JPS62290190A - Two-wavelength oscillation laser device - Google Patents
Two-wavelength oscillation laser deviceInfo
- Publication number
- JPS62290190A JPS62290190A JP13179386A JP13179386A JPS62290190A JP S62290190 A JPS62290190 A JP S62290190A JP 13179386 A JP13179386 A JP 13179386A JP 13179386 A JP13179386 A JP 13179386A JP S62290190 A JPS62290190 A JP S62290190A
- Authority
- JP
- Japan
- Prior art keywords
- laser
- current
- wavelength
- methane
- output
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000010355 oscillation Effects 0.000 title claims abstract description 21
- 230000009977 dual effect Effects 0.000 claims description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 abstract description 82
- 239000004065 semiconductor Substances 0.000 abstract description 23
- 230000003287 optical effect Effects 0.000 abstract description 16
- 230000000694 effects Effects 0.000 abstract description 3
- 230000000717 retained effect Effects 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 11
- 238000010586 diagram Methods 0.000 description 7
- 238000010521 absorption reaction Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 230000008713 feedback mechanism Effects 0.000 description 1
- 210000000936 intestine Anatomy 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/06—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
- H01S5/068—Stabilisation of laser output parameters
- H01S5/0683—Stabilisation of laser output parameters by monitoring the optical output parameters
- H01S5/0687—Stabilising the frequency of the laser
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/40—Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
- H01S5/4025—Array arrangements, e.g. constituted by discrete laser diodes or laser bar
- H01S5/4087—Array arrangements, e.g. constituted by discrete laser diodes or laser bar emitting more than one wavelength
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Semiconductor Lasers (AREA)
Abstract
Description
【発明の詳細な説明】
3、発明の詳細な説明
(産業上の利用分野)
本発明は2つの波長成分を含むレーザ光を発生すること
かてきる2波長発振レーザ装置に関する。Detailed Description of the Invention 3. Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a dual wavelength oscillation laser device that can generate laser light containing two wavelength components.
(従来技術)
特定波長のレーザ光がある種の気体に吸収され易いこと
を利用して気体の有無を検出できることか知られており
、この原理を応用したセンシング技術か工業計測、公害
監視などに広く用いられている。−例として、He−N
eレーザにより発生されるレーザ光の139pm帯には
真空波長か:1.3922μm(入、)と3.3912
μm(λ2)の2つの発振線かあり、入、はメタンに強
く吸収され、入、はメタンにわずかしか吸収されない。(Prior art) It is known that the presence or absence of gas can be detected by utilizing the fact that a laser beam of a specific wavelength is easily absorbed by a certain type of gas, and sensing technology that applies this principle may be used in industrial measurement, pollution monitoring, etc. Widely used. - As an example, He-N
The 139pm band of laser light generated by the e-laser has vacuum wavelengths: 1.3922μm (in) and 3.3912μm.
There are two oscillation lines of μm (λ2): the ray is strongly absorbed by methane, and the ray is only slightly absorbed by methane.
そこでこの2つの波長成分を含むレーザ光を使ってメタ
ンの有無を感度よく検出することが回部である。メタン
は都市ガスの主成分であるのでメタンガスの検出によっ
て都市ガスの漏洩が検知できる。Therefore, it is necessary to detect the presence or absence of methane with high sensitivity using a laser beam containing these two wavelength components. Since methane is the main component of city gas, leakage of city gas can be detected by detecting methane gas.
この種のメタン漏洩センサか米国特許第4,489゜2
39号ですでに提案されており、この米国特許のff’
s1図には、真空波長3.3922p−mと3.:19
12JLmの2台の1ie−Neレーザを用いたセンサ
システムか開示されている。このセンサシステムにおい
ては、2台の1le−Neレーザからの2波長のレーザ
光を2台のメカニカルチョッパーを用いて、それぞれ異
なった周波数で変調して出射し、大気通過後、そのレー
ザ光を受光するセンサ出力のうち、それぞれの周波数に
同期した成分をロックインアンプにて検出し、その出力
の比からメタンの有無を検知する。This type of methane leak sensor is described in U.S. Patent No. 4,489゜2.
No. 39, this U.S. patent's ff'
The s1 diagram shows the vacuum wavelength of 3.3922 p-m and 3.3922 p-m. :19
A sensor system using two 1ie-Ne lasers of 12 JLm is disclosed. In this sensor system, two mechanical choppers are used to modulate and emit two-wavelength laser beams from two 1le-Ne lasers at different frequencies, and after passing through the atmosphere, the laser beams are received. Among the sensor outputs, components synchronized with each frequency are detected by a lock-in amplifier, and the presence or absence of methane is detected from the ratio of the outputs.
もう1つの方法として、1台のメカニカルチョッパーを
用い、通過と反射とを緑返させるかまたは2波長のビー
ムをチョッパーの穴の径たけずらすことにより2波長を
等しい出力に調整しておけば、センサ出力のうちチョッ
パーに同期した周波数成分をロックインアンプにて検出
することにより、2波長の出力の差によりメタンの有無
を検知することかてきる。Another method is to use one mechanical chopper and adjust the output of the two wavelengths to be equal by changing the transmission and reflection or by shifting the beams of the two wavelengths by the diameter of the chopper hole. By detecting the frequency component of the sensor output that is synchronized with the chopper using a lock-in amplifier, the presence or absence of methane can be detected based on the difference between the outputs of two wavelengths.
このような構成のメタン検知システムは多数のミラーや
ハーフミラ−を用いるため光学系が複雑で大きな体積を
要するでけてなく光軸調整か厄介であり、レーザ光の損
失か大きい。また、振動や温度変化等による経時的な光
軸のズレも考えられる。また信号処理が複雑な上メカニ
カルチョッパーの動作上の限界から高周波変調かできず
SN比の点で不利である。さらに前者の場合は2台のレ
ーザの他に、2台のチョッパーと2台のロックインアン
プか必要なため装置か大がかりとなる。Since a methane detection system having such a configuration uses a large number of mirrors or half mirrors, the optical system is complicated and requires a large volume, making it extremely difficult to adjust the optical axis and causing a large loss of laser light. Also, it is possible that the optical axis may shift over time due to vibrations, temperature changes, or the like. In addition, signal processing is complicated, and high frequency modulation is not possible due to operational limitations of mechanical choppers, which is disadvantageous in terms of S/N ratio. Furthermore, in the former case, in addition to the two lasers, two choppers and two lock-in amplifiers are required, resulting in a large-scale equipment.
また後者の場合は2波長を等しい出力に調整することか
難しく、温度変化等のため経時的に2波長の出力のバラ
ンスがくずれるおそれかある。In the latter case, it is difficult to adjust the outputs of the two wavelengths to be equal, and there is a risk that the outputs of the two wavelengths may become unbalanced over time due to temperature changes or the like.
上記2台のHe−Neレーザを用いたセンサシステムの
欠点のいくつかを解消したセンサシステムか米国特許の
第4図に提案されている。このセンサシステムは、3枚
のミラーで構成される共振空洞内にHe−Neプラズマ
管を配置し、Fabry−Perotinterfer
o腸eterを構成する2枚のミラーの一方に圧電素子
を取り付け、この圧電素子を約1gmで振動させること
により2波長を交互に切り換えて発生させるものである
。A sensor system that overcomes some of the drawbacks of the sensor system using the two He-Ne lasers described above is proposed in FIG. 4 of the US patent. This sensor system places a He-Ne plasma tube inside a resonant cavity made up of three mirrors, and uses a Fabry-Perotinterfer
A piezoelectric element is attached to one of the two mirrors that make up the intestine, and the piezoelectric element is vibrated at about 1 gm to alternately switch and generate two wavelengths.
この2波長発振レーザな用いればチョッパーか不要にな
るのて構成が簡潔になるか、2波長の出力を等しくする
ために共振器内にメタンセルな挿入することか考えられ
るが、フィードバック機構かないので2波長の出力を完
全に等しくてきす、温度変化等により経時的にバランス
がくずれるおそれかある。また共振器長に限界かあるた
めに出力を大きくできないという問題もある。If this dual-wavelength oscillation laser is used, a chopper is not required, making the configuration simpler, or a methane cell may be inserted into the resonator to equalize the output of the two wavelengths, but since there is no feedback mechanism, Since the wavelength output is completely equal, there is a risk that the balance will be lost over time due to temperature changes, etc. Another problem is that the output cannot be increased because the resonator length is limited.
一方、上記米国特許の第9欄、第56行〜第62行に触
れているように、J、E、Bjorkhol−ほかによ
る論文″I+*proved Use of Gran
tings 1nTunable La5ers”には
、Gratingsの直前にハーフミラ−を設置するこ
とによりG ra L i ngsの反射率を改善し共
振器の効率を上げ、出力を高めた3ミラー共振器か言及
されているか、ハーフミラ−とGratingSとでF
arby−PeroLを構成しているようなもので、ハ
ーフミラ−の位置を波長オーダーで制御しないと反射率
は高まらない。逆に反射率がOになることも考えられる
。On the other hand, as mentioned in column 9, lines 56 to 62 of the above U.S. patent, the paper "I+*proved Use of Gran" by J. E. Bjorkhol-et al.
tings 1nTunable La5ers", does it mention a 3-mirror resonator that improves the reflectance of the gratings by installing a half mirror just before the gratings, increases the efficiency of the resonator, and increases the output? F with half mirror and Grating S
It is similar to arby-PeroL, and the reflectance cannot be increased unless the position of the half mirror is controlled on the wavelength order. Conversely, it is also possible that the reflectance becomes O.
ところてメタンに吸収され易い波長として上記3、:1
9JLm帯のほかに113ALm帯と1.67gm帯と
かある。一方、通信用に用いられている半導体レー、ザ
には1.:lpm帯のレーザ光を発生するものか知られ
ている。そこて、メタンの漏洩検出にこの半導体レーザ
な用いることを考えてみると、半導体レーザのレーザ光
出力と発振波長は駆動電流によって第4図および第5図
に示すように変化することか知られている。そこで半導
体レーザの駆動電流を11とI2とて交互に変化させる
ことにより2つの異なる波長レーザ光を発振させること
かできる。By the way, the wavelengths that are easily absorbed by methane are the above 3:1.
In addition to the 9JLm band, there are also the 113ALm band and the 1.67gm band. On the other hand, there are 1. : It is known that it generates laser light in the lpm band. Considering the use of this semiconductor laser to detect methane leakage, it is known that the laser light output and oscillation wavelength of the semiconductor laser change depending on the driving current as shown in Figures 4 and 5. ing. Therefore, by alternately changing the driving current of the semiconductor laser as 11 and I2, it is possible to oscillate laser beams of two different wavelengths.
(発明の目的および構成)
本発明は上記の点にかんかみてなされたものて、小型で
高出力且つ高い変調周波数の2波長発振半導体レーザな
提案することを目的とし、この目的を達成するために、
駆動電流に応じた波長および出力のレーザ光を発振する
レーザな用い、所定の電流を中心として異なる2つの駆
動電流でレーザを変調して異なる2波長のレーザ光を発
振せしめ、波長依存性のある吸収体または反射体を利用
してレーザ出力の変調周波数成分が0になるように駆動
電流にフィードバックをかけるように構成した。(Objective and Structure of the Invention) The present invention has been made in view of the above points, and an object of the present invention is to propose a compact, high-output, high-modulation-frequency dual-wavelength oscillation semiconductor laser, and to achieve this object. To,
It uses a laser that oscillates laser light with a wavelength and output that corresponds to the driving current, and modulates the laser with two different driving currents around a predetermined current to oscillate laser light with two different wavelengths. The structure is such that feedback is applied to the drive current using an absorber or a reflector so that the modulation frequency component of the laser output becomes zero.
(実施例)
以下本発明を図面に基づいて説明する。なお、以下に例
示する2波長発振レーザ装置はメタン検効用として説明
するが、本発明はこれに限定されるものでないことはも
ちろんである。(Example) The present invention will be described below based on the drawings. Note that although the two-wavelength oscillation laser device illustrated below will be explained as being for methane testing, it goes without saying that the present invention is not limited thereto.
第1図はメタン検知を目的とした本発明による2波長発
振半導体レーザ装置の一実施例を示しており、1はたと
えばGaAs1nP半導体レーザ、2は半導体レーザl
から発生するレーザ光を集光するコリメートレンズ、3
はメタンガスを含むメタンセル、4はレーザ光の光軸中
に配置されメタンセル3を通過したレーザ光を分割する
ビームスプリッタ、5はPINホトダイオードなどの光
センサ、6は発振器7の周波数に同期して変化する光セ
ンサ5の出力成分を検出するロックインアンプ、8はロ
ックインアンプ6の出力を積分する積分器、9は積分器
8の出力と発振器7の出力とに基づいて半導体レーザl
の駆動電流を制御する電流制御回路、10は電流制御回
路9により制御される変調中心を中心にして2つの異な
る電流で半導体レーザlを駆動するレーザ駆動回路、1
1はやはり積分器8の出力に基づいて半導体レーザ1の
温度を制御する周知の温度制御回路である。FIG. 1 shows an embodiment of a two-wavelength oscillation semiconductor laser device according to the present invention aimed at detecting methane, where 1 is a GaAs 1nP semiconductor laser, and 2 is a semiconductor laser ln.
a collimating lens that condenses the laser light generated from the 3
is a methane cell containing methane gas, 4 is a beam splitter placed in the optical axis of the laser beam and splits the laser beam that has passed through the methane cell 3, 5 is an optical sensor such as a PIN photodiode, and 6 changes in synchronization with the frequency of the oscillator 7. 8 is an integrator that integrates the output of the lock-in amplifier 6; 9 is a semiconductor laser l based on the output of the integrator 8 and the output of the oscillator 7;
10 is a laser drive circuit that drives the semiconductor laser l with two different currents around the modulation center controlled by the current control circuit 9;
1 is a well-known temperature control circuit that controls the temperature of the semiconductor laser 1 based on the output of the integrator 8.
いま半導体レーザlをレーザ駆動回路lOにより電流I
。を中心にして11とI 2(I 2)l I)で駆動
すると、半導体レーザlから波長入、および入。のレー
ザ光か発生する。このレーザ光はコリメートレンズ2に
より集光された後メタンセル3を通過するか、波長入2
成分はメタンセル3内のメタンセルにより吸収されて総
合出力が減少しメタン圧を適当に選ぶと波長入、成分の
出力とほぼ等しくすることかできる。Now, the semiconductor laser l is connected to a current I by the laser drive circuit lO.
. When driven by 11 and I 2 (I 2) l I), the wavelength enters and enters from the semiconductor laser l. A laser beam is generated. After this laser light is focused by the collimating lens 2, it passes through the methane cell 3 or the wavelength input 2.
The component is absorbed by the methane cell in the methane cell 3, reducing the total output.If the methane pressure is appropriately selected, the input wavelength can be made almost equal to the output of the component.
さて、こうして出力がほぼ等しくなった波長入、成分と
波長λ2成分のビーム光出力P(1)はビームスプリッ
タ4でPA(1)とp a(i)とに分割され、分割さ
れたレーザ光出力成分P A(+)は次の式%式%
ここてAは定数、G(1)はレーザの発振出力、α(1
)はメタンの吸収係数、Cはメタンセル3内のメタン圧
、交はメタンセル3の長さく従ってclはメタンセル内
のメタン量に相当する)であり、吸収係数αは第2図に
示すように駆動電流■の関数となる。Now, the beam light output P(1) of the input wavelength component and the wavelength λ2 component whose outputs have become almost equal is split into PA(1) and PA(i) by the beam splitter 4, and the split laser light The output component P A(+) is calculated using the following formula% formula% where A is a constant, G(1) is the laser oscillation output, α(1
) is the absorption coefficient of methane, C is the methane pressure in the methane cell 3, and the intersection is the length of the methane cell 3. Therefore, cl corresponds to the amount of methane in the methane cell), and the absorption coefficient α is determined by driving as shown in Figure 2. It is a function of the current ■.
いま電流Iを適当な値I。を中心にしてΔI。Now set the current I to an appropriate value I. ΔI centered on .
周波数fで微小振動させると、分割された光出力成分P
A(1)は次の式で表わすことがてきる。When micro-vibrated at frequency f, the divided optical output component P
A(1) can be expressed by the following formula.
exp(−(X(+) Cl ) −△I 5in2π
ft+高次成分ここて光出力成分PA(1)のうち変調
周波数成分(すなわちf成分)のみをロックインアンプ
6により検出し、その出力を誤差信号としてそれか0と
なるように電流の中心I。を変化させるようにフィード
バックをかける。すなわち、
を満足するように電流中心■。を制御する。exp(−(X(+)Cl) −△I 5in2π
ft + higher-order component Here, only the modulation frequency component (that is, f component) of the optical output component PA (1) is detected by the lock-in amplifier 6, and the output is used as an error signal to adjust the center of the current I so that it becomes 0. . Apply feedback to change the In other words, the current center should satisfy ■. control.
第1図に示した光センサ5、ロックインアンプ6、積分
器8、電流制御回路9てフィードバック回路を構成して
おり、レーザ光出力の一部か光センサ5によって検出さ
れ、そのうち変調周波数成分かロックインアンプ6によ
り検波され、積分器駆動回路10のバイアス電流I。を
中心にして発振器7の発振周波数で駆動電流な■8、■
2の間で変調する。フィードバック効果により変調周波
数成分がなくなったときは積分器8がそのとき保持して
いる積分値により電流制御回路9によりレーザ駆動回路
lOのバイアス電流■。が保持されて発振が継続される
。The optical sensor 5, lock-in amplifier 6, integrator 8, and current control circuit 9 shown in FIG. The bias current I of the integrator drive circuit 10 is detected by the lock-in amplifier 6. Drive current at the oscillation frequency of oscillator 7 centered on ■8,■
It modulates between 2. When the modulation frequency component disappears due to the feedback effect, the current control circuit 9 controls the bias current (2) of the laser drive circuit 10 based on the integral value held by the integrator 8 at that time. is maintained and oscillation continues.
動作中に温度変化などにより半導体レーザlの発振波長
か変化したときは積分器8の積分値に基づいて電流制御
回路9により駆動電流を微小変動させて修正することも
できるが、積分値に基づいて温度v制御回路11により
大幅な修正を行うことができる。しかし、この温度制御
による光出力制御は通常行なわれており、本発明の要旨
ではないのでこれ以上の説11は省略する。If the oscillation wavelength of the semiconductor laser l changes due to a temperature change during operation, the drive current can be corrected by slightly changing the drive current using the current control circuit 9 based on the integral value of the integrator 8; Therefore, the temperature v control circuit 11 can make a significant correction. However, this optical output control by temperature control is normally performed and is not the gist of the present invention, so further explanation 11 will be omitted.
このようにフィードバック制御された半導体レーザlか
ら発生する波長入1、入2のレーザ光P Q(1)を第
3図に示すように被検領域Kに通過させ、光センサ5と
同じ光センサ12で受光し、ロックインアンプ13て変
調周波a成分(すなわちf成分)を検出する。その被検
領域Kにもしメタンガスか存在しなければロックインア
ンプ13の出力は0であるか、メタンガスMG(破線で
囲んで示す)が存在する場合には、その領域における漏
洩メタンのメタン圧をC1漏洩長さをLとすると領域K
を通過後の光出力P a(1)は次の式で表わすことが
できる。Laser beams PQ(1) of wavelengths 1 and 2 generated from the semiconductor laser l subjected to feedback control in this manner are passed through the test area K as shown in FIG. 12 receives the light, and a lock-in amplifier 13 detects the modulation frequency a component (ie, f component). If methane gas does not exist in the test region K, the output of the lock-in amplifier 13 is 0, or if methane gas MG (indicated by a broken line) exists, the methane pressure of leaked methane in that region is If C1 leakage length is L, area K
The optical output P a (1) after passing through can be expressed by the following equation.
Pa(1)= B −G(1)exp (−a(1)(
c l +CL) )exp(−Q(1) (C文
+CL))−Δ I sin2w fL+高次成分
そこで上記(1)式を考慮すると、pa(r)のうちの
変調周波数成分は、
(C文+CL))・△I
となり、αCL(1の低メタン量領域ではCLに比例し
た光出力となる。この変調周波数成分をレコーダ14で
記録すれば漏洩メタンの有無や漏洩量が得られる。Pa(1)= B −G(1)exp (−a(1)(
c l +CL) )exp(-Q(1) (C sentence
+CL)) -Δ I sin2w fL+higher-order component Then, considering the above equation (1), the modulation frequency component of pa(r) becomes (C sentence + CL))・△I, and αCL(low methane of 1) In the quantity domain, the optical output is proportional to CL.If this modulated frequency component is recorded by the recorder 14, the presence or absence of leaked methane and the amount of leakage can be obtained.
上記実施例ては半導体レーザから出力する2波長のレー
ザ光の出力を等しくするのにメタンセルを用いたが、メ
タンセルの代りに半導体レーザの共振器を構成するレー
ザ両端面に波長特性のある誘電体コーティングを施して
もよい。In the above embodiment, a methane cell was used to equalize the output of the laser light of two wavelengths output from the semiconductor laser, but instead of the methane cell, a dielectric material with wavelength characteristics is used on both end faces of the laser that constitutes the resonator of the semiconductor laser. A coating may be applied.
末完11は半導体レーザについて例示したが、これに限
らず発振波長がアナログ的に変化する、たとえば色素レ
ーザのようなレーザにも適用することがてきる。Although the embodiment 11 is exemplified with respect to a semiconductor laser, the present invention is not limited to this and can be applied to a laser whose oscillation wavelength changes in an analog manner, such as a dye laser.
(発明の効果)
以上説明したように、本発明においては、駆動電流に応
じた波長および出力のレーザ光を発振するレーザを用い
、所定の電流を中心として異なる2つの駆動電流てレー
ザを変調して異なる2波長のレーザ光を発振せしめ、レ
ーザ光の変調周波数成分が0になるように駆動電流にフ
ィードバックをかけるように構成したので、簡潔な構成
および制御で2波長発振レーザが実現できる。(Effects of the Invention) As explained above, in the present invention, a laser that oscillates a laser beam with a wavelength and output depending on a drive current is used, and the laser is modulated with two different drive currents around a predetermined current. Since the structure is configured such that laser beams of two different wavelengths are oscillated and feedback is applied to the drive current so that the modulation frequency component of the laser beam becomes 0, a two-wavelength oscillation laser can be realized with a simple configuration and control.
本発明による2波長発振レーザ装置を用いて気体検知シ
ステムを構成すれば、1台のレーザですむので使用する
ミラーやハーフミラ−が少なくなって光学系か簡潔にな
り光損失か減少するとともに光軸調整の煩わしさが減少
する。また、レーザの駆動中心電流の変調を電気的に行
なっているので、従来のメカニカルチョッパーより高い
周波数での変調か可使になりSN比を改善することがで
きる。また、2波長を分離して検出する必要がないため
に測定系(たとえばロックインアンプを含む信号処理系
)か極めて簡潔になる。If a gas detection system is configured using the dual wavelength oscillation laser device according to the present invention, only one laser is required, so fewer mirrors and half mirrors are used, simplifying the optical system, reducing optical loss, and reducing the optical axis. The hassle of adjustment is reduced. Furthermore, since the laser drive center current is electrically modulated, it is possible to modulate at a higher frequency than in conventional mechanical choppers, thereby improving the S/N ratio. Furthermore, since there is no need to separate and detect two wavelengths, the measurement system (for example, a signal processing system including a lock-in amplifier) becomes extremely simple.
さらに、本発明によるレーザ装置を用い発振レーザ光を
光ファイバーで導けば遠隔、広域での気体検知か可能に
なり、ガス漏れ検知をはじめとして工業計測や公害監視
などその応用分野は極めて広いと考えられる。Furthermore, by using the laser device according to the present invention and guiding the oscillated laser beam through an optical fiber, it becomes possible to detect gases remotely and over a wide area, and its application fields are considered to be extremely wide, including gas leak detection, industrial measurement, and pollution monitoring. .
第1図は本発明による2波長発振レーザ装置の一実施例
の概路線図、第2図は半導体レーザの駆動電流とメタン
吸収系数αとの関係を示す特性図、第3図は本発明によ
る2波長発振レーザ装置により発生されるレーザ光を用
いて漏洩メタンの検出を行う系の概路線図、第4図は半
導体レーザの駆動電流とレーザ光出力との関係を示す特
性図、第5図は半導体レーザの駆動電流と発振レーザ光
の波長との関係を示す特性図である。
1・・・半導体レーザ、3・・・メタンセル、4・・・
ビームスプリッタ、5・・・光センサ、6・・・ロック
イナンプ、7・・・発振器、8・・・積分器、9・・・
電流制御回路特許出願人 東京瓦斯株式会社
代理人 弁理士 鈴 木 弘 男
鄭ゴヅ彊dFIG. 1 is a schematic diagram of an embodiment of a two-wavelength oscillation laser device according to the present invention, FIG. 2 is a characteristic diagram showing the relationship between the drive current of the semiconductor laser and the methane absorption coefficient α, and FIG. 3 is a diagram according to the present invention. A schematic diagram of a system for detecting leaked methane using laser light generated by a two-wavelength oscillation laser device. Figure 4 is a characteristic diagram showing the relationship between semiconductor laser drive current and laser light output. Figure 5 1 is a characteristic diagram showing the relationship between the drive current of a semiconductor laser and the wavelength of oscillated laser light. 1... Semiconductor laser, 3... Methane cell, 4...
Beam splitter, 5... Optical sensor, 6... Lock-in amplifier, 7... Oscillator, 8... Integrator, 9...
Current control circuit patent applicant Tokyo Gas Co., Ltd. Agent Patent attorney Hiroshi Suzuki
Claims (1)
るレーザと、該レーザを所定の電流値を中心とする異な
る2つの電流値で変調して駆動するレーザ駆動回路と、
前記レーザにより発振する2波長成分の出力をほぼ等し
く調整する出力調整手段と、レーザ出力の変調周波数成
分がほぼ0になるように前記レーザ駆動回路の前記所定
の電流値を制御する電流制御回路とを有することを特徴
とする2波長発振レーザ装置。a laser that oscillates laser light with a wavelength and output that corresponds to a drive current; a laser drive circuit that modulates and drives the laser with two different current values centered around a predetermined current value;
an output adjustment means for adjusting substantially equal outputs of two wavelength components oscillated by the laser; and a current control circuit for controlling the predetermined current value of the laser drive circuit so that the modulation frequency component of the laser output becomes approximately 0. A dual wavelength oscillation laser device characterized by having:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13179386A JPH0815225B2 (en) | 1986-06-09 | 1986-06-09 | Dual wavelength oscillation laser device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13179386A JPH0815225B2 (en) | 1986-06-09 | 1986-06-09 | Dual wavelength oscillation laser device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62290190A true JPS62290190A (en) | 1987-12-17 |
JPH0815225B2 JPH0815225B2 (en) | 1996-02-14 |
Family
ID=15066261
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13179386A Expired - Lifetime JPH0815225B2 (en) | 1986-06-09 | 1986-06-09 | Dual wavelength oscillation laser device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0815225B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2644892A1 (en) * | 1989-03-23 | 1990-09-28 | Anritsu Corp | LIGHT ABSORPTION GAS DETECTION APPARATUS |
JPH04151546A (en) * | 1990-10-15 | 1992-05-25 | Anritsu Corp | Gas detecting apparatus |
-
1986
- 1986-06-09 JP JP13179386A patent/JPH0815225B2/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2644892A1 (en) * | 1989-03-23 | 1990-09-28 | Anritsu Corp | LIGHT ABSORPTION GAS DETECTION APPARATUS |
US5015099A (en) * | 1989-03-23 | 1991-05-14 | Anritsu Corporation | Differential absorption laser radar gas detection apparatus having tunable wavelength single mode semiconductor laser source |
JPH04151546A (en) * | 1990-10-15 | 1992-05-25 | Anritsu Corp | Gas detecting apparatus |
Also Published As
Publication number | Publication date |
---|---|
JPH0815225B2 (en) | 1996-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0196856B1 (en) | Dual-wavelength laser apparatus | |
US5929442A (en) | Apparatus for and method of analyzing carbon isotopes | |
US5544186A (en) | Gas laser for emitting light modulated at two different wavelengths and an arrangement incorporating the gas laser to detect a gaseous substance | |
US5073331A (en) | Modulation method for use in a semiconductor laser and an apparatus therefor | |
JPH0315742A (en) | Gas detector | |
JPH0460464A (en) | Narrow spectrum short pulse light source apparatus and voltage detector | |
US5018858A (en) | Ring resonator gyroscope control system with gain difference equalization | |
JP2744728B2 (en) | Gas concentration measuring method and its measuring device | |
JPS62290190A (en) | Two-wavelength oscillation laser device | |
JP2703835B2 (en) | Gas concentration measuring method and its measuring device | |
JPH0526804A (en) | Multiple ga detecting device | |
JP2540670B2 (en) | Multi-type gas detector using optical fiber | |
JPH0548857B2 (en) | ||
US6084893A (en) | Apparatus and method of laser power and frequency stabilization of radio frequency excited laser using optogalvanic effect | |
US4704032A (en) | Rotation rate measuring instrument | |
US20220045475A1 (en) | System and method for frequency matching a resonance cavity to a light source | |
JP2937418B2 (en) | Semiconductor laser device | |
JPH067099B2 (en) | Gas sensor using tunable etalon | |
JPH02257026A (en) | Laser frequency stability measuring instrument | |
JPH02284045A (en) | Detection of concentration and pressure of gas with tunable etalon utilized therefor | |
JPS5957136A (en) | Method for evaluating characteristics of am-fm noise of light source | |
JPH026236B2 (en) | ||
JPH10313146A (en) | Wavelength variable light source device | |
JPH0783155B2 (en) | Tunable laser device | |
JPH03244176A (en) | Laser device |