JP3907890B2 - X-ray elemental analyzer - Google Patents

X-ray elemental analyzer Download PDF

Info

Publication number
JP3907890B2
JP3907890B2 JP31185399A JP31185399A JP3907890B2 JP 3907890 B2 JP3907890 B2 JP 3907890B2 JP 31185399 A JP31185399 A JP 31185399A JP 31185399 A JP31185399 A JP 31185399A JP 3907890 B2 JP3907890 B2 JP 3907890B2
Authority
JP
Japan
Prior art keywords
ray
measurement
interest
measurement time
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31185399A
Other languages
Japanese (ja)
Other versions
JP2001133419A (en
Inventor
正彦 桑田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP31185399A priority Critical patent/JP3907890B2/en
Publication of JP2001133419A publication Critical patent/JP2001133419A/en
Application granted granted Critical
Publication of JP3907890B2 publication Critical patent/JP3907890B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

【0001】
この発明は、入力設定された期待精度の分析測定が自動的に行われるようにしたX線元素分析装置に関する。
【発明の属する技術分野】
【0002】
【従来の技術】
一般に、蛍光X線分析装置などのX線元素分析装置を用いて試料の分析測定を行う場合、試料表面からのX線の発生はランダムであり、計数系で発生する雑音による揺らぎなどにより、X線のスペクトルには統計変動が本質的に存在する。
【0003】
X線測定値の統計誤差(相対標準誤差)は、1回の計数値がnの場合、1/n1/2 とされている。つまり計数値nが増大するに従って相対誤差は減少することを示している。計数値nを増すには、長時間測定するか、測定を繰り返してその結果を組み合わせるかのいずれかの方法がとられる。
【0004】
従来、X線元素分析装置のオペレータは、通常、装置に備えられている計数率計又は不感時間をみてX線励起源の発生強度を調整し(自動設定される装置も増えてきている)、更にスペクトルの試し測定結果から経験によって自分の必要とする元素の統計変動値を推測し、必要な測定時間を設定して本測定を行うようにしている。そして、定量結果には、そのデータの信頼性を示す統計変動から計算される誤差範囲が打ち出されるようにした装置もある。
【0005】
【発明が解決しようとする課題】
ところで、近年、X線分析装置は品質管理などの現場で使われるようになってきており、それに伴い、分析に対する高度の知識を要求されることなしに、高精度の測定結果が得られることが求められている。分析の初心者が陥りやすいミスとして、前述の統計変動による揺らぎの概念が欠落しているために、測定結果を誤って判断してしまうことがある。特に、打ち出し測定結果に有効数字の概念がなく、計算された結果をそのまま打ち出す装置が多いことが、混乱の一因ともなっている。また、打ち出し測定結果に誤差範囲が記録されても、それが期待値と異なる場合は再測定しなければならないという問題点があった。
【0006】
本発明は、従来のX線元素分析装置における上記問題点を解消するためになされたもので、分析の専門家でなくても測定値の信頼性についての知見を得ることができると共に、要求精度の分析測定を自動的に行うことが可能なX線元素分析装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記問題点を解決するため、本発明は、一次線の照射された試料より放出されるX線を検出して試料表面の分析測定を行うX線元素分析装置において、本測定を開始する前の予備測定により得られたX線測定スペクトルに対して所定の関心領域を設定する手段と、測定時間を入力設定する手段と、前記予備測定における前記関心領域のX線測定スペクトル強度と、入力設定された前記測定時間に基づき、前記測定時間における、前記関心領域のX線測定スペクトル強度対する予想精度を算出し表示する手段を備えていることを特徴とするものである。また、本発明は、一次線の照射された試料より放出されるX線を検出して試料表面の分析測定を行うX線元素分析装置において、所定の関心領域のX線測定スペクトルに関して、X線測定スペクトル強度に対する期待精度を入力設定する手段と、前記期待精度を得るのに必要な測定時間を、前記関心領域のX線測定スペクトル強度に対する統計誤差に基づき算出し設定する手段を備えていることを特徴とするものである。
【0008】
このように予め入力設定されている測定時間に対する予想精度を算出し表示する手段を備えているので、分析の専門家でなくても測定値の信頼性についての知見を得ることができ、また予想精度に基づき予め入力設定されている期待精度を得るのに必要な測定時間を算出して設定する手段を備えているので、要求精度の分析測定を容易に実行することができる。
【0009】
【発明の実施の形態】
次に、実施の形態について説明する。図1は、本発明に係るX線元素分析装置の実施の形態を示す概略ブロック構成図で、本発明を蛍光X線分析装置に適用したものを示している。図1において、1はX線管球からなるX線源、2はX線源1から出射され試料3に照射される一次X線、4は試料3から発生する蛍光X線、5は蛍光X線を検出するX線検出器(EDS検出器)、6はシステムプロセッサを含むX線計数装置、7はパーソナルコンピュータで入力操作部7−1や表示部7−2を備えている。そして、X線計数装置6は検出器5で検出された蛍光X線光子のエネルギーに比例する電気信号から、横軸をエネルギーとするスペクトラムを得るために増幅、フィルタによるS/Nの改善、AD変換等を行う。入力操作部7−1では、測定スペクトル上への関心領域(ROI)、期待精度、測定時間などを入力設定できるようになっており、従来の元素分析装置の持つ定性定量分析機能に加えて、特定領域の測定スペクトルに対する統計誤差の算出機能、入力設定された測定時間に対する予想精度を算出する機能、並びに入力設定された期待精度に対する測定時間を算出する機能等を備えている。
【0010】
次に、このように構成されているX線元素分析装置の動作を図2に示すフローチャートに基づいて説明する。オペレータが本装置を用いて分析測定を開始する際には、目的の元素スペクトルの定量分析精度に対して所望の期待値をもっているが、本装置は、その期待値に対してどの程度の計測時間を設定したらよいかの判断情報を示すと共に、予め設定される期待精度に対応する計測時間を自動的に設定して分析を行うようになっている。
【0011】
すなわち、使用する測定モードを選択すると、まず、予め入力操作部7−1から入力設定された時間、例えば10秒程度の短時間の予備測定を行い、計測エネルギースペクトルを表示部7−2に表示する(ステップS1)。オペレータは周期律表による元素指定やカーソルによるスペクトルピーク指定により、エネルギースペクトル上に所定の関心領域を入力操作部7−1より入力設定すると共に、分析精度の期待値又は測定時間を入力設定する(ステップS2)。次いで、設定された関心領域の計測スペクトル強度(計数積算値n)から統計変動による誤差(1/n1/2 )を算出する(ステップS3)。そして、算出された統計誤差に基づき、予め入力設定されている測定時間に対する予想精度を算出し表示部7−2に表示し、オペレータに計測時間に対する判断情報を提供する。
【0012】
オペレータが予想精度に対して期待精度値を入力すると、前記算出された予想精度に基づいて、入力設定された期待精度を得るのに必要な測定時間を算出し設定する(ステップS4)。なお、算出された測定時間を表示しオペレータに確認を求め、オペレータが装置において算出された測定時間を承認せず、別途の測定時間を入力した場合は、その別途入力された測定時間に対する予想精度を算出し表示する。装置において算出された測定時間の設定値がオペレータによって承認されると、その設定された測定時間測定を行い(ステップS5)、通常の手順で定性分析と定量分析を行う(ステップS6,S7)。これにより、所望の期待精度で自動的に所定領域の分析測定を行うことができる。
【0013】
表1に10秒の予備測定の後に、 600秒の予想測定時間を入力した場合に予想されるスペクトル強度と精度(誤差%)を算出した例を示す。
【0014】
【表1】

Figure 0003907890
【0015】
この表1から、例えばSi については、 600秒の測定時間では統計変動から予想される誤差 3.9%の精度で分析測定が行われることがわかり、一方、誤差1%の精度で測定を行う場合には、測定時間は9000秒程度必要とされることがわかる。
【0016】
【発明の効果】
以上実施の形態に基づいて説明したように、本発明よれば、予め入力設定されている測定時間に対する予想精度を算出し表示する手段を備えているので、分析の専門家でなくても測定値の信頼性についての知見を得ることができ、また予想精度に基づき予め入力設定されている期待精度を得るのに必要な測定時間を算出して設定する手段を備えているので、要求精度の分析測定を容易に自動的に実行することができる。
【図面の簡単な説明】
【図1】本発明に係るX線元素分析装置の実施の形態を示す概略ブロック構成図である。
【図2】図1に示した実施の形態の動作を説明するためのフローチャートである。
【符号の説明】
1 X線源
2 一次X線
3 試料
4 蛍光X線
5 X線検出器
6 X線計数装置
7 パーソナルコンピュータ
7−1 入力操作部
7−2 表示部[0001]
The present invention relates to an X-ray elemental analyzer that automatically performs analytical measurement with expected accuracy that has been input and set.
BACKGROUND OF THE INVENTION
[0002]
[Prior art]
In general, when analyzing and measuring a sample using an X-ray elemental analyzer such as a fluorescent X-ray analyzer, X-ray generation from the sample surface is random, and fluctuations due to noise generated in the counting system cause X There are inherent statistical variations in the line spectrum.
[0003]
The statistical error (relative standard error) of the X-ray measurement value is 1 / n 1/2 when one count value is n. That is, the relative error decreases as the count value n increases. In order to increase the count value n, either a measurement is performed for a long time or a measurement is repeated and the results are combined.
[0004]
Conventionally, an operator of an X-ray elemental analyzer usually adjusts the generation intensity of the X-ray excitation source by looking at the counting rate meter or dead time provided in the apparatus (the number of devices set automatically is increasing). Furthermore, the statistical fluctuation value of the element required by the user is estimated from the trial measurement result of the spectrum, and the actual measurement is performed by setting a necessary measurement time. There is also an apparatus in which an error range calculated from statistical fluctuations indicating the reliability of the data is presented in the quantitative result.
[0005]
[Problems to be solved by the invention]
By the way, in recent years, X-ray analyzers have come to be used in the field such as quality control, and accordingly, high-precision measurement results can be obtained without requiring advanced knowledge of analysis. It has been demanded. As a mistake that a beginner of analysis tends to fall into, there is a case where the measurement result is erroneously judged because the concept of fluctuation due to the above-described statistical fluctuation is missing. In particular, the fact that there is no concept of significant figures in the launch measurement results and there are many devices that launch the calculated results as they are contributes to the confusion. In addition, even if an error range is recorded in the launch measurement result, there is a problem that if it is different from the expected value, it must be measured again.
[0006]
The present invention has been made to solve the above-mentioned problems in conventional X-ray elemental analyzers, and can obtain knowledge about the reliability of measured values even if it is not an analysis expert, and also requires the required accuracy. An object of the present invention is to provide an X-ray elemental analysis apparatus capable of automatically performing the above-described analytical measurement.
[0007]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention provides an X-ray element analyzer that detects X-rays emitted from a sample irradiated with primary rays and performs analytical measurement of the sample surface before starting the main measurement. Means for setting a predetermined region of interest for the X-ray measurement spectrum obtained by the preliminary measurement, means for inputting and setting the measurement time, and the X-ray measurement spectrum intensity of the region of interest in the preliminary measurement are input and set. was based on the measurement time, definitive to the measurement time, is characterized in that it comprises means for displaying calculated expected accuracy against the X-ray measuring spectral intensity of the region of interest. Further, the present invention provides the detected X-ray element analyzer for analyzing measurement of sample surface the X-rays emitted from the irradiated sample of the primary line, the X-ray measurement spectrum of a given region of interest, the X-ray means for inputting set expectations accuracy for measuring spectral intensity, the measurement time required to obtain the expected accuracy, that has a calculated means for setting, based on a statistical error for X-ray measurement spectrum intensity of the region of interest It is characterized by.
[0008]
In this way, since it has a means to calculate and display the expected accuracy for the measurement time set in advance, it is possible to obtain knowledge about the reliability of the measured value even if it is not an analysis expert, and Since a means for calculating and setting the measurement time required to obtain the expected accuracy that is input and set in advance based on the accuracy is provided, analysis measurement with the required accuracy can be easily performed.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments will be described. FIG. 1 is a schematic block diagram showing an embodiment of an X-ray elemental analyzer according to the present invention, and shows an example in which the present invention is applied to a fluorescent X-ray analyzer. In FIG. 1, 1 is an X-ray source composed of an X-ray tube, 2 is a primary X-ray emitted from the X-ray source 1 and irradiated on a sample 3, 4 is a fluorescent X-ray generated from the sample 3, and 5 is a fluorescent X-ray. An X-ray detector (EDS detector) for detecting a line, 6 is an X-ray counting device including a system processor, and 7 is a personal computer and includes an input operation unit 7-1 and a display unit 7-2. The X-ray counter 6 amplifies to obtain a spectrum with the horizontal axis as energy from the electrical signal proportional to the energy of the fluorescent X-ray photons detected by the detector 5, and improves the S / N by the filter, AD Perform conversion and so on. In the input operation unit 7-1, a region of interest (ROI) on the measurement spectrum, expected accuracy, measurement time, and the like can be input and set. In addition to the qualitative quantitative analysis function of the conventional elemental analyzer, A statistical error calculation function for a measurement spectrum in a specific region, a function for calculating an expected accuracy for an input-set measurement time, a function for calculating a measurement time for an input-set expected accuracy, and the like are provided.
[0010]
Next, the operation of the thus configured X-ray elemental analyzer will be described based on the flowchart shown in FIG. When an operator starts an analytical measurement using this device, he has a desired expected value for the quantitative analysis accuracy of the target element spectrum. Is determined, and the measurement time corresponding to the preset expected accuracy is automatically set for analysis.
[0011]
That is, when a measurement mode to be used is selected, first, preliminary measurement is performed for a short period of time, for example, about 10 seconds, which is input and set in advance from the input operation unit 7-1, and the measured energy spectrum is displayed on the display unit 7-2. (Step S1). The operator inputs and sets a predetermined region of interest on the energy spectrum from the input operation unit 7-1 and inputs and sets an expected value of analysis accuracy or a measurement time by specifying an element with a periodic table or a spectrum peak with a cursor ( Step S2). Next, an error (1 / n 1/2 ) due to statistical fluctuation is calculated from the measured spectrum intensity (count integrated value n) of the set region of interest (step S3). Then, based on the calculated statistical error, the predicted accuracy for the measurement time set in advance is calculated and displayed on the display unit 7-2 to provide the operator with determination information for the measurement time.
[0012]
When the operator inputs an expected accuracy value for the predicted accuracy, a measurement time required to obtain the input expected accuracy is calculated and set based on the calculated predicted accuracy (step S4). In addition, when the calculated measurement time is displayed and the operator is asked for confirmation, and the operator does not approve the calculated measurement time and enters a separate measurement time, the expected accuracy for the separately input measurement time Is calculated and displayed. When the set value of the measurement time calculated in the apparatus is approved by the operator, the set measurement time is measured (step S5), and the qualitative analysis and the quantitative analysis are performed by a normal procedure (steps S6 and S7). Thereby, it is possible to automatically perform analysis and measurement of a predetermined region with desired expected accuracy.
[0013]
Table 1 shows an example of calculating the expected spectral intensity and accuracy (error%) when an expected measurement time of 600 seconds is input after a preliminary measurement of 10 seconds.
[0014]
[Table 1]
Figure 0003907890
[0015]
From Table 1, it can be seen that, for Si, for example, analysis measurement is performed with an accuracy of 3.9% of error expected from statistical fluctuations at a measurement time of 600 seconds. It can be seen that the measurement time is about 9000 seconds.
[0016]
【The invention's effect】
As described above based on the embodiments, according to the present invention, since it is provided with means for calculating and displaying the predicted accuracy for the measurement time set in advance, the measured value can be used even if it is not an analysis expert. As a means to calculate and set the measurement time required to obtain the expected accuracy set in advance based on the expected accuracy, it is possible to analyze the required accuracy. Measurements can be performed easily and automatically.
[Brief description of the drawings]
FIG. 1 is a schematic block diagram showing an embodiment of an X-ray elemental analyzer according to the present invention.
FIG. 2 is a flowchart for explaining the operation of the embodiment shown in FIG. 1;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 X-ray source 2 Primary X-ray 3 Sample 4 Fluorescence X-ray 5 X-ray detector 6 X-ray counter 7 Personal computer 7-1 Input operation part 7-2 Display part

Claims (2)

一次線の照射された試料より放出されるX線を検出して試料表面の分析測定を行うX線元素分析装置において、
本測定を開始する前の予備測定により得られたX線測定スペクトルに対して所定の関心領域を設定する手段と、
測定時間を入力設定する手段と、
前記予備測定における前記関心領域のX線測定スペクトル強度と、入力設定された前記測定時間に基づき、前記測定時間における、前記関心領域のX線測定スペクトル強度対する予想精度を算出し表示する手段
を備えていることを特徴とするX線元素分析装置。
In an X-ray elemental analyzer for analyzing and measuring a sample surface by detecting X-rays emitted from a sample irradiated with primary rays,
Means for setting a predetermined region of interest with respect to the X-ray measurement spectrum obtained by the preliminary measurement before starting the main measurement;
A means to input and set the measurement time;
And X-ray measurement spectrum intensity of the region of interest in the preliminary measurement, based on the measurement time input set, definitive to the measurement time, means for displaying calculated expected accuracy against the X-ray measuring spectral intensity of the region of interest An X-ray elemental analysis apparatus comprising:
一次線の照射された試料より放出されるX線を検出して試料表面の分析測定を行うX線元素分析装置において、
所定の関心領域のX線測定スペクトルに関して、X線測定スペクトル強度に対する期待精度を入力設定する手段と、
前記期待精度を得るのに必要な測定時間を、前記関心領域のX線測定スペクトル強度に対する統計誤差に基づき算出し設定する手段
を備えていることを特徴とするX線元素分析装置。
In an X-ray elemental analyzer for analyzing and measuring a sample surface by detecting X-rays emitted from a sample irradiated with primary rays,
Means for inputting and setting the expected accuracy for the X-ray measurement spectrum intensity for the X-ray measurement spectrum of a predetermined region of interest;
An X-ray elemental analysis apparatus comprising: means for calculating and setting a measurement time required to obtain the expected accuracy based on a statistical error with respect to an X-ray measurement spectrum intensity of the region of interest.
JP31185399A 1999-11-02 1999-11-02 X-ray elemental analyzer Expired - Fee Related JP3907890B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31185399A JP3907890B2 (en) 1999-11-02 1999-11-02 X-ray elemental analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31185399A JP3907890B2 (en) 1999-11-02 1999-11-02 X-ray elemental analyzer

Publications (2)

Publication Number Publication Date
JP2001133419A JP2001133419A (en) 2001-05-18
JP3907890B2 true JP3907890B2 (en) 2007-04-18

Family

ID=18022213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31185399A Expired - Fee Related JP3907890B2 (en) 1999-11-02 1999-11-02 X-ray elemental analyzer

Country Status (1)

Country Link
JP (1) JP3907890B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006132945A (en) 2004-11-02 2006-05-25 Sii Nanotechnology Inc Detection lower limit monitor of fluorescent x-ray analyzer
JP4930874B2 (en) * 2006-06-22 2012-05-16 エスアイアイ・ナノテクノロジー株式会社 Energy dispersive radiation detection system and target element content measurement method
GB2502307A (en) * 2012-05-22 2013-11-27 Kromek Ltd Radiation Detection
JP7126928B2 (en) * 2018-11-20 2022-08-29 日本電子株式会社 Surface analysis device and surface analysis method
JP6732347B1 (en) * 2019-03-29 2020-07-29 株式会社リガク X-ray fluorescence analyzer
EP4080201A4 (en) 2019-12-19 2023-01-18 Rigaku Corporation Energy dispersive x-ray fluorescent analysis device, evaluation method, and evaluation program
CN112461879A (en) * 2020-11-26 2021-03-09 佛山格捷锐信息技术有限公司 Method and device for operating spectrum analyzer, spectrum analyzer and storage medium

Also Published As

Publication number Publication date
JP2001133419A (en) 2001-05-18

Similar Documents

Publication Publication Date Title
US20010033678A1 (en) Image processing apparatus
JP4928938B2 (en) X-ray fluorescence analysis method and X-ray fluorescence analyzer
JP3907890B2 (en) X-ray elemental analyzer
US5570406A (en) X-ray analyzer system and method of increasing response time
JP2000046763A (en) Fluorescent x-ray spectrometer
JP2841258B2 (en) X-ray fluorescence qualitative analysis method
US7289598B2 (en) X-ray fluorescent analysis apparatus
JP3610256B2 (en) X-ray fluorescence analyzer
JP3291251B2 (en) X-ray fluorescence analyzer
US4059762A (en) Method and apparatus for determining accuracy of radiation measurements made in the presence of background radiation
JP3291253B2 (en) X-ray fluorescence analyzer
JP4523958B2 (en) X-ray fluorescence analyzer and program used therefor
JP2001099795A (en) Element mapping device
JP3790643B2 (en) Surface analyzer with energy dispersive X-ray detector
JP4279983B2 (en) X-ray fluorescence analyzer
JP2000235077A (en) Radiation measuring device
JP3052272B2 (en) X-ray fluorescence qualitative analysis method using spectral processing
JP3389161B2 (en) X-ray fluorescence analyzer and recording medium used therein
JP2522224B2 (en) X-ray fluorescence analysis method
JP3567177B2 (en) X-ray fluorescence analyzer
JP3146195B2 (en) X-ray mapping device
JP3569670B2 (en) Radioactivity measurement device and radioactivity measurement method
JP4630490B2 (en) X-ray mapping analysis method
JP5634763B2 (en) X-ray fluorescence analyzer and computer program
Yufa et al. Marginal microleakage detection and radiopacity measurement under restoration with conventional and digital radiography

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060511

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061013

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20061120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070117

R150 Certificate of patent or registration of utility model

Ref document number: 3907890

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140126

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees