JP3339111B2 - Single crystal nickel base super heat resistant alloy - Google Patents

Single crystal nickel base super heat resistant alloy

Info

Publication number
JP3339111B2
JP3339111B2 JP15547493A JP15547493A JP3339111B2 JP 3339111 B2 JP3339111 B2 JP 3339111B2 JP 15547493 A JP15547493 A JP 15547493A JP 15547493 A JP15547493 A JP 15547493A JP 3339111 B2 JP3339111 B2 JP 3339111B2
Authority
JP
Japan
Prior art keywords
weight
alloy
single crystal
crystal nickel
resistant alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15547493A
Other languages
Japanese (ja)
Other versions
JPH0711365A (en
Inventor
芳雄 太田
和夫 村上
Original Assignee
石川島播磨重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石川島播磨重工業株式会社 filed Critical 石川島播磨重工業株式会社
Priority to JP15547493A priority Critical patent/JP3339111B2/en
Publication of JPH0711365A publication Critical patent/JPH0711365A/en
Application granted granted Critical
Publication of JP3339111B2 publication Critical patent/JP3339111B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、航空機、ガスタービン
などの高温下の動・静翼用に用いられる単結晶ニッケル
基超耐熱合金に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a single crystal nickel-base superalloy used for high-speed moving and stationary blades of aircraft, gas turbines and the like.

【0002】[0002]

【従来の技術】従来、航空機、ガスタービンなどの高温
下の動・静翼用の材料として開発されている単結晶ニッ
ケル基超耐熱合金の代表的組成は、表1に示したものが
挙げられる。
2. Description of the Related Art Typical compositions of single crystal nickel-base superalloys conventionally developed as materials for moving and stationary blades at high temperatures such as aircraft and gas turbines are shown in Table 1. .

【0003】[0003]

【表1】 [Table 1]

【0004】上記耐熱合金は、所定の温度で溶体化処理
を行った後、時効処理を行って単結晶ニッケル基超耐熱
合金とする。
[0004] The above heat-resistant alloy is subjected to a solution treatment at a predetermined temperature and then to an aging treatment to obtain a single crystal nickel-based super heat-resistant alloy.

【0005】[0005]

【発明が解決しようとする課題】表1においてAlloy-45
4 はTa量が過大のため、共晶γ′量が多く、高温の溶
体化処理後も共晶γ′量が多く残存し、高温強度は低
い。CMSX-2合金は第1世代の中では優れた合金である
が、W,Mo,Taなどの固溶強化元素が少ないため、
より高温化を目指すと強度的に不足する。CMSX-4合金
は、第2世代合金として高強度化を指向した合金で強度
的に優れているが、Re及びTaなどの高価格原料を多
用しているため、高コストであり、しかもReを多く含
有(1.5〜4.0重量%)しているため、均質化(デ
ンドライト模様の消失と共晶γ′量の消失)のために6
段階にもわたる溶体化処理を要することから実際に使用
する上で簡便とはいえず、事実上、動・静翼に上記の熱
処理を適用することは困難である。
SUMMARY OF THE INVENTION In Table 1, Alloy-45
4 has an excessive amount of Ta, so that the amount of eutectic γ 'is large, the amount of eutectic γ' remains large even after high-temperature solution treatment, and the high-temperature strength is low. CMSX-2 alloy is an excellent alloy in the first generation, but it has few solid solution strengthening elements such as W, Mo, Ta, etc.
Aiming for higher temperatures results in insufficient strength. The CMSX-4 alloy is a second-generation alloy that aims to increase strength and is excellent in strength. However, since it uses a lot of high-priced raw materials such as Re and Ta, it is expensive and, in addition, has high Re. It contains a large amount (1.5 to 4.0% by weight), so that it is 6% for homogenization (disappearance of dendrite pattern and disappearance of eutectic γ 'amount)
Since it requires a solution treatment over several stages, it cannot be said that it is simple for practical use, and it is practically difficult to apply the above heat treatment to the moving and stationary blades.

【0006】そこで、本発明の目的は、上記課題を解決
し、高温強度に優れしかも熱処理を簡便に行える単結晶
ニッケル基超耐熱合金を提供することにある。
Accordingly, an object of the present invention is to solve the above-mentioned problems and to provide a single crystal nickel-base super heat-resistant alloy having excellent high-temperature strength and capable of easily performing heat treatment.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に本発明に係る単結晶ニッケル基超耐熱合金は、成分が
重量%で、Cr:5.〜6.5、 Mo:2.0〜
5.0、 W: 2.0〜6.0、Co:4.5〜5.
5、 Ta:4.0〜6.0、 Al:4.0〜6.
0、Ti:0.8〜1.2、 Re:0.8〜1.2、
Ni:残部で、かつ、W+Mo+Re=6〜12、A
l+Ti=5〜7の合金に、1280〜1330℃の温
度範囲2段階の溶体化処理を施した後、760〜11
00℃の温度範囲で時効処理を施したものである。
Means for Solving the Problems In order to achieve the above object, a single crystal nickel-base superalloy according to the present invention has a composition in which the content is wt. 0 to 6.5, Mo: 2.0 to
5.0, W: 2.0-6.0, Co: 4.5-5.5.
5, Ta: 4.0 to 6.0, Al: 4.0 to 6.0.
0, Ti: 0.8 to 1.2, Re: 0.8 to 1.2,
Ni: balance, W + Mo + Re = 6 to 12, A
to l + Ti = 5 to 7 of the alloy, of 1 28 from 0 to 1,330 ° C. temperature
After facilities the two-step solution heat treatment in degrees range, 760-11
Aging treatment was performed in a temperature range of 00 ° C.

【0008】[0008]

【作用】上記構成によれば、固溶強化に寄与するW,M
o,Re,Taを上記した固溶範囲で添加して過大・過
少とならないように最適化し、同時に相安定性(α,
σ,μ相)と耐食性・鋳造性に優れたものとでき、また
Ta,Reなど高コスト原料を低目とし、しかもReに
ついては少量添加のため溶体化処理工程を少なくでき
る。
According to the above construction, W, M contributing to solid solution strengthening.
o, Re, and Ta are added in the above-mentioned solid solution range to optimize so as not to be too large or too small, and at the same time, phase stability (α,
(σ, μ phase) and excellent corrosion resistance and castability, and low cost of high cost raw materials such as Ta and Re. Further, since Re is added in a small amount, the solution treatment step can be reduced.

【0009】成分中、Crは、耐性を向上させる作用
をもち、5.重量%を下回るとその作用が不十分とな
り、6.5重量%をえると強度向上が期待できないた
め、5.〜6.5重量%の範囲とする。
[0009] In the component, Cr has a function of improving corrosion resistance, 5. 0 wt% to below the its effect is insufficient, since the 6.5 wt% is exceeded and strength improvement can not be expected, 5. The range is 0 to 6.5% by weight.

【0010】Moは、Niに固溶し、固溶強化の作用に
有効な元素で、5.0重量%を越えると有害相が析出
し、2.0重量%、特に1重量%を下回ると強度向上に
有効でないため、2.0〜5.0重量%の範囲とする。
Mo is a solid solution in Ni, and is an element effective for solid solution strengthening. When it exceeds 5.0% by weight, a harmful phase is precipitated, and when it is less than 2.0% by weight, especially 1% by weight. Since it is not effective in improving the strength, the content is set in the range of 2.0 to 5.0% by weight.

【0011】Wは、Moと同様な効果があり、6重量
%、特に10重量%を越えると有害相を析出しやすく、
2重量%以下では強度向上が期待できないため、2.0
〜6.0重量%の範囲とする。
W has the same effect as Mo, and when W exceeds 6% by weight, especially 10% by weight, harmful phases are easily precipitated.
If the content is less than 2% by weight, no improvement in strength can be expected.
To 6.0% by weight.

【0012】Coは、MoやWの固溶度を高める作用が
あり、4.5重量%を下回るとその作用が十分でなく、
また5.5重量%を越えても十分でないため、4.5〜
5.5重量%の範囲とする。
[0012] Co has the effect of increasing the solid solubility of Mo and W. When the content is less than 4.5% by weight, the effect is insufficient.
Further, it is not enough to exceed 5.5% by weight.
It is in the range of 5.5% by weight.

【0013】Taは、γ′相に固溶してγ′相を増大さ
せると共に強化させるが、4.0重量%を下回ると効果
がなく、6.0重量%、特に8重量%を越えると共晶
γ′相量が過多となり強度向上のメリットが小さくなる
ので好ましくないため、4.0〜6.0重量%の範囲と
する。
[0013] Ta forms a solid solution in the γ 'phase to increase and strengthen the γ' phase, but has no effect if the content is less than 4.0% by weight, and if it exceeds 6.0% by weight, especially 8% by weight. Since the amount of the eutectic γ 'phase is excessive and the merit of improving the strength is reduced, it is not preferable, so that the range is 4.0 to 6.0% by weight.

【0014】Al及びTiは、Taと同様の効果があ
り、Alについては4.0〜6.0重量%の範囲、Ti
については0.8〜1.2重量%の範囲が望ましいが、
その両者合計は、Al+Tiが5〜7重量%の範囲にな
るようにする必要があり、この範囲外であると強度向上
が望めなくなり好ましくない。
Al and Ti have the same effect as Ta. Al is in the range of 4.0 to 6.0% by weight.
Is preferably in the range of 0.8 to 1.2% by weight,
The total of the two needs to be such that Al + Ti is in the range of 5 to 7% by weight, and if it is out of this range, no improvement in strength can be expected, which is not preferable.

【0015】Reは、W,Moと同様に固溶強化の作用
を持つが、0.8重量%を下回ると固溶強化の効果がな
く、1.2重量%を越えると、鋳造後にデンドライトの
消失と共晶γ′相の消失が望ましいが、そのための溶体
化処理が数段階になり熱処理が難しくなるので0.8〜
1.2重量%の範囲とする。
Re has the effect of solid solution strengthening similarly to W and Mo. However, if it is less than 0.8% by weight, it has no effect of solid solution strengthening. Although the disappearance and the disappearance of the eutectic γ ′ phase are desirable, the solution treatment for the treatment is performed in several stages, and the heat treatment becomes difficult.
It is in the range of 1.2% by weight.

【0016】またW,Mo,Reの合計は、W+Mo+
Re=6〜12重量%の範囲とすることで固溶強化の効
果が向上する。
The sum of W, Mo, and Re is W + Mo +
When Re is in the range of 6 to 12% by weight, the effect of solid solution strengthening is improved.

【0017】本発明の単結晶ニッケル基超耐熱合金は、
一方向凝固法による単結晶化が可能であり、γ′溶解度
温度は、1200〜1260℃で、固相線温度は約13
40℃であり、溶体化処理温度は1280〜1330℃
の範囲で部分溶融することなく2段階の溶体化処理を行
、760〜1100℃の温度範囲で時効処理すること
により、γ′相が整列し、高温強度を保有し、耐酸化
性、鋳造性の良好な合金とすることができる。
The single-crystal nickel-base superalloy of the present invention comprises:
Single crystallization by the unidirectional solidification method is possible, the γ ′ solubility temperature is 1200 to 1260 ° C., and the solidus temperature is about 13 ° C.
Was 40 ° C., the solution treatment temperature is 1 28 0-1,330 ° C.
2-step line a solution treatment without melting portion in the range of
By performing aging treatment in the temperature range of 760 to 1100 ° C., the γ ′ phase is aligned, the alloy has high temperature strength, and can be an alloy having good oxidation resistance and castability.

【0018】[0018]

【実施例】以下、本発明の一実施例を比較例と併せて説
明する。
EXAMPLES Examples of the present invention will be described below together with comparative examples.

【0019】先ず本発明の実施例1〜3の合金組成は表
2に示した通りである。
First, the alloy compositions of Examples 1 to 3 of the present invention are as shown in Table 2.

【0020】[0020]

【表2】 [Table 2]

【0021】次に表2に示した本発明の合金と表1に示
した合金(比較例1〜3)との熱処理条件を表3に示し
た。
Next, Table 3 shows the heat treatment conditions of the alloy of the present invention shown in Table 2 and the alloys shown in Table 1 (Comparative Examples 1 to 3).

【0022】[0022]

【表3】 [Table 3]

【0023】表3からわかるように実施例1〜3の合
の溶体化処理は2段階であり、比較例1(Alloy454)
及び比較例2(CMSX-2)の第1世代の合金の溶体化処理
(1段階)よりは多いものの、比較例3の(CMSX-4)の
第2世代の合金の溶体化処理(6段階)よりは少なくな
っている。これは、Re,W,Moの添加量の違いに起
因する。Re,W,Moは、比較的類似した物性を持つ
元素ではあるが、特にReはW,Moに比べて原子半径
と拡散係数が大き目であることと偏析係数がW,Mo
より異なって大きく、Reは凝固組織のデンドライトコ
アの周辺に濃縮しやすい、そのため、この偏析したRe
を一様化するための溶体化処理に何段階もの熱処理を必
要とする。第1世代の合金においては、Reの添加がな
いため溶体化処理は1回ですむが、第2世代の合金にお
いては、Reの添加量3.0重量%としているため
溶体化処理に6段階もの処理を要する。これに対して、
本発明においては、Reの添加量を第2世代の合金より
も少ない0.8〜1.2重量%としているため、溶体化
処理を2段階にすることができる。
As can be seen from Table 3 , the solution treatment of the alloys of Examples 1 to 3 was performed in two stages, and Comparative Example 1 (Alloy454)
And Comparative Example 2 (CMSX-2) first-generation solution treatment of the alloy of
More than (1 step), but less than the solution treatment (6 steps) of the second generation alloy of (CMSX-4) in Comparative Example 3.
I am . This is due to the difference in the amounts of Re, W, and Mo added. Re, W, and Mo are elements having relatively similar physical properties. In particular, Re has a larger atomic radius and a larger diffusion coefficient than W and Mo, and has a segregation coefficient of W, Mo.
More differently, Re is likely to concentrate around the dendrite core of the solidified structure, and therefore
Requires a number of stages of heat treatment for the solution treatment to make the surface uniform. Because in the first-generation alloy, but because soluble conjugated treatment additives were not of Re is only once, in the second-generation alloy, which has a 3.0 wt% addition amount of Re,
The solution treatment requires as many as six steps . On the contrary,
In the present invention, the amount of Re added is made smaller than that of the second generation alloy.
And 0.8% to 1.2% by weight, the solution treatment can be performed in two stages .

【0024】次に、表2で得られた実施例1〜3と比較
例1〜3の合金のクリープ寿命を試験した結果を表4に
示した。
Next, the results of creep life tests of the alloys of Examples 1 to 3 and Comparative Examples 1 to 3 obtained in Table 2 are shown in Table 4.

【0025】[0025]

【表4】 [Table 4]

【0026】このクリープ試験は、試験片を1000℃
の高温下で、250MPaの引張強度を与え、試験片が
クリープ破断するまでの時間を寿命として求めたもので
ある。
In this creep test, the test piece was heated at 1000 ° C.
At a high temperature of 250 MPa, a tensile strength of 250 MPa was given, and the time required for the test piece to undergo creep rupture was determined as the life.

【0027】この表4からわかるように、本発明の実施
例1〜3の合金は、第1世代の合金よりクリープ寿命が
長く、第2世代の合金より低寿命ではあるが、溶体化処
理の繁雑さを考慮すれば十分実用性に富んだ高温強度と
することができるものである。
As can be seen from Table 4, the alloys of Examples 1 to 3 of the present invention have a longer creep life than the first generation alloy and a shorter life than the second generation alloy. Considering the complexity, the high-temperature strength can be sufficiently practical.

【0028】すなわち、Re,W,Moは、いずれも耐
火金属といわれる高融点金属であり、この種の合金(単
結晶専用合金)ではマトリックス(γ相)の固溶強化と
して作用する。第1世代合金では、これらの添加量が9
重量%以下であり、第2世代合金では10重量%以上で
あり、このため第2世代合金ではクリープ寿命を格段に
向上できる。しかし第2世代合金では、Reの添加量も
多くなるため、溶体化処理が問題となるが、本発明にお
いてはReの添加量を少なくし、その代りにMo量を多
くして耐火金属の全体の添加量を高めて高温強度の向上
を図れるようにしたものである。
That is, Re, W, and Mo are all high-melting metals called refractory metals, and this kind of alloy (single crystal-dedicated alloy) acts as solid solution strengthening of the matrix (γ phase). In the first generation alloy, these addition amounts are 9
% By weight, and 10% by weight or more for the second generation alloy. Therefore, the creep life of the second generation alloy can be remarkably improved. However, in the case of the second-generation alloy, the amount of Re added becomes large, so that the solution treatment becomes a problem. However, in the present invention, the amount of Re is reduced, and instead, the amount of Mo is increased to increase the total amount of the refractory metal. Is increased so that high-temperature strength can be improved.

【0029】[0029]

【発明の効果】以上要するに本発明によれば、熱処理が
容易、具体的には2段階の溶体化処理で、十分実用性に
富んだ高温強度を有する単結晶ニッケル基超耐熱合金を
得ることができる。
In summary, according to the present invention, heat treatment is easy , specifically, two-step solution treatment is sufficient for practical use.
Single-crystal nickel-base super heat-resistant alloy with rich high-temperature strength
It is possible to obtain.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−59474(JP,A) 特開 平4−124237(JP,A) 特開 平1−255636(JP,A) 特開 昭56−9349(JP,A) 特開 昭63−118037(JP,A) 特開 昭60−177160(JP,A) 特開 昭63−24029(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 19/05 C22F 1/10 C30B 29/52 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-5-59474 (JP, A) JP-A-4-124237 (JP, A) JP-A-1-255636 (JP, A) 9349 (JP, A) JP-A-63-118037 (JP, A) JP-A-60-177160 (JP, A) JP-A-63-24029 (JP, A) (58) Fields investigated (Int. 7 , DB name) C22C 19/05 C22F 1/10 C30B 29/52

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 成分が重量%で、 Cr:5.〜6.5、 Mo:2.0〜5.0、
W: 2.0〜6.0、 Co:4.5〜5.5、 Ta:4.0〜6.0、 A
l:4.0〜6.0、 Ti:0.8〜1.2、 Re:0.8〜1.2、 N
i:残部で、 かつ、W+Mo+Re=6〜12、Al+Ti=5〜7
の合金に、 1280〜1330℃の温度範囲2段階の溶体化処理
を施した後、760〜1100℃の温度範囲で時効処理
を施してなることを特徴とする単結晶ニッケル基超耐熱
合金。
(1) Cr: 5. 0 to 6.5, Mo: 2.0 to 5.0,
W: 2.0 to 6.0, Co: 4.5 to 5.5, Ta: 4.0 to 6.0, A
l: 4.0 to 6.0, Ti: 0.8 to 1.2, Re: 0.8 to 1.2, N
i: The remainder, and W + Mo + Re = 6 to 12, Al + Ti = 5 to 7
The alloys 1 28 0-1330 2-step solution heat treatment at a temperature range of
After facilities and aging treatment in the temperature range of 760-1,100 ° C.
A single crystal nickel-based super heat-resistant alloy characterized by being subjected to a heat treatment .
JP15547493A 1993-06-25 1993-06-25 Single crystal nickel base super heat resistant alloy Expired - Lifetime JP3339111B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15547493A JP3339111B2 (en) 1993-06-25 1993-06-25 Single crystal nickel base super heat resistant alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15547493A JP3339111B2 (en) 1993-06-25 1993-06-25 Single crystal nickel base super heat resistant alloy

Publications (2)

Publication Number Publication Date
JPH0711365A JPH0711365A (en) 1995-01-13
JP3339111B2 true JP3339111B2 (en) 2002-10-28

Family

ID=15606845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15547493A Expired - Lifetime JP3339111B2 (en) 1993-06-25 1993-06-25 Single crystal nickel base super heat resistant alloy

Country Status (1)

Country Link
JP (1) JP3339111B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110616390A (en) * 2019-09-28 2019-12-27 贵州航天精工制造有限公司 Heat treatment method for improving locking performance of GH4698 self-locking nut
CN110747417A (en) * 2019-10-22 2020-02-04 河钢股份有限公司 Aging strengthening heat treatment method for nickel-based alloy GH4169
CN115110014B (en) * 2022-06-23 2023-08-04 重庆理工大学 Paste area solid solution treatment method based on combination of homogenization heat treatment and connection technology

Also Published As

Publication number Publication date
JPH0711365A (en) 1995-01-13

Similar Documents

Publication Publication Date Title
JP5721189B2 (en) Heat-resistant Ni-based alloy and method for producing the same
JP2778705B2 (en) Ni-based super heat-resistant alloy and method for producing the same
US5516381A (en) Rotating blade or stationary vane of a gas turbine
US4818486A (en) Low thermal expansion superalloy
JPWO2006059805A1 (en) Heat resistant superalloy
JPH0245694B2 (en)
JPWO2007037277A1 (en) Ni-base superalloy with excellent oxidation resistance
JP3840555B2 (en) Ni-based single crystal superalloy
JPH0561337B2 (en)
JPH0323613B2 (en)
WO2003080882A1 (en) Ni-BASE DIRECTIONALLY SOLIDIFIED SUPERALLOY AND Ni-BASE SINGLE CRYSTAL SUPERALLOY
JP3722975B2 (en) Method for recovering performance of Ni-base heat-resistant alloy
JP3339111B2 (en) Single crystal nickel base super heat resistant alloy
JP4315582B2 (en) Co-Ni base heat-resistant alloy and method for producing the same
JPH09268337A (en) Forged high corrosion resistant superalloy alloy
JP3912815B2 (en) High temperature sulfidation corrosion resistant Ni-base alloy
JP2002235135A (en) Nickel based superalloy having extremely high temperature corrosion resistance for single crystal blade of industrial turbine
JP2552351B2 (en) Single crystal Ni-based super heat resistant alloy
JP2787946B2 (en) Ni-based single crystal superalloy with excellent high-temperature strength and high-temperature corrosion resistance
JPH0617171A (en) Alloy for gas turbine blade
JP3286332B2 (en) Nickel-based superalloys and single crystal industrial gas turbine high temperature components manufactured therefrom.
RU2186144C1 (en) Refractory nickel alloy for single-crystal casting and product made from this alloy
JP2820139B2 (en) Ni-based single crystal superalloy with excellent high-temperature strength and high-temperature corrosion resistance
JPH0573815B2 (en)
JPH0413415B2 (en)

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070816

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080816

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080816

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090816

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100816

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100816

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110816

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110816

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120816

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120816

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130816

Year of fee payment: 11

EXPY Cancellation because of completion of term