JPS62287136A - Qualitative analysis of element - Google Patents

Qualitative analysis of element

Info

Publication number
JPS62287136A
JPS62287136A JP61130533A JP13053386A JPS62287136A JP S62287136 A JPS62287136 A JP S62287136A JP 61130533 A JP61130533 A JP 61130533A JP 13053386 A JP13053386 A JP 13053386A JP S62287136 A JPS62287136 A JP S62287136A
Authority
JP
Japan
Prior art keywords
ray
wavelength
value
characteristic
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61130533A
Other languages
Japanese (ja)
Inventor
Teruji Hirai
平居 暉士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP61130533A priority Critical patent/JPS62287136A/en
Publication of JPS62287136A publication Critical patent/JPS62287136A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To easily obtain an exact analysis value by scanning a prescribed wavelength range with the characteristic X-ray wavelength of an objective element as a center at a prescribed speed and determining the difference between the integrated value of the detection signal of the characteristic X-ray and the measured value of the background near the characteristic X-ray as the analysis value. CONSTITUTION:A sample S is excited by an excitation ray E to release the X-ray. A spectroscope driving device 3 is controlled by a CPU4 so that the range of the specified wavelength width with the wavelength of the characteristic X-ray of the objective element as a center is subjected to the wavelength scanning at the prescribed speed by an X-ray spectroscope 1. The detection signal of the characteristic X-ray is integrated by an X-ray signal counter 2 and the integrated value NP thereof is stored. The integrated value NB of the X-ray for the same time near the characteristic X-ray is measured and stored. NB is subtracted from NP and the difference therebetween is divided by the integration time. The quotient thereof is multiplied by a peak coefft. to calculate the analysis value which is then displayed on a display device 5.

Description

【発明の詳細な説明】 3、発明の詳細な説明 イ 産業上の利用分野 本発明は、X線マイクロアナライザ(EPMA)や蛍光
X線装置など、波長走査型X線分光器を用いて元素の自
動定性分析を行う方法に関する。
[Detailed Description of the Invention] 3. Detailed Description of the Invention A. Industrial Application Field The present invention is directed to the analysis of elements using a wavelength scanning X-ray spectrometer such as an X-ray microanalyzer (EPMA) or a fluorescent X-ray device. Concerning how to perform automated qualitative analysis.

口、Ut来の技術 X線マイクロアナライザ(EPMA)や蛍光X線装置な
ど、波長走査型X線分光器を用いて元素の自動定性分析
を行う場合、各元素の特性X線波長及びバックグランド
(BG)l定波長含指定し、これら指定された波長点を
走査型X線分光器で順次走査し、バックグランド(BG
>強度と特性X線ピーク強度を測定し、検出されたピー
ク信号がバックグランド信号と比較して、有征差がある
か否かを1′11定することにより、各元素の存在をト
11定すると云う方法によっている。即ち、この方法に
よると各元素毎にピーク測定波長点及びBG測定波長点
を設定し、その波長点分コンピュータに記憶させ、測定
時に順次その波長点に分光器を駆動して、その波長点で
の測定を行っている。しかし、測定波長点をこのように
設定して測定分行った場合、分光器相互間の誤差+11
.1台の分光器における波長再現性(2,試料中の元素
の化合状君によって生じる発生スペクトルのシフト(3
)等に起因して、設定波長点と測定元素の波長点との間
にズレが発生して、正しい定性分析結果が得られないこ
とがあった。このような問題を解決する方法として従来
は(1)に対しては分光器毎に標準試料を用いて目的元
素の測定波長値を登録し、(21に対しては再現性の良
い分光器を選択し、(3)に対しては試料中の元素化合
状態の特異性に合わせて目的元素波長点の設定をする等
測定前の調整に大変手間が掛かると共に、自動分析等の
使用に対しては分析能率及び分析精度が低く又再現性の
良いX線分光器は換言すれば、高精度のX線分光器であ
るから高価になる等の問題点を抱えている。
When performing automatic qualitative analysis of elements using a wavelength-scanning X-ray spectrometer such as an X-ray microanalyzer (EPMA) or a fluorescent X-ray device, the characteristic X-ray wavelength of each element and the background ( BG) l A constant wavelength is specified, these specified wavelength points are sequentially scanned with a scanning X-ray spectrometer, and the background (BG)
> The presence of each element can be determined by measuring the intensity and characteristic X-ray peak intensity, comparing the detected peak signal with the background signal, and determining whether there is a significant difference. It is based on the method of determining That is, according to this method, a peak measurement wavelength point and a BG measurement wavelength point are set for each element, the wavelength points are stored in the computer, and the spectrometer is sequentially driven to the wavelength points during measurement. are being measured. However, if the measurement wavelength point is set in this way and measurements are made, the error between the spectrometers will be +11
.. Wavelength reproducibility in one spectrometer (2) Shift in the generated spectrum caused by the combination of elements in the sample (3)
) etc., a deviation may occur between the set wavelength point and the wavelength point of the measured element, making it impossible to obtain correct qualitative analysis results. Conventionally, as a method to solve such problems, for (1), the measurement wavelength value of the target element is registered using a standard sample for each spectrometer, and for (21), a spectrometer with good reproducibility is used. For (3), it takes a lot of time to make adjustments before measurement, such as setting the wavelength point of the target element according to the specificity of the elemental combination state in the sample, and it is difficult to use automatic analysis. In other words, an X-ray spectrometer with good reproducibility has problems such as low analysis efficiency and accuracy, and high-precision X-ray spectrometers that are expensive.

ハ 発明が解決しようとする問題点 本発明は、上述したような自動定性分析における波長点
の設定において、分光器相互間の誤差や、1台の分光器
の再現性及び試t(の元素化合状態による波長ンフト等
に起因して目的元素波長点と設定波長点とのズレが発生
する状況下においても、準備操IYに手間どることなく
、格別高価な分光品分必要としないで、自動定性分析に
よって正確な分析結果を得られるようにすることを目的
とする。
C. Problems to be Solved by the Invention The present invention solves problems in setting the wavelength point in automatic qualitative analysis as described above, including the error between spectrometers, the reproducibility of one spectrometer, and the elemental composition of the sample. Even in situations where there is a discrepancy between the target element wavelength point and the set wavelength point due to wavelength shifts depending on the conditions, automatic qualitative analysis can be performed without the hassle of preparatory IY and without the need for particularly expensive spectroscopic equipment. The purpose is to enable accurate analysis results to be obtained through analysis.

二9問題点解決のための手段 波長走査型X線分光器と用いて行う元素の定性分析法に
おいて、第1図に示すように測定する元素(目的元素)
から発生する特性X線波長^と中心とする±aの適宜波
長範囲を一定速度で走査して、分光されたX線強度を積
分すると共に、目的元素の特性X線の波長から少し離れ
たバックグランド域の波長域の一波長点で、X線を測定
し、測定値を上記の走l!2:範囲間の積分時間に相当
する値に換算する。上記2つの測定において求めた、測
定値とffA算値の差を必要に応じてピーク波形の形状
に応じた補正を行い、その補正値を分析値として用いる
ようにした。
29 Means for Solving Problems In the qualitative analysis method of elements performed using a wavelength scanning X-ray spectrometer, the element to be measured (target element) as shown in Figure 1.
The characteristic X-ray wavelength ^ generated from X-rays are measured at one wavelength point in the ground wavelength range, and the measured value is calculated as shown above. 2: Convert to a value equivalent to the integration time between ranges. The difference between the measured value and the calculated ffA value obtained in the above two measurements was corrected as necessary according to the shape of the peak waveform, and the corrected value was used as the analysis value.

ホ1作用 目的元素の特性X線の波長位置が上述したような原因に
より、設定値と実際値とにおいてズレることかある。そ
のために実際には存在する元素が存在しないどういう分
析値が得られることがある分光器の波長走査3目的元素
の特性X線の波長点を中心としである巾を持った171
隔?一定速度で波長走査を行い、その走査の間積分測定
を行う。
(1) The wavelength position of the characteristic X-ray of the target element may deviate between the set value and the actual value due to the reasons mentioned above. For this reason, it is possible to obtain analysis values that do not actually exist for elements that actually exist.Wavelength scanning of a spectrometer 3 Characteristics of the target element 171 with a certain width centered on the wavelength point of the X-ray
A gap? Wavelength scanning is performed at a constant speed, and integral measurements are taken during the scanning.

第1図に示されるように、試料中の目的元素から放射さ
れる特性X線の波長が分光器上の波長位置λからズレで
いても、上記走査幅内のどこかに存在するから、ピーク
位置がズしていてもX線強度の積分は一定で、この積分
値は特性X線ピークの積分と、走査範囲におけるバック
グランドの積分の和となっている。そこで目的元素の特
性X線の波長から少し離れたバックグランド域の一波長
点λ′においてバックグランド値を求める較正測定を行
い、上記積分時間と同じ時間に相当するバックグランド
測定値を、測定又は演算によって求める。上記の本測定
と較正測定で得られた2つの測定値の差分求めれば、目
的元素の定性分析を行うことができる。この方法によれ
ば、X線の分光位置が多少ズしても、元素の見落としと
か過少評価が発生しなくなり、分析の信頼性が向上する
As shown in Figure 1, even if the wavelength of the characteristic X-ray emitted from the target element in the sample deviates from the wavelength position λ on the spectrometer, the peak exists somewhere within the scanning width. Even if the position shifts, the integral of the X-ray intensity remains constant, and this integral value is the sum of the integral of the characteristic X-ray peak and the integral of the background in the scanning range. Therefore, a calibration measurement is performed to determine the background value at one wavelength point λ' in the background region, which is slightly away from the wavelength of the characteristic X-ray of the target element, and the background measurement value corresponding to the same time as the above integration time is measured or Obtain by calculation. Qualitative analysis of the target element can be performed by calculating the difference between the two measured values obtained in the above-mentioned main measurement and calibration measurement. According to this method, even if the spectral position of the X-ray is slightly shifted, elements will not be overlooked or underestimated, and the reliability of analysis will be improved.

へ 実施例 第2図に本発明の一実施例を示す。第2図において、S
は試料、Eは励起線で試料Sを励起させてX線を放出さ
せる。1は走査型X線分光器で波長走査3行う。2は分
光されたX線を検出して、検出された信号を31数する
X線信号計数装置。3は分光器1の波長走査を制御する
X線分光器駆動装置。4はCPUで、分光器駆動装置3
の制御及び測定データの夕匹理を行い、目的元素の特性
X線の波長を中心として予め指定された一定の波長巾の
範囲を一定速度で・波長走査させて、その走査時間であ
るT時間の間、X線信号計数装置2によって、X41検
出信号を積分し、その積分値NPと記憶する2次に、目
的元素の特性X線の波長から少し離れたバックグランド
域で予め指定された波長に分光2S 1をセットさせ、
その波長のX線を検出積分して、その積分値をT時間積
分値に換算して、その換算値N8を記憶する。上記積分
値Npから11i算値N8を引き、その差を積分時間T
で割り、その商にピーク係数を掛けて、分析値を算出す
る。5は分析逍を表示する表示装置である。
Embodiment FIG. 2 shows an embodiment of the present invention. In Figure 2, S
is a sample, and E is an excitation ray that excites the sample S to emit X-rays. 1 performs wavelength scanning 3 using a scanning X-ray spectrometer. 2 is an X-ray signal counting device that detects spectroscopic X-rays and counts the detected signals to 31. 3 is an X-ray spectrometer driving device that controls wavelength scanning of the spectrometer 1; 4 is a CPU, and spectrometer drive device 3
control and control of the measurement data, scan a pre-specified wavelength range centered around the characteristic X-ray wavelength of the target element at a constant speed, and calculate the scanning time T time. During this period, the X41 detection signal is integrated by the X-ray signal counter 2 and stored as the integral value NP.Secondly, the X41 detection signal is integrated and stored as the integral value NP. Set Spectral 2S 1 to
The X-ray of that wavelength is detected and integrated, the integrated value is converted to a T time integrated value, and the converted value N8 is stored. Subtract the 11i calculation value N8 from the above integral value Np, and calculate the difference over the integration time T.
Calculate the analysis value by dividing by and multiplying the quotient by the peak coefficient. 5 is a display device that displays the analysis results.

以上の構成において、X線分光測定のスケジュールとと
検出されてCPU4に記憶された測定デ−夕の処理方法
が本発明の要部で、これを第3図のフローチャートを用
いて説明する。
In the above configuration, the schedule of X-ray spectrometry and the method of processing the detected measurement data stored in the CPU 4 are the main parts of the present invention, which will be explained using the flowchart of FIG.

試msを測定点にセットする(イ)。走査型X線分光器
1と目的元素の特性X線の波長を中心とする一定波長巾
の範囲を一定速度で走査させる(口)。X線信号計数装
置2により、分光器1で分光されたX線を検出し、上記
走査時間Tの量計数(積分)する(ハ)、gL分したデ
ータNPをCPU4に記憶する。目的元素の特性X線の
波長と少し離れた波長点に分光3とセットする(ホ)。
Set the sample ms to the measurement point (a). The scanning X-ray spectrometer 1 is caused to scan at a constant speed a range of a constant wavelength width centered on the wavelength of the characteristic X-ray of the target element. The X-ray signal counting device 2 detects the X-rays separated by the spectrometer 1, counts (integrates) the amount of the scanning time T (c), and stores gL-divided data NP in the CPU 4. Set spectroscopy 3 to a wavelength point slightly distant from the wavelength of the characteristic X-ray of the target element (e).

X線信号計数装置2により、分光器1で分光されたX線
を検出し、一定時間tの量計数(fa分)する(へ)。
The X-ray signal counting device 2 detects the X-rays separated by the spectroscope 1 and counts the amount (fa minutes) for a certain period of time t.

計数値にT7/シを掛算して、上記積分時間Tに相当す
る値に換算する(ト)。換算値NBを記憶する(チ)。
The counted value is multiplied by T7/c to convert it into a value corresponding to the integration time T (g). Store the converted value NB (H).

分析値I2を下記の演算式(1)て゛算出する(す)。The analysis value I2 is calculated using the following arithmetic expression (1).

分析値Ip =aX (Np  Na ) /T−11
10し、aはピーク半値巾又はピーク波形に基づいて1
乍成された定数。例えば、その元素に対して予想される
ピーク半偵巾の逆数。
Analysis value Ip = aX (Np Na) /T-11
10, and a is 1 based on the peak half-width or peak waveform.
Constructed constant. For example, the reciprocal of the peak half-exploration expected for that element.

分析値Ipをバックグランド強度と比較して、その元素
の有無を判定し、その結果を表示装置5で表示する(ヌ
)。全目的元素の特性X線の検出が終了したか否かを間
断する(ル)。全目的元素の特性X線の検出が終了して
いない場合は、動fjは(ロ)に戻り次の元素について
上記の動作を繰り返す。全目的元素の特性X線の検出が
終了すると、測定は終わる。このようにして求めた分析
値■2によって元素の有無を同定する。
The analysis value Ip is compared with the background intensity to determine the presence or absence of the element, and the result is displayed on the display device 5 (N). Check whether detection of characteristic X-rays of all target elements has been completed (ru). If the detection of characteristic X-rays for all target elements has not been completed, the dynamic fj returns to (b) and repeats the above operation for the next element. The measurement ends when the detection of characteristic X-rays of all target elements is completed. The presence or absence of the element is identified based on the analytical value (2) obtained in this manner.

本実施例では、目的元素の特性X線の波長を設定して、
その波長を中心とする一定波長巾の範囲を分光器1で走
査するようにしているが、分光器1を一定の走査範囲、
一定の速度で走査して、測定する元素に対応する予め指
定された範囲だけで積分するようにしても同じ効果が得
られる。
In this example, the wavelength of the characteristic X-ray of the target element is set,
The spectrometer 1 is designed to scan a range of a certain wavelength width centered on that wavelength;
The same effect can be obtained by scanning at a constant speed and integrating only over a prespecified range corresponding to the element to be measured.

又、走査範囲を一定速度で走査する方法としては、分光
器を連続的に駆動していく方法と、一定時間間隔・一定
波長間隔でスキンプしながら走査する方法があるが、ど
ちらでも同じ効果がi)らiする。
Additionally, there are two ways to scan the scanning range at a constant speed: one is to drive the spectrometer continuously, and the other is to scan while skimming at regular time and wavelength intervals, but both methods have the same effect. i) et al.

また、積分値Npからta算値Naを引いた差を積分時
間Tで除した値をピーク計数値として用いているが、積
分時間分一定にすれば差をそのまま用いても同じ効果が
得られる。
Also, the value obtained by subtracting the ta calculation value Na from the integral value Np and dividing it by the integral time T is used as the peak count value, but if the integral time is kept constant, the same effect can be obtained by using the difference as is. .

ト 効果 本発明によれば、目的元素の特性X線の波長に正確しセ
ット出来なくても定性分析が可能となったのて゛、コス
トダウンが計れると共に、正確な分析が可能になり、一
段と分析の信頼性が向上した
G. Effects According to the present invention, qualitative analysis is possible even if the wavelength of the characteristic X-ray of the target element cannot be set accurately, which reduces costs, enables accurate analysis, and further improves analysis efficiency. Improved reliability

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を説明するピーク信号図、第2図は
本発明の一実施例のブロック図、第3図はCPUのフロ
ーチャート図である。 λ・ 特性X線の波長位置2 Δλ・ 設定の波長位置と実際の波長位置とのズレ、 
λ° ・・バックグランド波長位置2a・・走査範囲の
半幅値。 Ba   バックグランド値、  IP  ・・ピーク
逍第1図 第2図
FIG. 1 is a peak signal diagram explaining the method of the present invention, FIG. 2 is a block diagram of an embodiment of the present invention, and FIG. 3 is a flowchart of the CPU. λ・ Wavelength position of characteristic X-ray 2 Δλ・ Difference between set wavelength position and actual wavelength position,
λ°...Background wavelength position 2a...Half width value of the scanning range. Ba background value, IP...peak value Fig. 1 Fig. 2

Claims (1)

【特許請求の範囲】[Claims] 波長走査型X線分光器を用いて測定する元素(目的元素
)の特性X線波長を中心とする所定波長範囲を一定速度
で走査して、分光されたX線検出信号を積分すると共に
、目的元素の特性X線の波長から少し離れた波長位置で
、X線を測定し、測定値を上記の走査範囲間の積分時間
に相当する値に換算し、上記2つの測定において求めた
、測定値と換算値の差を分析値とすることを特徴とする
元素の定性分析法。
A wavelength scanning X-ray spectrometer scans at a constant speed a predetermined wavelength range centered on the characteristic X-ray wavelength of the element to be measured (target element), integrates the spectroscopic X-ray detection signal, and Measure X-rays at a wavelength position slightly distant from the characteristic X-ray wavelength of the element, convert the measured value to a value equivalent to the integration time between the above scanning ranges, and calculate the measured value obtained in the above two measurements. A qualitative analysis method for elements characterized by using the difference between the converted value and the converted value as the analytical value.
JP61130533A 1986-06-05 1986-06-05 Qualitative analysis of element Pending JPS62287136A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61130533A JPS62287136A (en) 1986-06-05 1986-06-05 Qualitative analysis of element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61130533A JPS62287136A (en) 1986-06-05 1986-06-05 Qualitative analysis of element

Publications (1)

Publication Number Publication Date
JPS62287136A true JPS62287136A (en) 1987-12-14

Family

ID=15036569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61130533A Pending JPS62287136A (en) 1986-06-05 1986-06-05 Qualitative analysis of element

Country Status (1)

Country Link
JP (1) JPS62287136A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01320749A (en) * 1988-06-21 1989-12-26 Jeol Ltd Measuring method using x-ray microanalyser
WO2018061608A1 (en) * 2016-09-30 2018-04-05 株式会社リガク Wavelength-dispersive x-ray fluorescence analysis device and x-ray fluorescence analysis method using same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01320749A (en) * 1988-06-21 1989-12-26 Jeol Ltd Measuring method using x-ray microanalyser
WO2018061608A1 (en) * 2016-09-30 2018-04-05 株式会社リガク Wavelength-dispersive x-ray fluorescence analysis device and x-ray fluorescence analysis method using same
JPWO2018061608A1 (en) * 2016-09-30 2019-03-07 株式会社リガク Wavelength dispersive X-ray fluorescence analyzer and fluorescent X-ray analysis method using the same
US10768125B2 (en) 2016-09-30 2020-09-08 Rigaku Corporation Wavelength dispersive x-ray fluorescence spectrometer and x-ray fluorescence analyzing method using the same

Similar Documents

Publication Publication Date Title
EP0091126B1 (en) Fluorimeter
US4798463A (en) Spectrofluorophotometer
US6596153B1 (en) Method for analyzing a gas sample
KR960012331B1 (en) Method and apparatus for background correction in analysis of a specimen surface
JPS62287136A (en) Qualitative analysis of element
JP3207882B2 (en) Spectral fluorometer spectral correction method and spectral fluorometer with spectrum correction function
EP0204855B1 (en) Method and apparatus for state analysis
US20220260506A1 (en) X-ray fluorescence spectrometer
JP3291251B2 (en) X-ray fluorescence analyzer
JP3907890B2 (en) X-ray elemental analyzer
JPH0247542A (en) Quantitative analysis using x-ray spectroscope
JP3301729B2 (en) X-ray fluorescence analysis method and apparatus by quantitative analysis
CN112394079A (en) Electron beam micro-area analyzer
JP2009535619A (en) Method in spectroscopy for the investigation of samples containing at least two elements
JP4279983B2 (en) X-ray fluorescence analyzer
JPH01319238A (en) X-ray spectrum analyzer
JP2002310957A (en) X-ray analyzer by electron excitation
JPS62285048A (en) Element density distribution measurement
JPH09127026A (en) Fluorescent x-ray analytical method
JPH05340897A (en) X-ray spectrometer
JPH075128A (en) X-ray fluorescence analytic equipment
JPWO2022030032A5 (en)
JPH01302142A (en) Atomic absorption photometer
JP2517970B2 (en) Mass spectrometer data processing device
JPS63142238A (en) Method and apparatus for emission spectroanalysis