JPS6228712B2 - - Google Patents

Info

Publication number
JPS6228712B2
JPS6228712B2 JP9873980A JP9873980A JPS6228712B2 JP S6228712 B2 JPS6228712 B2 JP S6228712B2 JP 9873980 A JP9873980 A JP 9873980A JP 9873980 A JP9873980 A JP 9873980A JP S6228712 B2 JPS6228712 B2 JP S6228712B2
Authority
JP
Japan
Prior art keywords
transparent conductive
conductive film
indium
compound
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9873980A
Other languages
Japanese (ja)
Other versions
JPS5724678A (en
Inventor
Masaaki Okunaka
Mitsuo Nakatani
Ryoichi Sudo
Mitsuo Yamazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Hitachi Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP9873980A priority Critical patent/JPS5724678A/en
Publication of JPS5724678A publication Critical patent/JPS5724678A/en
Publication of JPS6228712B2 publication Critical patent/JPS6228712B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、ガラス、セラミツクス等の耐熱性基
板上に透明導電膜を形成する方法に関するもので
ある。 透明導電膜は、液晶デイスプレイ素子、エレク
トロルミネツセンスデイスプレイ素子、エレクト
ロクロミツクデイスプレイ素子などのデイスプレ
イ素子の電極に広く用いられている。また、太陽
電池、光電池、航空機や自動車の防曇窓にも用い
られる。従来、透明導電膜の製造方法とし次の方
法がある。 (イ) 真空蒸着法 (ロ) スパツタ法 (ハ) CVD法 (ニ) 塗布法 上記(イ),(ロ)の方法は低抵抗の透明導電膜が得ら
れる長所をもつ方法であるが、同時に、真空系を
用いるために連続生産が困難であることからバツ
チ方式がとられているため生産コストが高くなる
という欠点をあわせもつ。(ハ)の方法では連続生産
が可能であり、上記(イ)(ロ)の方法の欠点を解消でき
る可能性があるが、蒸気流のコントロールが困難
であり、均質な透明導電膜を連続して生産し難い
という欠点をもつ。(ニ)の方法は上記欠点を解消す
る可能性があるが、従来用いられている材料では
低抵抗の膜は得難いという欠点がある。 本発明の目的は、上記した従来技術の欠点をな
くし、実用に供し得る低抵抗の透明導電膜の安価
な製造方法を提供するにある。 塗布法により、実用に供し得る低抵抗の透明導
電膜を製造するために本発明はドーピングスズ化
合物として、一般式RSn−SnR(ここでRは炭素
数1〜8のアルキル基)で表わされるジチン化合
物を用いることを特徴とする。 透明導電膜としてはSnをドープしたIn2O3、あ
るいはSbをドープしたSnO2が知られているが、
より低抵抗であること、パターン化のためのエツ
チングが容易であることから、前者が一般的に用
いられている。塗布法によりSnをドープした
In2O3からなる透明導電膜の製造のための材料
は、インジウム化合物、スズ化合物および溶媒で
ある。塗布法により得られる透明導電膜は、従来
の材料を用いると実用に耐え得る程度の低抵抗と
はなり難い。塗布法により得られる透明導電膜の
抵抗値は、用いる材料の種類により異なるが、ド
ーピングスズ化合物の種類による影響が最も大き
い。例えば無機スズ化合物である塩化第一スズ
(SuCl2)や塩化第二スズ(SnCl4)を用いた場合に
は、塗布後焼成した際に塩素が残り易く高抵抗の
原因となる。また有機スズ化合物であるジメチル
スズジクロリド((CH32SnCl2)などは昇華性で
あるために、焼成途中で揮散し高抵抗となる。ま
たジアルキルスズジカルボキシレート、トリアル
キルスズモノカルボキシレートなどのスズ化合物
は固体物質であるため、塗膜に一様に分散し難
く、高抵抗の原因となる。またテトラエトキシス
ズ(Sn(OCH2CH34)、エトラメトキシスズ
(Sn(OCH34)などのスズアルコキシドは加水分
解を受け易く塗布液が白濁し易いという欠点をも
つ。 上記したように従来用いられているドーピング
スズ化合物はいずれも難点をもつため、得られた
透明導電膜は抵抗が高く実用に耐え難い。しかる
に、本発明によるジチン化合物を用いることによ
り、従来のドーピングスズ化合物が持つている上
記問題点をすべて解消し、塗布法により実用レベ
ルの低抵抗の透明導電膜を安価に製造することが
できる。すなわち、ジチン化合物は、液体である
ためインジウム化合物中に一様に分散した塗膜を
作ることができ、しかも蒸発や昇華により揮散す
る前に有機成分が完全に焼成するため、低抵抗の
透明導電膜を得ることができる。本発明に用いら
れるジチン化合物はアルキルが炭素数1〜8が望
ましい。炭素数がこれより多いと得られる透明導
電膜の緻密性が損なわれ高抵抗となる。またドー
ピング量はインジウム化合物に対して5〜30重量
%が適当である。ドーピング量が5%より少ない
と抵抗値が高くなり、30%より多いと膜が白濁し
易く、また抵抗値が高くなる。 インジウム化合物としては、トリエトキシイン
ジウム(In(OC2H53)などのインジウムアルコ
キシド、ジエトキシモノブチルインジウム
(C4H9In(OC2H52)などのアルキルインジウム
アルコキシド、トリ(マーエチルヘキサン酸)イ
ンジウム(In(OCOC7H153)などのインジウム
カーボキシレートなどを用いることができる。ま
た硝酸インジウム、塩化インジウムなどの無機イ
ンジウム化合物と、モノカルボン酸、ジカルボン
酸、ヒドロキシ酸、ジカルボン酸モノエステルな
どの配位子から形成されるインジウム化合物を用
いることもできる。本発明に適する溶媒は、メタ
ノール、エタノール、プロパノールなどのアルコ
ール、セロソルブ、カルビトール、グリコール、
アセトン、メチルエチルケトン、酢酸メチル、酢
酸エチルなどがある。焼成温度はガラス基板を用
いる場合には300〜700℃が望ましい。温度が300
℃より低いと有機物の燃焼が不完全であり、また
700℃より高いとガラスが変形する。アルミナな
どのセラミツク基板を用いる場合には300℃以上
の焼成温度が適する。 次に本発明を実施例により説明する。 実施例 1〜7 オクチル酸インジウム、ジチン化合物、エチル
セロソルブをそれぞれ第1表に示す量だけ秤量
し、塗布液とした。この塗布液をスピンナにより
ガラス基板上に塗布し、ついで乾燥させた後500
℃で1時間焼成した。得られた透明導電膜のシー
ト抵抗値と膜厚を第1表に示す。
The present invention relates to a method for forming a transparent conductive film on a heat-resistant substrate such as glass or ceramics. Transparent conductive films are widely used in electrodes of display devices such as liquid crystal display devices, electroluminescent display devices, and electrochromic display devices. It is also used in solar cells, photovoltaic cells, and anti-fog windows of aircraft and automobiles. Conventionally, there are the following methods for manufacturing transparent conductive films. (a) Vacuum deposition method (b) Sputtering method (c) CVD method (d) Coating method The above methods (a) and (b) have the advantage of producing a transparent conductive film with low resistance, but at the same time Since continuous production is difficult due to the use of a vacuum system, the batch method is adopted, which also has the disadvantage of increasing production costs. Method (c) allows continuous production and may eliminate the drawbacks of methods (a) and (b) above, but it is difficult to control the vapor flow and it is difficult to continuously produce a homogeneous transparent conductive film. The disadvantage is that it is difficult to produce. Although method (d) has the potential to eliminate the above-mentioned drawback, it has the drawback that it is difficult to obtain a low-resistance film using conventionally used materials. An object of the present invention is to eliminate the drawbacks of the above-mentioned conventional techniques and to provide an inexpensive manufacturing method for a transparent conductive film with low resistance that can be put to practical use. In order to produce a transparent conductive film with a low resistance that can be used practically by a coating method, the present invention uses a ditin compound represented by the general formula RSn-SnR (where R is an alkyl group having 1 to 8 carbon atoms) as a doping tin compound. It is characterized by using a compound. In 2 O 3 doped with Sn or SnO 2 doped with Sb are known as transparent conductive films.
The former is generally used because it has lower resistance and can be easily etched for patterning. Doped with Sn by coating method
The materials for producing a transparent conductive film made of In 2 O 3 are an indium compound, a tin compound and a solvent. A transparent conductive film obtained by a coating method cannot easily have a resistance low enough to withstand practical use if conventional materials are used. The resistance value of a transparent conductive film obtained by a coating method varies depending on the type of material used, but is most influenced by the type of doping tin compound. For example, when inorganic tin compounds such as stannous chloride (SuCl 2 ) or stannic chloride (SnCl 4 ) are used, chlorine tends to remain when baked after coating, causing high resistance. Furthermore, since dimethyltin dichloride ((CH 3 ) 2 SnCl 2 ), which is an organic tin compound, is sublimable, it volatilizes during firing, resulting in high resistance. Further, since tin compounds such as dialkyltin dicarboxylate and trialkyltin monocarboxylate are solid substances, they are difficult to uniformly disperse in the coating film, causing high resistance. Furthermore, tin alkoxides such as tetraethoxytin (Sn(OCH 2 CH 3 ) 4 ) and etramethoxytin (Sn(OCH 3 ) 4 ) have the disadvantage that they are easily hydrolyzed and the coating solution tends to become cloudy. As mentioned above, all of the conventionally used doping tin compounds have drawbacks, and the resulting transparent conductive film has a high resistance and is difficult to put into practical use. However, by using the ditin compound according to the present invention, all of the above-mentioned problems of conventional doped tin compounds can be solved, and a transparent conductive film with a practical level of low resistance can be manufactured at low cost by a coating method. In other words, since the ditin compound is a liquid, it is possible to create a coating film that is uniformly dispersed in the indium compound, and since the organic component is completely baked before being volatilized by evaporation or sublimation, it is a transparent conductor with low resistance. membrane can be obtained. In the ditin compound used in the present invention, the alkyl preferably has 1 to 8 carbon atoms. If the number of carbon atoms is larger than this, the density of the resulting transparent conductive film will be impaired and the resistance will be high. The appropriate doping amount is 5 to 30% by weight based on the indium compound. When the doping amount is less than 5%, the resistance value becomes high, and when it is more than 30%, the film tends to become cloudy and the resistance value becomes high. Indium compounds include indium alkoxides such as triethoxyindium (In(OC 2 H 5 ) 3 ), alkylindium alkoxides such as diethoxymonobutyl indium (C 4 H 9 In(OC 2 H 5 ) 2 ), tri( Indium carboxylates such as indium mer-ethylhexanoate (In(OCOC 7 H 15 ) 3 ) can be used. Further, an indium compound formed from an inorganic indium compound such as indium nitrate or indium chloride and a ligand such as a monocarboxylic acid, a dicarboxylic acid, a hydroxy acid, or a dicarboxylic acid monoester can also be used. Solvents suitable for the present invention include alcohols such as methanol, ethanol, propanol, cellosolve, carbitol, glycols,
Examples include acetone, methyl ethyl ketone, methyl acetate, and ethyl acetate. When using a glass substrate, the firing temperature is preferably 300 to 700°C. temperature is 300
If it is lower than ℃, the combustion of organic matter is incomplete, and
If the temperature is higher than 700℃, the glass will deform. When using a ceramic substrate such as alumina, a firing temperature of 300°C or higher is suitable. Next, the present invention will be explained by examples. Examples 1 to 7 Indium octylate, ditin compound, and ethyl cellosolve were each weighed in amounts shown in Table 1 to prepare a coating solution. This coating solution was applied onto a glass substrate using a spinner, and after drying,
It was baked at ℃ for 1 hour. The sheet resistance value and film thickness of the obtained transparent conductive film are shown in Table 1.

【表】 実施例 8 トリエトキシインジウム(15g)、ヘキサメチ
ルジチン(1.5g)、エチルセロソルブ(100g)
から塗布液を調製し、ついで実施例1〜7と同様
にして透明導電膜を形成した。シート抵抗値は
0.8KΩ/□、膜厚は710Åであつた。 実施例 9〜15 硝酸インジウム、配位子、ヘキサメチルジチ
ン、エチルセロソルブを第2表に示す量だけ秤量
し塗布液とした。ついで実施例1〜7と同様にし
て透明導電膜を形成した。 実施例 16 オクチル酸インジウム(15g)、ヘキサメチル
ジチン(1.5g)、エチルセロソルブ(100g)か
ら塗布液を調製した。この塗布液をアルミナ基板
上にスピンナにより塗布し、ついで900℃で10分
間焼成した。得られた透明導電膜のシート抵抗値
は0.4Ω/□であつた。
[Table] Example 8 Triethoxyindium (15g), hexamethylditine (1.5g), ethyl cellosolve (100g)
A coating solution was prepared from the above, and then a transparent conductive film was formed in the same manner as in Examples 1 to 7. The sheet resistance value is
The resistance was 0.8KΩ/□, and the film thickness was 710Å. Examples 9 to 15 Indium nitrate, a ligand, hexamethylditine, and ethyl cellosolve were weighed in amounts shown in Table 2 to prepare a coating solution. Then, a transparent conductive film was formed in the same manner as in Examples 1 to 7. Example 16 A coating solution was prepared from indium octylate (15 g), hexamethylditine (1.5 g), and ethyl cellosolve (100 g). This coating liquid was applied onto an alumina substrate using a spinner, and then baked at 900°C for 10 minutes. The sheet resistance value of the obtained transparent conductive film was 0.4Ω/□.

【表】 本発明により、実用に供し得る低抵抗の透明導
電膜を安価に製造することができ、工業的意義が
大きい。
[Table] According to the present invention, a practically usable, low-resistance transparent conductive film can be manufactured at low cost, and it has great industrial significance.

Claims (1)

【特許請求の範囲】[Claims] 1 インジウム化合物、一般式RSn−SnR(ここ
でRは炭素数1〜8のアルキル基)で表わされる
ジチン化合物、および有機溶媒を必須成分とする
溶液を基板上に塗布した後、これを加熱すること
を特徴とする透明導電膜形成法。
1 After applying a solution containing an indium compound, a ditin compound represented by the general formula RSn-SnR (where R is an alkyl group having 1 to 8 carbon atoms), and an organic solvent as essential components onto a substrate, this is heated. A transparent conductive film forming method characterized by the following.
JP9873980A 1980-07-21 1980-07-21 Method of forming transparent electroconductive film Granted JPS5724678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9873980A JPS5724678A (en) 1980-07-21 1980-07-21 Method of forming transparent electroconductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9873980A JPS5724678A (en) 1980-07-21 1980-07-21 Method of forming transparent electroconductive film

Publications (2)

Publication Number Publication Date
JPS5724678A JPS5724678A (en) 1982-02-09
JPS6228712B2 true JPS6228712B2 (en) 1987-06-22

Family

ID=14227853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9873980A Granted JPS5724678A (en) 1980-07-21 1980-07-21 Method of forming transparent electroconductive film

Country Status (1)

Country Link
JP (1) JPS5724678A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2842917B2 (en) * 1990-02-09 1999-01-06 株式会社日立製作所 Electronic device mounting structure

Also Published As

Publication number Publication date
JPS5724678A (en) 1982-02-09

Similar Documents

Publication Publication Date Title
US4643913A (en) Process for producing solar cells
US3759743A (en) Method of applying coarings of tin oxide upon transparent substrates
US5085805A (en) Electrically conducting, ir reflecting, fluorine-doped tin oxide organic compound
JP3338966B2 (en) Coating solution for forming transparent conductive film
JPS6228712B2 (en)
JP2004026554A (en) Transparent conductive film-forming liquid and method for manufacturing substrate having transparent conductive film using the same
JPH0233075B2 (en)
JP3208794B2 (en) Composition for forming transparent conductive film and method for forming transparent conductive film
JPH0341923B2 (en)
EP0286654A1 (en) Coating solutions
JP2526632B2 (en) Method for producing transparent conductive zinc oxide film
JP2004018913A (en) Liquid for forming transparent conductive film and method for manufacturing substrate coated with transparent conductive film using the same
JP3049890B2 (en) Method for forming transparent conductive film
JPH04255768A (en) Coating solution for forming transparent electrically conductive film
JPS6222312A (en) Formation of transparent conducting film
JPH0696619A (en) Composition for forming transparent conductive film and method therefor
JPH0530001B2 (en)
JPH0221083B2 (en)
JP3662958B2 (en) Touch panel
JP3091606B2 (en) Method for producing composition for forming transparent conductive film and method for forming transparent conductive film
JPH07320541A (en) Transparent conductive film forming composition and manufacture of transparent conductive film
JPH0238138B2 (en) TOMEIDODENSEIHIMAKUKEISEIYOSOSEIBUTSU
JP3144951B2 (en) Method of manufacturing heat reflection window
JP2004039269A (en) Method for manufacturing substrate with transparent electroconductive film
KR100611538B1 (en) A solution for forming a transparent conductive film and a process for forming a transparent conductive film on a substrate using the solution