JPS6229017B2 - - Google Patents

Info

Publication number
JPS6229017B2
JPS6229017B2 JP55089414A JP8941480A JPS6229017B2 JP S6229017 B2 JPS6229017 B2 JP S6229017B2 JP 55089414 A JP55089414 A JP 55089414A JP 8941480 A JP8941480 A JP 8941480A JP S6229017 B2 JPS6229017 B2 JP S6229017B2
Authority
JP
Japan
Prior art keywords
fat
milk
lactose
protein
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55089414A
Other languages
Japanese (ja)
Other versions
JPS5714742A (en
Inventor
Fukuyuki Takahashi
Masayuki Kanai
Akihiko Nagai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP8941480A priority Critical patent/JPS5714742A/en
Publication of JPS5714742A publication Critical patent/JPS5714742A/en
Publication of JPS6229017B2 publication Critical patent/JPS6229017B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/02Food
    • G01N33/04Dairy products

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は赤外線吸収スペクトルによる牛乳の乳
固形分の測定方法及びその装置に関する。 牛乳中の水以外の主成分は脂肪、蛋白質、乳糖
及び灰分であり、水分以外の成分の和、つまり脂
肪+蛋白質+乳糖+灰分を全乳固形分(TMS)、
全乳固形分から脂肪分を除いた成分を無視乳固形
分(SNF)と呼んでいる。 最近の各国における牛乳取引では従来の脂肪分
取引だけから全乳固形分取引、脂肪分と蛋白質分
取引あるいは脂肪分と無脂乳固形分取引に移行し
て来た。 このため牛乳中の全乳固形分あるいは無脂乳固
形分(この両者を総称して乳固形分と記す)を測
定する第1図の如き装置が開発されている。これ
は赤外線分析器10を利用したもので、赤外線分
析器10は牛乳に赤外線を透過させると牛乳中の
脂肪、蛋白質、乳糖によつてそれぞれ赤外線領域
における特定の波長のスペクトル(第2図に示す
ように脂肪では5.73μm、蛋白質では6.46μm、
乳糖では9.6μm)が吸収される原理を応用して
前記の各波長のスペクトルにおける吸収量よつて
脂肪、蛋白質、乳糖の牛乳中の各濃度を測定する
ものである。 第1図に示す赤外線分析器10について具体的
に説明すると、光源11から放射された赤外光線
は光路12及び13において測定用赤外線干渉フ
イルタ14及び参照用赤外線干渉フイルタ15に
よつて牛乳中の測定すべき成分の測定波長(例え
ば脂肪の場合5.73μm)及び測定すべき成分に吸
収されない参照波長(例えば脂肪の場合5.55μ
m)にそれぞれ選ばれ、チヨツパ16によつて測
定波長と参照波長が交互にセル17内の牛乳に投
射される。牛乳中を透過した測定波長及び参照波
長の光は光電変換器18で受光され、この二つの
波長の光の受光量の差に対応したアンバランス信
号が出力される。牛乳中の測定すべき成分(例え
ば脂肪)が多いほど測定波長の吸収量は多くなる
ので測定すべき成分の濃度に比例してアンバラン
スが生じる。このアンバランス信号は増幅器19
で増幅されてサーボモータ20を作動させる。サ
ーボモータ20は光路13を通る光量を遮光板2
1を駆動して調整し、アンバランス信号が出力さ
れなくなると停止する。従つて遮光板21の動く
量が測定すべき成分の濃度に相当するので、これ
をポテンシヨメータ22で電気信号として取り出
している。前記の測定用赤外線干渉フイルタ14
及び測定用赤外線干渉フイルタ15は脂肪、蛋白
質及び乳糖の各成分ごとに一対となつており順次
切り替えられて脂肪、蛋白質及び乳糖の濃度が順
次測定されるようになつている。なお符号23は
チヨツパ16を駆動するモータを示している。 全乳固形分あるいは無脂乳固形分を求めるには
灰分の濃度を求めなければならないが第2図から
も明らかなように赤外線領域には灰分のスペクト
ルがないので測定できない。そこで第1図に示す
ように設定器31に灰分の濃度として予めある値
(例えば0.7)を設定しておき、記憶器32f,3
p,32lにそれぞれ記憶された脂肪、蛋白質、
乳糖あるいは蛋白質、乳糖の濃度にこの設定値を
加算器33で加算して全乳固形分あるいは無脂乳
固形分の濃度を求め、これを表示器34で表示し
ている。なお切換スイツチ35によつて全乳固形
分と無脂乳固形分の切り換えはなされる。 このように従来の測定方法では灰分を常に一定
量と仮定して全乳固形分あるいは無脂乳固形分を
測定しているが、牛乳中に含まれる灰分は前記の
脂肪、蛋白質、乳糖と複雑に結合しているため灰
分の濃度は脂肪、蛋白質、乳糖のそれぞれの濃度
に比例して変化することが知られている。従つ
て、従来の測定方法のように脂肪、蛋白質、乳糖
の濃度の変動とは無関係に灰分量を一定値として
全乳固形分、無脂乳固形分を測定することは不正
確であり、測定範囲が広くなると必然的に測定誤
差が非常に大きくなる。 第3図は無脂乳固形分についての化学分析によ
る標準測定法(公定法)による測定値に対する前
記の測定方法による測定値の差(偏り)を示すた
めの模図で、例えば無脂乳固形分濃度が8.5%の
牛乳の場合に測定値の偏りが零であるとし、灰分
の設定値を0.7(濃度0.7%)とした場合を示して
いる。横軸には標準測定法の値を基準値とし、縦
軸には前記の測定方法による測定値の偏りを表わ
している。この図から明らかなように、前記の測
定方法での測定値の偏りは、各成分が零の場合、
即ち蒸溜水を測定した場合に0.7%となるから、
0.7を切片とし、(0、8.5)を通る傾いた直線a
によつて表わされる。従つて第1図の装置による
従来の測定方法では全乳固形分あるいは無脂乳固
形分の測定値の偏りが零になるのは理論上一点だ
けであり、偏りの実用誤差をある程度認めても測
定値のバラツキを考慮にいれるとそのの測定範囲
は非常に狭くなる。 本発明はこのような欠点を改め、広い測定範囲
にわたつて測定誤差のほとんどない全乳固形分あ
るいは無脂乳固形分の測定方法及びその装置を提
供することを目的としている。 牛乳中の灰分は前述したように脂肪、蛋白質、
乳糖と関連した状態で存在し、これら各成分の量
の変化に対して比例して変化することが知られて
いる。即ち、牛乳中の灰分は多種の金属類及び無
機の酸根を含む無機質の複合物の総称で、表1は
灰分の主な組成およびその含有量を示したもので
ある。
The present invention relates to a method and apparatus for measuring the milk solids content of milk using infrared absorption spectroscopy. The main components other than water in milk are fat, protein, lactose, and ash.The sum of components other than water, that is, fat + protein + lactose + ash, is called total milk solids (TMS).
The component obtained by removing fat from total milk solids is called ignored milk solids (SNF). Milk trading in recent countries has shifted from the traditional fat trading to whole milk solids trading, fat and protein trading, or fat and non-fat milk solids trading. For this reason, an apparatus as shown in FIG. 1 has been developed for measuring the total milk solids content or non-fat milk solids content (both are collectively referred to as milk solids content) in milk. This uses an infrared analyzer 10. When infrared rays are transmitted through milk, the fat, protein, and lactose in the milk each have a specific wavelength spectrum in the infrared region (as shown in Figure 2). So, fat is 5.73μm, protein is 6.46μm,
Applying the principle that lactose absorbs 9.6 μm), the concentration of fat, protein, and lactose in milk is measured by the amount of absorption in the spectrum of each wavelength mentioned above. More specifically, the infrared analyzer 10 shown in FIG. The measurement wavelength of the component to be measured (for example, 5.73 μm for fat) and the reference wavelength that is not absorbed by the component to be measured (for example, 5.55 μm for fat)
m), and the measuring wavelength and the reference wavelength are alternately projected onto the milk in the cell 17 by the chopper 16. The light at the measurement wavelength and the reference wavelength that has passed through the milk is received by the photoelectric converter 18, and an unbalanced signal corresponding to the difference in the amount of light received at these two wavelengths is output. The more components to be measured (for example, fat) in milk, the greater the amount of absorption of the measurement wavelength, so an imbalance occurs in proportion to the concentration of the component to be measured. This unbalanced signal is transmitted to the amplifier 19.
The signal is amplified to operate the servo motor 20. The servo motor 20 adjusts the amount of light passing through the optical path 13 to the light shielding plate 2.
1 for adjustment, and stops when the unbalanced signal is no longer output. Therefore, since the amount of movement of the light shielding plate 21 corresponds to the concentration of the component to be measured, this is extracted as an electrical signal by the potentiometer 22. The measurement infrared interference filter 14
A pair of infrared interference filters 15 for measurement are provided for each component of fat, protein, and lactose, and are sequentially switched to sequentially measure the concentrations of fat, protein, and lactose. Note that the reference numeral 23 indicates a motor that drives the chopper 16. In order to determine the total milk solid content or non-fat milk solid content, it is necessary to determine the ash concentration, but as is clear from FIG. 2, there is no ash content spectrum in the infrared region, so it cannot be measured. Therefore , as shown in FIG.
The fat and protein stored in 2 p and 32 l , respectively,
This set value is added to the concentration of lactose, protein, or lactose using an adder 33 to determine the concentration of total milk solids or non-fat milk solids, which is displayed on a display 34. The changeover switch 35 is used to switch between whole milk solid content and non-fat milk solid content. In this way, conventional measurement methods assume that the ash content is always a constant amount and measure the total milk solid content or non-fat milk solid content, but the ash content in milk is complex with the aforementioned fat, protein, and lactose. It is known that the concentration of ash changes in proportion to the respective concentrations of fat, protein, and lactose. Therefore, it is inaccurate to measure total milk solids and non-fat milk solids by setting the ash content to a constant value regardless of changes in the concentration of fat, protein, and lactose, as in the conventional measurement method. As the range becomes wider, measurement errors inevitably become very large. Figure 3 is a schematic diagram to show the difference (bias) between the measurement value by the standard measurement method (official method) based on chemical analysis and the measurement method described above for non-fat milk solid content. It is assumed that the bias in the measured values is zero in the case of milk with a concentration of 8.5%, and the set value of ash content is set to 0.7 (concentration 0.7%). The horizontal axis represents the standard measurement value as the reference value, and the vertical axis represents the deviation of the measured value due to the aforementioned measurement method. As is clear from this figure, when each component is zero, the bias in the measured values using the measurement method described above is
In other words, when measuring distilled water, it is 0.7%, so
An inclined straight line a passing through (0, 8.5) with 0.7 as the intercept
It is represented by. Therefore, in the conventional measuring method using the device shown in Figure 1, the deviation of the measured value of total milk solids or non-fat milk solids can theoretically become zero at only one point, and even if some practical error in the deviation is allowed, Taking into account the dispersion of measured values, the measurement range becomes very narrow. It is an object of the present invention to overcome these drawbacks and provide a method and apparatus for measuring whole milk solids or non-fat milk solids with almost no measurement error over a wide measurement range. As mentioned above, the ash in milk is composed of fat, protein,
It is known that it exists in a state related to lactose and changes in proportion to changes in the amounts of each of these components. That is, the ash content in milk is a general term for an inorganic compound containing various metals and inorganic acid radicals, and Table 1 shows the main composition of the ash content and its content.

【表】【table】

【表】 この表から明らかなように組成分のうちいくつ
かの塩類の濃度はかなりの幅で変動することが知
られている。また牛乳中における灰分の組成分の
状態は以下のようになつていることが判明してい
る。すなわナトリウムおよびカリウムは陽イオン
として牛乳中に存在しており、その他カルシウ
ム、マグネシウム、燐およびクエン酸は牛乳中に
一部溶解し残りがコロイド状となつて存在してい
る。 表2はカルシウム、マグネシウム、燐およびク
エン酸の牛乳中に溶解している量とコロイド状と
なつている量の分布状態を示したものである。
[Table] As is clear from this table, it is known that the concentrations of some of the salts in the composition vary over a considerable range. It has also been found that the composition of ash in milk is as follows. In other words, sodium and potassium exist in milk as cations, while calcium, magnesium, phosphorus, and citric acid are partially dissolved in milk and the rest exists in the form of colloids. Table 2 shows the distribution of calcium, magnesium, phosphorus, and citric acid dissolved in milk and colloidal amounts.

【表】 この中でコロイド状となつている量のほとんど
は蛋白質の大部分を占めるカゼインとの結合物お
よび複合物を形成している。さらに通常の牛乳に
おいて、これらの溶解の量とコロイド状の量とは
表2に示す量での比率でほぼ平衡状態を保つてい
る。このように灰分と蛋白質は密接な関係があ
り、蛋白質の濃度は灰分の濃度に大きく影響を及
ぼしている。 また脂肪は乳中に平均2〜5μmの粒子の形態
で乳濁液として存在しており、この脂肪球の表面
は脂肪球膜と呼ばれる吸着層で覆われている。脂
肪球膜は主に蛋白質および燐脂質等の複合物で形
成されている吸着層である。このように脂肪には
燐脂質の燐が含まれておりまたその他灰分も吸着
されている。従つて脂肪の濃度を灰分の濃度に大
きく影響を及ぼしている。 また乳糖の灰分に対する影響は例えば乳房炎乳
に顕著に表われるように乳糖の低下に対して塩素
およびナトリウムが増加する。 このような点から灰分の量は脂肪、蛋白質およ
び乳糖の各々の濃度の函数和として扱つた方が正
確である。従つて、従来の測定方法のように灰分
を常に一定値として求めるより、3成分のそれぞ
れの量に対応して変化する3つの量の和として扱
つて乳固形分を求めれば測定誤差は少なくなり、
また従来の測定方法では第3図に示したように測
定範囲が広がるにつれて灰分の量を一定値にした
ことによる誤差の拡大が生じたのに対し灰分の量
も変数として扱うので測定範囲を広げても誤差の
拡大は生じない。 このような観点から、本発明による測定方法で
は赤外線吸収スペクトルによつて牛乳中の脂肪、
蛋白質、乳糖の濃度を測定し、灰分の濃度は測定
した脂肪、蛋白質、乳糖のそれぞれの濃度に対し
てそれぞれ所定の係数で比例する函数和として算
出し、このようにして得た灰分の濃度を脂肪、蛋
白質、乳糖あるいは蛋白質、乳糖の濃度に加算す
ることによつて全乳固形分あるいは無脂乳固形分
の濃度を測定する。 即ち、Fを脂肪濃度、Pを蛋白質濃度、Lを乳
糖濃度、αを脂肪に対する灰分の比例係数(定
数)、βを蛋白質に対する灰分の比例係数(定
数)、δを乳糖に対する灰分の比例係数(定数)
とすると灰分の濃度を αF+βP+δL として求め、 全乳固形分をT、無脂乳固形分をSとすると、
T、Sは T=F+P+L+αF+βP+δL S=P+L+αF+βP+δL として求める。 第4図は本発明による測定装置の一実施例を示
している。 同図において赤外線分析器10は第1図に示し
た従来の測定装置の場合と同一構成であるので説
明を省略する。 41f,41p,41lはそれぞれポテンシヨメ
ーター22から出力される脂肪、蛋白質、乳糖の
濃度を記憶する記憶器、42f,42p,42l
それぞれ所定の係数α、β、δが設定された設定
器、43f,43p,43lは記憶器41f,41p
41lに記憶された脂肪、蛋白質、乳糖の濃度
F、P、Lに設定器42f,42p,42lに設定
された係数α、β、δをそれぞれ乗算してαF、
βP、δLを出力する乗算器、44は切換スイツ
チ45を閉成した場合は F+P+L+αF+βP+δL を出力し、切換スイツチ45を開いた場合は P+L+αF+βP+δL を出力する加算器、46は表示器である。 この装置によれば光源11からの赤外線をセル
17内の牛乳に当てて脂肪、蛋白質、乳糖の濃度
を測定して記憶器41f,41p,41lに記憶
し、この測定による脂肪、蛋白質、乳糖の濃度に
各係数α、β、δを乗算器43f,43p,43l
を乗算して、この函数和αF+βP+δLを灰分
の濃度として加算器44で脂肪、蛋白質、乳糖あ
るいは蛋白質、乳糖の濃度に加算して表示器46
で全乳固形分あるいは無脂乳固形分の濃度を表示
する。 なお、以上の説明では灰分を脂肪、蛋白質、乳
糖の3成分の函数和として扱う場合を示したが、
必ずしも3成分ではなくこのうちの2成分のみに
よる函数和として扱つて乳固形分を求めてもよ
い。2成分のみによつても従来の如く常に一定量
として扱うのに比較すればはるかに正確に乳固形
分の測定値を得ることができる。 以上説明したように本発明によれば牛乳中の全
乳固形分あるいは無脂乳固形分を得るために、灰
分を脂肪、蛋白質、乳糖の一又は全部の函数和と
して算出しているので、即ち脂肪、蛋白質、乳糖
の各成分量の変化に対応して変化する量として灰
分の量を扱つているので従来の測定方法のように
灰分を一定量として扱う場合の誤差を少なくする
ことができ、また測定範囲を広げることができ
る。
[Table] Most of the colloidal amount forms bonds and complexes with casein, which makes up the majority of proteins. Furthermore, in normal milk, the amount of these dissolved substances and the amount of colloidal substances are kept in an almost equilibrium state at the ratio shown in Table 2. As described above, there is a close relationship between ash and protein, and the concentration of protein greatly influences the concentration of ash. Furthermore, fat exists in milk as an emulsion in the form of particles with an average size of 2 to 5 μm, and the surfaces of these fat globules are covered with an adsorption layer called a fat globule membrane. Fat globule membranes are adsorption layers mainly composed of complexes such as proteins and phospholipids. In this way, fat contains phosphorus from phospholipids, and other ash is also adsorbed. Therefore, the concentration of fat greatly influences the concentration of ash. Furthermore, the influence of lactose on ash content is noticeable, for example, in mastitis milk, where chlorine and sodium increase as lactose decreases. From this point of view, it is more accurate to treat the amount of ash as the sum of functions of the concentrations of fat, protein, and lactose. Therefore, instead of determining the ash content as a constant value as in the conventional measurement method, measurement errors will be reduced if the milk solids content is determined by treating it as the sum of three quantities that vary depending on the amount of each of the three components. ,
In addition, as shown in Figure 3, with the conventional measurement method, as the measurement range widens, the error increases due to the ash content being set at a constant value, but since the ash content is also treated as a variable, the measurement range can be expanded. However, the error will not increase. From this point of view, the measurement method according to the present invention uses infrared absorption spectra to determine the fat and fat content in milk.
The concentrations of protein and lactose are measured, and the ash concentration is calculated as the sum of functions proportional to each of the measured concentrations of fat, protein, and lactose by a predetermined coefficient, and the ash concentration obtained in this way is calculated as the sum of functions. The concentration of total milk solids or non-fat milk solids is determined by adding to the concentration of fat, protein, lactose or protein, lactose. That is, F is the fat concentration, P is the protein concentration, L is the lactose concentration, α is the proportional coefficient (constant) of ash to fat, β is the proportional coefficient (constant) of ash to protein, and δ is the proportional coefficient of ash to lactose ( constant)
Then, calculate the ash concentration as αF + βP + δL, and let T be the total milk solids content and S be the non-fat milk solids content.
T and S are determined as T=F+P+L+αF+βP+δL S=P+L+αF+βP+δL. FIG. 4 shows an embodiment of the measuring device according to the invention. In the same figure, an infrared analyzer 10 has the same configuration as the conventional measuring device shown in FIG. 1, so a description thereof will be omitted. 41 f , 41 p , and 41 l are memory devices for storing the concentrations of fat , protein , and lactose output from the potentiometer 22, respectively; The set setting devices 43 f , 43 p , 43 l are the memory devices 41 f , 41 p ,
The fat, protein, and lactose concentrations F, P, and L stored in 41 l are multiplied by the coefficients α, β, and δ set in setters 42 f , 42 p , and 42 l , respectively, to obtain αF,
A multiplier 44 outputs βP and δL, an adder 44 outputs F+P+L+αF+βP+δL when the switch 45 is closed, and an adder outputs P+L+αF+βP+δL when the switch 45 is opened, and 46 is a display. According to this device, the infrared rays from the light source 11 are applied to the milk in the cell 17 to measure the concentration of fat, protein, and lactose, which are stored in the memory devices 41 f , 41 p , and 41 l. , multipliers 43 f , 43 p , 43 l by each coefficient α, β, δ to the concentration of lactose
This function sum αF + βP + δL is added to the concentration of fat, protein, lactose or protein and lactose in the adder 44 as the ash concentration, and the result is displayed on the display 46.
Displays the concentration of total milk solids or non-fat milk solids. In addition, in the above explanation, ash content was treated as a sum of functions of three components: fat, protein, and lactose.
The milk solids content may be determined by treating it as a function sum of only two of these components, not necessarily the three components. Even if only two components are used, it is possible to obtain a much more accurate measurement value of the milk solid content compared to the conventional method where the amount is always treated as a constant amount. As explained above, according to the present invention, in order to obtain the total milk solid content or non-fat milk solid content in milk, ash content is calculated as the sum of functions of fat, protein, and lactose, or all of them. Since the amount of ash is treated as an amount that changes in response to changes in the amounts of each component of fat, protein, and lactose, it is possible to reduce errors when treating ash as a constant amount as in conventional measurement methods. Also, the measurement range can be expanded.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の牛乳中の全乳固形分あるいは無
脂乳固形分を測定する測定装置を示すブロツク
図、第2図は牛乳の赤外線吸収スペクトル図、第
3図は従来の測定方法による測定値の標準測定法
による基準値に対する偏りを示す模図、第4図は
本発明による測定装置を示すブロツク図である。 10……赤外線分析器、11……光源、14…
…測定用赤外線干渉フイルタ、15……参照用赤
外線干渉フイルタ、16……チヨツパ、17……
セル、18……光電変換器、20……サーボモー
タ、21……遮光板、22……ポテンシヨメー
タ、41f,41p,41l……記憶器、42f,4
p,42l……設定器、43f,43p,43l……
乗算器、44……加算器、45……切換スイツ
チ、46……表示器。
Figure 1 is a block diagram showing a conventional measuring device for measuring total milk solids content or non-fat milk solid content in milk, Figure 2 is an infrared absorption spectrum diagram of milk, and Figure 3 is a measurement using a conventional measurement method. FIG. 4 is a schematic diagram showing the deviation of the value from the reference value according to the standard measurement method, and FIG. 4 is a block diagram showing the measuring device according to the present invention. 10...Infrared analyzer, 11...Light source, 14...
...Infrared interference filter for measurement, 15...Infrared interference filter for reference, 16...Chiyotsupa, 17...
Cell, 18... Photoelectric converter, 20... Servo motor, 21... Light shielding plate, 22... Potentiometer, 41 f , 41 p , 41 l ... Memory device, 42 f , 4
2 p , 42 l ... setting device, 43 f , 43 p , 43 l ...
Multiplier, 44... Adder, 45... Changeover switch, 46... Display.

Claims (1)

【特許請求の範囲】 1 赤外線吸収スペクトルによつて牛乳中の脂
肪、蛋白質、乳糖の濃度を測定し、この脂肪、蛋
白質、乳糖の一又は全部の濃度にそれぞれ所定の
係数を乗算し、前記脂肪、蛋白質、乳糖の濃度の
和に、あるいは前記蛋白質、乳糖の濃度の和に、
前記各乗算値の和を加算して牛乳中の乳固形分の
濃度を求めることを特徴とする赤外線による牛乳
中の乳固形分の測定方法。 2 赤外線吸収スペクトルによつて牛乳中の脂
肪、蛋白質、乳糖の濃度を測定する赤外線分析器
と;この赤外線分析器で測定された脂肪、蛋白
質、乳糖の一又は全部の濃度にそれぞれ所定の係
数を乗算する乗算器と;各乗算器による乗算値の
和を脂肪、蛋白質、乳糖の濃度の和に、あるいは
蛋白質、乳糖の濃度の和に加算して乳固形分の濃
度を算出する加算器とを備えた赤外線による牛乳
中の乳固形分の測定装置。
[Claims] 1. The concentration of fat, protein, and lactose in milk is measured by infrared absorption spectrum, and the concentration of one or all of fat, protein, and lactose is multiplied by a predetermined coefficient, and the concentration of fat, protein, and lactose is multiplied by a predetermined coefficient. , to the sum of the concentrations of protein and lactose, or to the sum of the concentrations of the protein and lactose,
A method for measuring milk solids in milk using infrared rays, characterized in that the concentration of milk solids in milk is determined by adding the sums of the multiplication values. 2. An infrared analyzer that measures the concentration of fat, protein, and lactose in milk using an infrared absorption spectrum; a multiplier for multiplication; and an adder for calculating the concentration of milk solids by adding the sum of the multiplication values from each multiplier to the sum of the concentrations of fat, protein, and lactose, or to the sum of the concentrations of protein and lactose. A device for measuring milk solids in milk using infrared rays.
JP8941480A 1980-06-30 1980-06-30 Method and apparatus for measuring solid content in cow's milk by infrared ray Granted JPS5714742A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8941480A JPS5714742A (en) 1980-06-30 1980-06-30 Method and apparatus for measuring solid content in cow's milk by infrared ray

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8941480A JPS5714742A (en) 1980-06-30 1980-06-30 Method and apparatus for measuring solid content in cow's milk by infrared ray

Publications (2)

Publication Number Publication Date
JPS5714742A JPS5714742A (en) 1982-01-26
JPS6229017B2 true JPS6229017B2 (en) 1987-06-24

Family

ID=13969983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8941480A Granted JPS5714742A (en) 1980-06-30 1980-06-30 Method and apparatus for measuring solid content in cow's milk by infrared ray

Country Status (1)

Country Link
JP (1) JPS5714742A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63149140A (en) * 1986-12-15 1988-06-21 大同メタル工業株式会社 Composite sliding body
JPH04113024A (en) * 1990-08-31 1992-04-14 Daido Metal Co Ltd Sliding member made of al bearing alloy excellent in non-seizure property
DK165391D0 (en) * 1991-09-27 1991-09-27 Foss Electric As IR measurement system
EP0871858B1 (en) * 1995-04-06 2006-09-13 DeLaval Holding AB Method and apparatus for quantitative particle determination in fluids

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5663240A (en) * 1979-10-15 1981-05-29 Shields John Quantitative analyzer for optical characteristics of material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5663240A (en) * 1979-10-15 1981-05-29 Shields John Quantitative analyzer for optical characteristics of material

Also Published As

Publication number Publication date
JPS5714742A (en) 1982-01-26

Similar Documents

Publication Publication Date Title
US4684805A (en) Method and apparatus for measuring stable isotopes
Ohnishi Characterization of the murexide method: dual-wavelength spectrophotometry of cations under physiological conditions
JPH054606B2 (en)
WO1991019970A1 (en) Method and apparatus for measuring the contents of components of skim milk, milk, cream and cheese using near infrared ray
US2579825A (en) Analyzer
JPS6229017B2 (en)
JP3203798B2 (en) How to measure chromogen
JPH0854339A (en) Method and instrument for measuring chromaticity and turbidity of solvent containing colloidal matter
JPS62291547A (en) Method for measuring concentration of substance
US3746511A (en) Automated determination of milkfat in milk
JPH0431522B2 (en)
JPS6140928B2 (en)
US3706497A (en) Method and apparatus for determining colorimetric concentrations
JPH0721405B2 (en) Fourier transform method Infrared film thickness measurement method
JPH04313007A (en) Film inspecting device
JPS60159635A (en) Method for measuring turbidity
JPS593223A (en) Device for reducing error on measurement resulting from spurious beam in spectrophotometer
JPH07260680A (en) Infrared ray sensor
SU564599A1 (en) Method for determining fat content in milk
JPS595857B2 (en) Oil concentration measuring device
JP2529562B2 (en) Ellipsometer
JPH0317298B2 (en)
JPH04249748A (en) Measuring method of constituent concentration of mixture of hydrogen peroxide and ammonia
JPH07111327B2 (en) Ellipsometer
JPS587547A (en) Infrared moisture meter