる特性を具備し
ていないことがその後次第に明らかになってきた。
While it has been found that the alloys have excellent creep rupture strength, they do not always have satisfactory properties in terms of creep rupture elongation.

本発明者らは以上の要望に答えるべく前記合金について
更に検討を行なったもので、即ち本発明の目的は優れた
クリープ破断強度及びクリープ破断延性を兼備した単結
晶Ni基超耐熱合金を提供することにある。
The present inventors have conducted further studies on the above alloys in order to meet the above demands, that is, the object of the present invention is to provide a single crystal Ni-based superheat-resistant alloy having excellent creep rupture strength and creep rupture ductility. Especially.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、重量%でCr4〜10%、Al4〜6.5%、W4〜10
%、Ta4〜9%、Mo3〜6%、Co12%以下、残部Ni及び不
純物からなり、かつ1/2W+1/2Ta+Mo=9.5〜13.5%であ
ることを特徴とする単結晶Ni基超耐熱合金である。
The present invention, by weight% Cr4 ~ 10%, Al4 ~ 6.5%, W4 ~ 10
%, Ta4-9%, Mo3-6%, Co12% or less, balance Ni and impurities, and 1 / 2W + 1 / 2Ta + Mo = 9.5-13.5%, a single crystal Ni-base super heat-resistant alloy. .

以下に本発明合金の成分限定理由について述べる。The reasons for limiting the components of the alloy of the present invention will be described below.

Crは合金の耐酸化性、耐食性を向上させる作用を持つ
が、過度の添加はσ相などの有害析出相を生じクリープ
破断強度を低下させるため、4〜10%に限定する。
Cr has the effect of improving the oxidation resistance and corrosion resistance of the alloy, but excessive addition thereof causes harmful precipitation phases such as the σ phase and reduces the creep rupture strength, so the content is limited to 4-10%.

AlはNi基超耐熱合金を析出強化するγ′相と呼ばれる金
属間化合物を形成する主要元素である。γ′相は基本組
成はNi3Alで表わされるがAl以外でもTi、Ta、W、Moな
どを固溶することにより更に強化される。これらの元素
の作用は後述する。単結晶合金は通常体積率で50%以上
もの多量のγ′相を含むが、凝固終了時には共晶γ′相
と呼ばれる粗大γ′相が存在するので、これを母相(γ
相と呼ばれる。)中へ一旦固溶させるため高温で固溶化
処理を行なう。固溶化処理で固溶したγ′相は、冷却中
及びその後の時効処理により均一微細に析出することに
より合金を強化する。Alは4%未満ではγ′相の生成量
が十分でなく、また6.5%を越えるとγ′相が多過ぎ、
共晶γ′相を固溶化処理で完全に固溶させることができ
ないためクリープ破断強度は低下する。従ってAlは4〜
6.5%に限定する。
Al is the main element that forms an intermetallic compound called the γ'phase that precipitates and strengthens the Ni-base superalloy. The basic composition of the γ'phase is represented by Ni 3 Al, but it is further strengthened by solid solution of Ti, Ta, W, Mo, etc. other than Al. The action of these elements will be described later. A single crystal alloy usually contains a large amount of γ'phase of 50% or more in volume ratio, but at the end of solidification there is a coarse γ'phase called a eutectic γ'phase.
Called phase. ) In order to form a solid solution, the solution treatment is performed at a high temperature. The γ'phase solid-solved by the solution treatment strengthens the alloy by uniformly and finely precipitating during aging treatment during cooling and thereafter. If Al is less than 4%, the amount of γ'phase produced is not sufficient, and if it exceeds 6.5%, too much γ'phase is produced.
Creep rupture strength decreases because the eutectic γ'phase cannot be completely dissolved by solution treatment. Therefore Al is 4 ~
Limited to 6.5%.

Wはγ相およびγ′相に固溶して、両相を強化する元素
であり最低4%は必要である。しかしながら過度の添加
はα−W相と呼ばれる相を析出し、却ってクリープ破断
強度を低下させる。従ってWは4〜10%に限定する。
W is an element that forms a solid solution in the γ phase and γ'phase and strengthens both phases, and at least 4% is necessary. However, excessive addition causes precipitation of a phase called α-W phase, which rather decreases the creep rupture strength. Therefore, W is limited to 4 to 10%.

Taは主として、γ′相に固溶してγ′相を強化すると共
にγ′相の量も増加させる。従って、Taは最低4%は必
要であるが、過度に添加すると共晶γ′相を固溶させる
ことが困難となり、またγ′相の形態も変化することに
よりクリープ破断強度は低下する。従ってTaは4〜9%
に限定する。
Ta mainly forms a solid solution in the γ'phase to strengthen the γ'phase and also increases the amount of the γ'phase. Therefore, Ta must be at least 4%, but if it is added excessively, it becomes difficult to form a solid solution in the eutectic γ'phase, and the morphology of the γ'phase also changes, which lowers the creep rupture strength. Therefore, Ta is 4-9%
Limited to

Moは主としてγ相に固溶してγ相を強化するので好まし
くは3%以上必要であるが、過度の添加はα−Mo相を生
じてクリープ破断強度を低下させるため、3〜6%に限
定する。
Mo is mainly solid-dissolved in the γ phase and strengthens the γ phase, so it is preferably 3% or more. However, excessive addition causes the α-Mo phase and decreases the creep rupture strength, so the content should be 3 to 6%. limit.

以上述べたW、Ta、Moの3元素はそれぞれ異なった強化
作用を持つため、3元素を共に添加することが重要であ
る。本発明においてはこの3元素の添加量の合計を1/2W
+1/2Ta+Moという量で規定した。ここでW、Taをそれ
ぞれ1/2としたのは本発明が重量%よりも原子%によっ
て行なわれたことに基づく。1/2W+1/2Ta+Moが9.5%よ
り低いとγ、γ′両相の固溶強化は十分でなく、13.5%
より多いとα−(W、Mo)などの有害相が析出する。ま
た1/2W+1/2Ta+Moが13.5%以下であっても各元素の添
加量が規定する範囲以外の場合、α−(W、Mo)相が析
出することがある。これは、例えばWの添加量が非常に
高く、Ta、Moが無添加あるいは添加量が低い場合に見ら
れるものであり、3元素を一定量以上共に添加すること
はα−(W、Mo)の析出を防止し、組織を安定化するこ
とからも重要である。
Since the three elements of W, Ta and Mo described above have different strengthening effects, it is important to add the three elements together. In the present invention, the total amount of addition of these three elements is 1/2 W
It is specified by the amount of + 1 / 2Ta + Mo. The reason why W and Ta are respectively halved here is that the present invention is carried out in atomic% rather than weight%. When 1 / 2W + 1 / 2Ta + Mo is lower than 9.5%, the solid solution strengthening of both γ and γ'phases is not enough, 13.5%
When it is more, harmful phases such as α- (W, Mo) are precipitated. Even if 1 / 2W + 1 / 2Ta + Mo is 13.5% or less, α- (W, Mo) phase may precipitate if the addition amount of each element is out of the specified range. This is observed, for example, when the added amount of W is very high and Ta and Mo are not added or the added amount is low, it is not possible to add three elements at a certain amount together with α- (W, Mo). Is also important for preventing the precipitation of and stabilizing the structure.

前述のNASAIR100合金は、α−W相の析出が見られる
が、これはWが10.5%とかなり高いことによるものであ
り、これを改良したCMSX−2合金は、Wを低め、代わり
にTaを増加することにより、α−Wの析出を抑えている
が、W、Ta、Moによる固溶強化はまだ十分でない。本発
明合金はW、Ta、Moの3元素のうち特にMoの添加量を従
来合金より高くし、各元素の個々ならびに総計の添加量
を規定することにより、α−(W、Mo)等の有害相を生
じない範囲でγ、γ′相の固溶強化を最大としたもので
ある。
In the above-mentioned NASAIR100 alloy, the precipitation of α-W phase is seen, but this is because W is considerably high at 10.5%, and the CMSX-2 alloy which improved this lowers W and replaces Ta with Ta. By increasing the amount, the precipitation of α-W is suppressed, but the solid solution strengthening with W, Ta and Mo is not yet sufficient. In the alloy of the present invention, among the three elements of W, Ta, and Mo, the addition amount of Mo in particular is made higher than that of the conventional alloy, and the individual and total addition amount of each element is regulated. This is the maximum solid solution strengthening of the γ and γ'phases within the range where no harmful phase is produced.

本発明の要点は、Coの添加によってクリープ破断伸びが
改善されることを見出したことにある。これは、Coの添
加により、合金の積層欠陥エネルギーが低下するからで
あると考えられる。しかしながら、過度のCo添加は合金
の耐酸化性を悪くするので、Coは12%以下と規定する。
The gist of the present invention is to find that creep rupture elongation is improved by adding Co. It is considered that this is because the addition of Co reduces the stacking fault energy of the alloy. However, excessive addition of Co deteriorates the oxidation resistance of the alloy, so Co is specified as 12% or less.

なお、従来の単結晶合金にはTiが添加されていることが
多い。Tiはγ′相に固溶し、γ′相の形成ならびに固溶
強化に役立つが、共晶γ′相をつくりやすく、かつ合金
の融点を下げるため、固溶化処理温度を十分高くするこ
とができず、共晶γ′相を固溶させることが困難であ
る。従って、本発明合金にはTiを無添加とした。
Note that Ti is often added to conventional single crystal alloys. Ti dissolves in the γ'phase and is useful for forming the γ'phase and strengthening the solid solution, but it is easy to form the eutectic γ'phase and lowers the melting point of the alloy, so it is necessary to raise the solution treatment temperature sufficiently. However, it is difficult to form a solid solution with the eutectic γ ′ phase. Therefore, Ti was not added to the alloy of the present invention.

他の単結晶合金と同様、本発明合金においても、C、
B、Zr等は合金の初期溶融温度を低めるため、不純物レ
ベルに抑えることが必要である。
As with other single crystal alloys, C,
Since B, Zr, etc. lower the initial melting temperature of the alloy, it is necessary to suppress them to the impurity level.

〔実施例〕〔Example〕

第1表に本発明合金、比較合金および従来合金の特性を
比較するために用いた試料の化学成分、および温度1050
℃、応力15.0kgf/mm2で行なったクリープ破断試験結果
における破断時間およびクリープ破断伸びを示す。な
お、クリープ破断試験に用いた試料は単結晶に鋳造後、
以下の熱処理を行なった。すなわち、本発明合金および
比較合金はすべて1310〜1345℃で4時間加熱後空冷、さ
らに1080℃で5時間加熱後空冷、さらに870℃で20時間
加熱後空冷の熱処理を施した。従来合金であるNASAIR10
0は、1320℃で4時間加熱後空冷、さらに980℃で5時間
加熱後空冷、さらに870℃で20時間加熱後空冷の熱処
理、またCMSX−2は、1316℃で4時間加熱後空冷、さら
に980℃で5時間加熱後空冷、さらに870℃で20時間加熱
後空冷の熱処理を施した。
Table 1 shows the chemical composition of the samples used to compare the properties of the alloy of the present invention, the comparative alloy and the conventional alloy, and the temperature of 1050.
The rupture time and the creep rupture elongation in the results of the creep rupture test performed at ℃ and stress of 15.0 kgf / mm 2 are shown. The sample used for the creep rupture test was cast into a single crystal,
The following heat treatment was performed. That is, all of the alloys of the present invention and the comparative alloys were heat-treated at 1310 to 1345 ° C. for 4 hours and then air cooled, further heated at 1080 ° C. for 5 hours and then air cooled, and further heated at 870 ° C. for 20 hours and then air cooled. Conventional alloy NASAIR10
0 is a heat treatment of heating at 1320 ° C. for 4 hours and then air cooling, further heating at 980 ° C. for 5 hours and then air cooling, further heating at 870 ° C. for 20 hours and then air cooling, and CMSX-2 heating at 1316 ° C. for 4 hours and then air cooling. After heating at 980 ° C. for 5 hours, air cooling was performed, and further heating at 870 ° C. for 20 hours and air cooling were performed.

第1表における比較合金は、特願昭60−258078号に記載
の合金であり、Co以外は本発明合金に非常に近い組成を
持つ合金である。比較合金のクリープ破断時間は、従来
合金に比べると格段に長いことがわかる。これに対し本
発明合金は、従来合金に比べ、クリープ破断時間および
クリープ破断伸び共、優れた値を示している。
The comparative alloys shown in Table 1 are the alloys described in Japanese Patent Application No. 60-258078, and are alloys having a composition very close to the alloys of the present invention except Co. It can be seen that the creep rupture time of the comparative alloy is significantly longer than that of the conventional alloy. On the other hand, the alloy of the present invention exhibits excellent values in both creep rupture time and creep rupture elongation as compared with the conventional alloy.

〔発明の効果〕 以上のように、本発明合金は既存合金に比べて優れたク
リープ破断強度ならびに十分なクリープ破断延性を有す
るため、ガスタービンブレードに用いてその効率向上に
大きく寄与するものである。
[Effects of the Invention] As described above, the alloy of the present invention has excellent creep rupture strength and sufficient creep rupture ductility as compared with existing alloys, and therefore, it greatly contributes to the improvement of its efficiency when used for gas turbine blades. .

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】重量%にてCr4〜10%、Al4〜6.5%、W4〜1
0%、Ta4〜9%、Mo3〜6%、Co12%以下、残部Niおよ
び不純物からなり、かつ1/2W+1/2Ta+Mo=9.5〜13.5%
であることを特徴とする単結晶Ni基超耐熱合金。
1. Cr4-10%, Al4-6.5%, W4-1 in weight%
0%, Ta4-9%, Mo3-6%, Co12% or less, balance Ni and impurities, and 1 / 2W + 1 / 2Ta + Mo = 9.5-13.5%
A single-crystal Ni-based superheat-resistant alloy characterized by:
JP61135390A 1985-11-18 1986-06-11 Single crystal Ni-based super heat resistant alloy Expired - Lifetime JPH0765134B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP61135390A JPH0765134B2 (en) 1986-06-11 1986-06-11 Single crystal Ni-based super heat resistant alloy
US06/927,109 US4802934A (en) 1985-11-18 1986-11-05 Single-crystal Ni-based super-heat-resistant alloy
GB08626679A GB2184456B (en) 1985-11-18 1986-11-07 Heat resistant alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61135390A JPH0765134B2 (en) 1986-06-11 1986-06-11 Single crystal Ni-based super heat resistant alloy

Publications (2)

Publication Number Publication Date
JPS62290839A JPS62290839A (en) 1987-12-17
JPH0765134B2 true JPH0765134B2 (en) 1995-07-12

Family

ID=15150587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61135390A Expired - Lifetime JPH0765134B2 (en) 1985-11-18 1986-06-11 Single crystal Ni-based super heat resistant alloy

Country Status (1)

Country Link
JP (1) JPH0765134B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2552351B2 (en) * 1988-05-17 1996-11-13 日立金属株式会社 Single crystal Ni-based super heat resistant alloy

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2555204B1 (en) * 1983-11-18 1986-04-11 Onera (Off Nat Aerospatiale) LOW VOLUMETRIC NICKEL-BASED MONOCRYSTALLINE SUPERALLOY, FOR TURBOMACHINE BLADES
FR2557598B1 (en) * 1983-12-29 1986-11-28 Armines SINGLE CRYSTAL ALLOY WITH NICKEL-BASED MATRIX

Also Published As

Publication number Publication date
JPS62290839A (en) 1987-12-17

Similar Documents

Publication Publication Date Title
JP5278936B2 (en) Heat resistant superalloy
RU2415959C1 (en) MONO-CRYSTAL SUPER-ALLOY ON BASE OF Ni AND TURBINE BLADE CONTAINING IT
US4207098A (en) Nickel-base superalloys
JP5299899B2 (en) Ni-base superalloy and manufacturing method thereof
JP4036091B2 (en) Nickel-base heat-resistant alloy and gas turbine blade
WO2011062231A1 (en) Heat-resistant superalloy
JPH0245694B2 (en)
JPH0297634A (en) Ni base superalloy and its manufacture
JP3840555B2 (en) Ni-based single crystal superalloy
JP5876915B2 (en) High strength single crystal superalloy
JP3944582B2 (en) Ni-base superalloy
US5167732A (en) Nickel aluminide base single crystal alloys
JP2005097650A (en) Ni-BASED SUPERALLOY
JPH09272933A (en) High strength nickel-base superalloy for directional solidification
US4802934A (en) Single-crystal Ni-based super-heat-resistant alloy
JP5595495B2 (en) Nickel-base superalloy
JP2552351B2 (en) Single crystal Ni-based super heat resistant alloy
JPS62116748A (en) Superheat resistant single crystalline ni alloy
JPH1121645A (en) Ni-base superalloy having heat resistance, production of ni-base superalloy having heat resistance, and ni-base superalloy parts having heat resistance
JPH0765134B2 (en) Single crystal Ni-based super heat resistant alloy
CA1098736A (en) Nickel-base superalloys
JPH0617171A (en) Alloy for gas turbine blade
JPS63118037A (en) Ni-base single-crystal heat-resisting alloy
JP3339111B2 (en) Single crystal nickel base super heat resistant alloy
JP2737500B2 (en) Heat resistant titanium alloy