JPH075128A - X-ray fluorescence analytic equipment - Google Patents

X-ray fluorescence analytic equipment

Info

Publication number
JPH075128A
JPH075128A JP5169751A JP16975193A JPH075128A JP H075128 A JPH075128 A JP H075128A JP 5169751 A JP5169751 A JP 5169751A JP 16975193 A JP16975193 A JP 16975193A JP H075128 A JPH075128 A JP H075128A
Authority
JP
Japan
Prior art keywords
ray
wavelength
peak
characteristic
profile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5169751A
Other languages
Japanese (ja)
Other versions
JP3266896B2 (en
Inventor
Hideo Okashita
英男 岡下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP16975193A priority Critical patent/JP3266896B2/en
Publication of JPH075128A publication Critical patent/JPH075128A/en
Application granted granted Critical
Publication of JP3266896B2 publication Critical patent/JP3266896B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To obtain a correct quantitative value even upon fluctuation in the profile of spectral shape by arranging a plurality of fixed wavelength X-ray spectrometers having detection wavelength shift for one element and calculating the spectral profile of characteristic X-ray of the element based on the output values from the spectrometers. CONSTITUTION:Three X-ray spectrometers 3, for example, are arranged radially around a sample 1 for one element to be analyzed. One spectrometer is set to detect the standard wavelength of characteristic X-rays of a target element and the other spectrometers are shifted by a known wavelength, respectively, to the long wave side and the short wave side. Counters 11 count the outputs from an X-ray detector 7 and a data processor 12 takes in the counts for a predetermined time. The data processor 12 calculates the features, e.g. the peak of characteristic X-rays, the center of peak, and the intensity integrated for the wavelength, for each element to be determined from three data for one element. Since the peak profile is determined in such a manner, correct quantitative results can be obtained even upon fluctuation in the spectral profile.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は蛍光X線による試料の定
量分析を行う装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for quantitatively analyzing a sample by fluorescent X-ray.

【0002】[0002]

【従来の技術】蛍光X線分析を行うには、波長走査型の
X線分光器を用いた分析装置で試料から放射される蛍光
X線のスペクトルデータを採取して試料成分の定性と定
量を行う方法もあるが、また分析に時間がかゝるので、
波長固定型のX線分光器で検出波長を定量目的の元素の
特性X線の波長に合わせた非走査型の分析装置を用いる
場合がある。
2. Description of the Related Art To perform a fluorescent X-ray analysis, the spectrum data of fluorescent X-rays emitted from a sample is collected by an analyzer using a wavelength scanning X-ray spectroscope to qualitatively and quantitatively analyze sample components. There is also a way to do it, but it also takes time to analyze, so
In some cases, a fixed wavelength X-ray spectroscope uses a non-scanning type analyzer in which the detection wavelength is adjusted to the wavelength of the characteristic X-ray of the element for quantitative determination.

【0003】[0003]

【発明が解決しようとする課題】本発明は上述したうち
の後者の装置に関するものであるが、波長固定式の分光
器を用いる装置では、一つの元素の一つの特性X線につ
いて一個の分光器を用いるだけであるので、特性X線の
ピークのプロファイルのデータはなく、ピーク位置がわ
ずかずれても、検出される特性X線の強度が変化する。
他方試料中の成分の中には例えばNとかCのような超軽
元素で試料中での結合状態によって生じる特性X線のス
ペクトルの形状の変化が無視できない場合があって、こ
のような場合固定波長型のX線分光器を用いる方法では
このスペクトルの形状の変化による特性X線の強度の変
化をその元素の濃度の違いと誤認することになる。本発
明は固定波長型のX線分光器を使いながら、このような
特性X線のスペクトルの形状の変化の影響なしに正しい
定量値が得られるような蛍光X線分析装置を提供しよう
とするものである。
The present invention relates to the latter of the above-mentioned devices, but in a device using a fixed wavelength type spectroscope, one spectroscope is used for each characteristic X-ray of one element. Since there is no data of the profile of the characteristic X-ray peak, the intensity of the detected characteristic X-ray changes even if the peak position is slightly deviated.
On the other hand, some of the components in the sample are ultra-light elements such as N and C, and the change in the shape of the characteristic X-ray spectrum due to the binding state in the sample may not be neglected. In the method using the wavelength type X-ray spectroscope, the change in the intensity of the characteristic X-ray due to the change in the shape of the spectrum is mistakenly recognized as the difference in the concentration of the element. The present invention intends to provide a fluorescent X-ray analyzer capable of obtaining a correct quantitative value without using such a change in the shape of the characteristic X-ray spectrum while using a fixed wavelength X-ray spectrometer. Is.

【0004】[0004]

【課題を解決するための手段】試料の周囲に分析しよう
とする元素一つに対して複数個の固定波長型のX線分光
器を配置し、それらのX線分光器の検出波長を上記元素
の一つの特性X線波長を含め、その付近で相互に少しず
つずらせて設定し、これら複数のX線分光器の出力値か
ら試料より放射される上記元素の特性X線スペクトルの
プロファイルを算出し、そのプロファイルのピークトッ
プの高さ或は面積により、目的元素の定量を行うように
した。
A plurality of fixed wavelength type X-ray spectroscopes are arranged around a sample for one element to be analyzed, and the detection wavelengths of those X-ray spectroscopes are set to the above-mentioned elements. The characteristic X-ray spectrum of the above-mentioned element radiated from the sample is calculated from the output values of these plural X-ray spectroscopes, including the one characteristic X-ray wavelength of the The target element was quantified by the height or area of the peak top of the profile.

【0005】[0005]

【作用】一つの元素の一つの特性X線のピークを検出波
長の少しずつ異っている複数のX線分光器で検出してい
るので、一つのスペクトルを複数点で測定していること
になり、ピークプロファイルを求めることができる。従
ってピーク位置が少しずれてもピーク高さとか面積の正
しい値が求められる。
[Function] Since one characteristic X-ray peak of one element is detected by a plurality of X-ray spectroscopes having slightly different detection wavelengths, one spectrum is measured at a plurality of points. Therefore, the peak profile can be obtained. Therefore, even if the peak position is slightly deviated, a correct value for the peak height or area can be obtained.

【0006】[0006]

【実施例】図1は本発明の一実施例を示す。図で1は試
料であり、その上方の2は試料励起用X線源である。3
は波長固定型のX線分光器で、図では左右に二つ示して
あるが、分析しようとする元素一つにつき3台の分光器
が試料の周囲に配置され、その配置は上から見ると、試
料を中心に放射状になっている。
FIG. 1 shows an embodiment of the present invention. In the figure, 1 is a sample, and 2 above it is an X-ray source for exciting the sample. Three
Is a fixed-wavelength type X-ray spectroscope, and two are shown on the left and right in the figure. Three spectroscopes are arranged around the sample for each element to be analyzed, and the arrangement is seen from above. , It is radial around the sample.

【0007】図2は上述したX線分光器3の一つを示し
たもので、4は入口スリット、5は分光結晶、6は出口
スリットで7はX線検出器である。入口スリット4は分
光器の枠8に固定されているが、出口スリット6は入口
スリットと分光結晶5の中心を通る一つのローランド円
Cの切線方向のガイド9に沿い移動可能で、微動調節ね
じ10によってローランド円Cの切線方向に位置調節が
可能である。一元素につき三台一組の上述したX線分光
器は出口スリット6を基準位置に調整したとき、目的と
する元素の特性X線の標準波長(ピークがシフトしてい
ないときの波長)のX線が検出されるように、分光結晶
5の中心に対する夫々の位置が設定されている。一つの
元素についてこのような三台の分光器のうち一台は目的
元素の特性X線の標準波長が検出されるようにしてお
き、他の二つはこの標準波長に対して長波長側と短波長
側に夫々既知波長分ずつ出口スリット6を基準位置より
ずらせる。一つの元素に対してこのように調整された三
台のX線分光器が配置されている。もっとも元素毎のX
線分光器の数は三台に限らない。
FIG. 2 shows one of the above-mentioned X-ray spectroscopes 3, wherein 4 is an entrance slit, 5 is a dispersive crystal, 6 is an exit slit, and 7 is an X-ray detector. The entrance slit 4 is fixed to the frame 8 of the spectroscope, but the exit slit 6 is movable along a guide 9 in the direction of the cutting line of one Rowland circle C passing through the entrance slit and the center of the dispersive crystal 5, and a fine adjustment screw is used. The position can be adjusted in the cutting line direction of the Rowland circle C by 10. The above three sets of X-ray spectroscopes for one element have X of standard wavelength (wavelength when peak is not shifted) of the characteristic X-ray of the target element when the exit slit 6 is adjusted to the reference position. The respective positions with respect to the center of the dispersive crystal 5 are set so that the lines are detected. For one element, one of these three spectroscopes is set to detect the standard wavelength of the characteristic X-ray of the target element, and the other two are set on the long wavelength side with respect to this standard wavelength. The exit slit 6 is displaced from the reference position by the known wavelength on the short wavelength side. There are three X-ray spectrometers arranged in this way for one element. However, X for each element
The number of line spectroscopes is not limited to three.

【0008】図1に示すように各X線分光器のX線検出
器7の出力は夫々がカウンタ11で計数され、一定時間
の計数値がデータ処理装置12に取込まれる。データ処
理装置には一元素につき3個のデータが取込まれる。デ
ータ処理装置はこの一元素3個のデータから定量しよう
とする各元素の特性X線のピーク高さとピーク中心およ
び波長に対して積分された強度等の特徴を算出する。図
3はこの装置で三種類の窒素化合物の窒素の定量を行っ
たときの結果を示し、横軸上のOはNの特性X線波の標
準波長位置で、その両側のA,Bは三台のX線分光器の
うちの他の二台の検出波長位置を示し、三角印はBNの
測定結果、白丸はNaNO 3の測定結果で黒丸は(NH
42SO 4の測定結果である。データ処理装置は三つ
の測定データから、ピークの形を2次式として3個の係
数を決定し、決定されたピークの形について最大値とそ
の図3上における位置を求める。ピークの形を求めるに
は2次式でなく、誤差関数を用い、 Kexp(−ax2 )+C における三つの定数を決めるようにしてもよい。図3は
そのようにして決めた各試料のピークプロファイルを示
す。
As shown in FIG. 1, the output of the X-ray detector 7 of each X-ray spectroscope is counted by the counter 11, and the count value for a certain period of time is fetched by the data processor 12. The data processor collects three data for each element. The data processing device calculates characteristics such as the peak height and the peak center of the characteristic X-ray of each element to be quantified from the data of the three elements and the intensity integrated with respect to the wavelength. Fig. 3 shows the results of quantifying nitrogen in three kinds of nitrogen compounds with this device. O on the horizontal axis is the standard wavelength position of the characteristic X-ray wave of N, and A and B on both sides are three wavelengths. The detection wavelength positions of the other two of the X-ray spectroscopes are shown. Triangle marks are the measurement results of BN, white circles are the measurement results of NaNO 3 , and black circles are (NH
4 ) Measurement result of 2 SO 4 . The data processing device determines three coefficients from the three measurement data, using the peak shape as a quadratic equation, and obtains the maximum value and its position in FIG. 3 for the determined peak shape. To obtain the peak shape, an error function may be used instead of the quadratic equation to determine the three constants in Kexp (−ax 2 ) + C. FIG. 3 shows the peak profile of each sample thus determined.

【0009】図3の結果から見ても明らかなように同じ
窒素の定量でも化合物の種類によってピーク中心は標準
位置よりずれており、これを若し中央の一個所だけで測
定しているときは、窒素の量を実際より少なく見積もる
ことになり、図3の例の場合、その影響はNaNO 3
場合、特に大きい。
As is clear from the results shown in FIG. 3, even in the same determination of nitrogen, the peak center is deviated from the standard position depending on the type of compound, and when this is measured at only one point in the center, However, the amount of nitrogen is underestimated, and in the case of the example in FIG. 3, the influence is particularly large in the case of NaNO 3 .

【0010】[0010]

【発明の効果】本発明によれば、X線スペクトルの一つ
について複数個所上例では3個所で同時測定してピーク
プロファイルを決めているので、スペクトルの形状が変
化しても正しい定量結果を得ることができ、波長走査を
行わないから、分析所要時間が短縮される。分析所要時
間の短縮は単に分析能率の向上だけでなく、長時間励起
X線の照射を受けていると変質するような試料の場合、
波長走査法では分析できなかったので、蛍光X線分析法
の適用範囲の拡大にもつながるものである。
According to the present invention, since a peak profile is determined by simultaneously measuring three X-ray spectra at three positions in each of the above examples, a correct quantitative result can be obtained even if the shape of the spectrum changes. It can be obtained, and the time required for analysis is shortened because wavelength scanning is not performed. Shortening the analysis time not only improves the analysis efficiency, but also in the case of a sample that is altered when it is irradiated with excited X-rays for a long time,
Since it could not be analyzed by the wavelength scanning method, it also leads to the expansion of the applicable range of the fluorescent X-ray analysis method.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例装置の側面図FIG. 1 is a side view of an apparatus according to an embodiment of the present invention.

【図2】上記実施例で用いられるX線分光器の側面図FIG. 2 is a side view of the X-ray spectroscope used in the above embodiment.

【図3】本発明装置による分析例のグラフFIG. 3 is a graph of an example of analysis by the device of the present invention.

【符号の説明】[Explanation of symbols]

1 試料 2 試料励起用X線源 3 X線分光器 4 入口スリット 5 分光結晶 6 出口スリット 7 X線検出器 8 枠 9 ガイド 10 調節ねじ 11 カウンタ 12 データ処理装置 1 sample 2 sample excitation X-ray source 3 X-ray spectroscope 4 entrance slit 5 dispersive crystal 6 exit slit 7 X-ray detector 8 frame 9 guide 10 adjusting screw 11 counter 12 data processing device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】試料より放射される蛍光X線から、測定し
ようとする特性X線一つにつき、設定波長が相互に異っ
ている複数台の波長固定型X線分光器を試料の周囲に配
置すると共に、上記各X線分光器の出力から測定しよう
とする特性X線のピークプロファイルを決定し、そのピ
ーク中心の高さ、ピーク面積等を求めるデータ処理装置
を設けたことを特徴とする蛍光X線分析装置。
1. A plurality of fixed wavelength X-ray spectroscopes having different set wavelengths for each characteristic X-ray to be measured from the fluorescent X-rays emitted from the sample are arranged around the sample. In addition to the arrangement, a data processing device for determining the peak profile of the characteristic X-ray to be measured from the output of each X-ray spectroscope and determining the height of the peak center, the peak area, etc. is provided. X-ray fluorescence analyzer.
JP16975193A 1993-06-15 1993-06-15 X-ray fluorescence analyzer Expired - Fee Related JP3266896B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16975193A JP3266896B2 (en) 1993-06-15 1993-06-15 X-ray fluorescence analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16975193A JP3266896B2 (en) 1993-06-15 1993-06-15 X-ray fluorescence analyzer

Publications (2)

Publication Number Publication Date
JPH075128A true JPH075128A (en) 1995-01-10
JP3266896B2 JP3266896B2 (en) 2002-03-18

Family

ID=15892172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16975193A Expired - Fee Related JP3266896B2 (en) 1993-06-15 1993-06-15 X-ray fluorescence analyzer

Country Status (1)

Country Link
JP (1) JP3266896B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5803301A (en) * 1996-09-12 1998-09-08 Toyo Seikan Kaisha, Ltd. Seamless can and process for making the same
KR20020031665A (en) * 2000-10-23 2002-05-03 추후보정 X-ray microfluorescence analyzer
DE102013007210B4 (en) 2012-04-26 2022-07-14 J. Morita Manufacturing Corporation Laser irradiation tip, laser irradiation handpiece, laser treatment device and laser irradiation end element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5803301A (en) * 1996-09-12 1998-09-08 Toyo Seikan Kaisha, Ltd. Seamless can and process for making the same
KR20020031665A (en) * 2000-10-23 2002-05-03 추후보정 X-ray microfluorescence analyzer
DE102013007210B4 (en) 2012-04-26 2022-07-14 J. Morita Manufacturing Corporation Laser irradiation tip, laser irradiation handpiece, laser treatment device and laser irradiation end element

Also Published As

Publication number Publication date
JP3266896B2 (en) 2002-03-18

Similar Documents

Publication Publication Date Title
EP0781990B1 (en) Raman scattered light measuring apparatus
JP3098241B2 (en) Drift compensation method and device
EP3521814B1 (en) Wavelength-dispersive x-ray fluorescence spectrometer and x-ray fluorescence analysing method using the same
EP0184428A2 (en) Optics system for emission spectrometer
JPH0915156A (en) Spectroscopic measuring method and measuring device
JP6985730B2 (en) Sample analysis system, display method and sample analysis method
EP0382908B1 (en) Ir-spectrometric analysing procedure and means
EP3521813B1 (en) Wavelength dispersive x-ray fluorescence spectrometer
JP4493804B2 (en) Inductively coupled plasma spectrometer.
JP3266896B2 (en) X-ray fluorescence analyzer
JP2000283933A (en) Fluorescent x-ray analyzer
JPH0247542A (en) Quantitative analysis using x-ray spectroscope
JP7367605B2 (en) X-ray analyzer and peak search method
JP4506524B2 (en) Optical emission spectrometer
EP1521947B1 (en) Scatter spectra method for x-ray fluorescent analysis with optical components
JPH07128260A (en) Fluorescent x-ray analyzing device
JP4496888B2 (en) Machine side analysis method by laser emission spectroscopy
JPS63165742A (en) Formation of calibration curve
JPH03285153A (en) Quantitative analyser with x-rays
CN112051289A (en) X-ray analyzer and peak search method
JPS62167451A (en) X-ray spectroscope
JP3443047B2 (en) X-ray analyzer
JP2004191099A (en) Laser emission spectroscopic analyzer
JP2569500B2 (en) X-ray analyzer
JP2002365245A (en) Wavelength dispersive x-ray fluorescence analyzer

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080111

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090111

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100111

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100111

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees