JP2004018913A - Liquid for forming transparent conductive film and method for manufacturing substrate coated with transparent conductive film using the same - Google Patents

Liquid for forming transparent conductive film and method for manufacturing substrate coated with transparent conductive film using the same Download PDF

Info

Publication number
JP2004018913A
JP2004018913A JP2002173692A JP2002173692A JP2004018913A JP 2004018913 A JP2004018913 A JP 2004018913A JP 2002173692 A JP2002173692 A JP 2002173692A JP 2002173692 A JP2002173692 A JP 2002173692A JP 2004018913 A JP2004018913 A JP 2004018913A
Authority
JP
Japan
Prior art keywords
transparent conductive
conductive film
formula
compound represented
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002173692A
Other languages
Japanese (ja)
Inventor
Yasuhiro Seta
瀬田 康弘
Hideaki Gondaira
権平 英昭
Shigeo Yamada
山田 茂男
Hiroyuki Kanda
神田 広行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Soda Co Ltd
Original Assignee
Nippon Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soda Co Ltd filed Critical Nippon Soda Co Ltd
Priority to JP2002173692A priority Critical patent/JP2004018913A/en
Publication of JP2004018913A publication Critical patent/JP2004018913A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquid for forming a transparent conductive film which forms the transparent conductive film showing an extremely uniform sheet-resistance and transparency, and a method for manufacturing a substrate coated with the transparent conductive film. <P>SOLUTION: The liquid contains an indium compound of the formula: In(R<SP>1</SP>COCHCOR<SP>2</SP>)<SB>3</SB>(wherein R<SP>1</SP>and R<SP>2</SP>are each independently a 1-10C alkyl group or a phenyl group) and a tin compound of the formula: (R<SP>3</SP>)<SB>2</SB>Sn(OR<SP>4</SP>)<SB>2</SB>(wherein R<SP>3</SP>is a 1-10C alkyl group; and R<SP>4</SP>is a 1-10C alkyl group or a 1-10C acyl group). The liquid is used in the method for manufacturing the substrate. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、透明導電膜形成液、及び前記透明導電膜形成液を用いた透明導電膜付基体の製造方法に関する。
【0002】
【従来の技術】
透明導電膜(ITO膜)は、その優れた透明性と導電性を利用して、液晶ディスプレイ、エレクトロルミネッセンスディスプレイ、面発熱体、タッチパネル電極、太陽電池等に広く利用されている。
透明導電膜は、このように広い分野で利用されるものであるため、使用目的によって種々のシート抵抗値及び透明度を有するものが要求される。例えば、フラットパネルディスプレイ用の透明導電膜の場合、低抵抗かつ高透過率の膜であることが要求され、タッチパネル用の透明導電膜では、高抵抗かつ高透過率の膜であることが要求される。特に、近年開発されて市場の伸びが期待されているペン入力タッチパネル用の透明導電膜は、高い位置認識精度が要求されることから、シート抵抗値が200〜3000Ω/□といった高抵抗の膜であることが求められている。ここで、シート抵抗値は比抵抗/導電膜の膜厚で求められる値である。
【0003】
上記のような所望のシート抵抗値を有する透明導電膜を形成する方法としては、例えば、特開2001−35273号公報及び特開2002−133956号公報に、スパッタ法、電子ビーム法、イオンプレーティング法又は化学的気相成長法により透明導電膜を形成した後、透明導電膜を所定の濃度の有機溶剤の存在下に加熱処理する方法が記載されている。かかる公報においては、透明導電膜を形成するための原材料について、インジウム化合物としてインジウムトリスアセチルアセトナート、インジウムトリスベンゾイルメタネート、三塩化インジウム、硝酸インジウム、インジウムトリイソプロポキシド等が例示されており、スズ化合物として塩化第2スズ、ジメチルスズジクロライド、ジブチルスズジクロライド、テトラブチルスズ、スタニアスオクトエート、ジブチルスズマレエート、ジブチルスズアセテート、ジブチルスズビスアセチルアセトナート等が例示されている。
【0004】
しかしながら、上記公報においては、所望の抵抗値を有する透明導電膜を得るための方法が記載されているのであって、インジウム化合物とスズ化合物についての好ましい組み合わせの検討や、その特定の組み合わせとの関係における透明導電膜のシート抵抗値及び透明性の均一性について検討されていない。本発明者らは、将来的な透明導電膜、特にITO膜の用途の広がり等を考慮して、シート抵抗値及び透明性の均一性の更なる向上について検討した。
【0005】
【発明が解決しようとする課題】
本発明は、かかる実状に鑑みてなされたものであり、本発明の課題は、シート抵抗値及び透明性において極めて均一な透明導電膜を形成することのできる透明導電膜形成液、及びシート抵抗値及び透明性において極めて均一な透明導電膜を有する透明導電膜付基体の製造方法を提供することにある。
【0006】
【課題を解決するための手段】
本発明者らは、より均一な膜質の透明導電膜を形成すべく鋭意研究を重ねた結果、透明導電膜を形成するための透明導電膜形成液に含まれるインジウム化合物として後記式〔1〕で表されるインジウム化合物を用い、スズ化合物として後記式〔2〕で表されるスズ化合物を用いることにより、より均一な膜質の透明導電膜を形成することができることを見い出し、本発明を完成するに至った。
【0007】
すなわち本発明は、式〔1〕
In(RCOCHCOR 〔1〕
(式中、R及びRは、それぞれ独立して炭素数1〜10のアルキル基又はフェニル基を表す。)で表されるインジウム化合物と、式〔2〕
(RSn(OR 〔2〕
(式中、Rは炭素数1〜10のアルキル基を表し、Rは炭素数1〜10のアルキル基又は炭素数1〜10のアシル基を表す。)で表されるスズ化合物とを含有することを特徴とする透明導電膜形成液(請求項1)や、式〔1〕で表されるインジウム化合物が、インジウムトリスアセチルアセトナートであることを特徴とする請求項1に記載の透明導電膜形成液(請求項2)や、式〔2〕で表されるスズ化合物が、ジ−n−ブチルスズジアセテートであることを特徴とする請求項1又は2に記載の透明導電膜形成液(請求項3)や、式〔1〕で表されるインジウム化合物中のInが、質量で、式〔2〕で表されるスズ化合物中のSnより多く含有されていることを特徴とする請求項1〜3のいずれかに記載の透明導電膜形成液(請求項4)や、式〔2〕で表されるスズ化合物中のSnが、質量比で、式〔1〕で表されるインジウム化合物中のIn1に対して0.001〜0.5含有されていることを特徴とする請求項4に記載の透明導電膜形成液(請求項5)に関する。
【0008】
また本発明は、基体上に、直接又は中間膜を介して透明導電膜を形成して透明導電膜付基体を製造する方法であって、前記基体又は中間膜上に、式〔1〕で表されるインジウム化合物と、式〔2〕で表されるスズ化合物とを含有する透明導電膜形成液を用いて化学的熱分解法により透明導電膜を形成することを特徴とする透明導電膜付基体の製造方法(請求項6)や、式〔2〕で表されるスズ化合物中のSnが、質量比で、式〔1〕で表されるインジウム化合物中のIn1に対して0.001〜0.5含有されていることを特徴とする請求項6に記載の透明導電膜付基体の製造方法(請求項7)や、化学的熱分解法が、式〔1〕で表されるインジウム化合物及び式〔2〕で表されるスズ化合物を熱により分解させて基体又は中間膜上に堆積させる方法であることを特徴とする請求項6又は7に記載の透明導電膜付基体の製造方法(請求項8)や、式〔1〕で表されるインジウム化合物及び式〔2〕で表されるスズ化合物を熱により分解させて基体又は中間膜上に堆積させる方法が、パイロゾルプロセス法であることを特徴とする請求項8に記載の透明導電膜付基体の製造方法(請求項9)や、基体が、ガラス基板であることを特徴とする請求項6〜9のいずれかに記載の透明導電膜付基体の製造方法(請求項10)に関する。
【0009】
【発明の実施の形態】
本発明の透明導電膜形成液は、式〔1〕
In(RCOCHCOR 〔1〕
で表されるインジウム化合物と、式〔2〕
(RSn(OR 〔2〕
で表されるスズ化合物とを含有することを特徴とする。
式〔1〕中、R及びRは、それぞれ独立して炭素数1〜10のアルキル基又はフェニル基を表し、具体的には、例えば、メチル基、エチル基、n−プロピル基、n−ブチル基、ターシャリブチル基等が挙げられる。これらの中でも、式〔1〕で表されるインジウム化合物としては、インジウムトリスアセチルアセトナート(In(CHCOCHCOCH)であることが特に好ましい。
【0010】
式〔2〕中、Rは炭素数1〜10のアルキル基を表し、Rは炭素数1〜10のアルキル基又は炭素数1〜10のアシル基を表す。具体的に、Rとしては、例えば、メチル基、エチル基、n−プロピル基、n−ブチル基、ターシャリブチル基が挙げられ、Rとしては、例えば、メチル基、エチル基、n−プロピル基、n−ブチル基、ターシャリブチル基のアルキル基、アセチル基、プロピオニル基等のアシル基が挙げられる。これらの中でも、式〔2〕で表されるスズ化合物としては、ジ−n−ブチルスズジアセテート((n−Bu)Sn(OCOCH)であることが特に好ましい。
【0011】
透明導電膜形成液を用いて透明導電膜を形成する場合においては、透明導電膜形成液に含有されるインジウム化合物とスズ化合物の熱分解温度がより近い方が、両者が均一に拡散して均一な膜質を形成することができると考えられる。本発明の透明導電膜形成液においては、式〔1〕で表わされるインジウム化合物と式〔2〕で表わされるスズ化合物は熱分解温度が近く、具体的にはインジウムトリスアセチルアセトナートは320℃近辺で、ジ−n−ブチルスズジアセテートは360℃近辺である。
【0012】
したがって、本発明の透明導電膜形成液を用いて透明導電膜を形成する場合において、式〔1〕で表されるインジウム化合物及び式〔2〕で表されるスズ化合物を熱により分解させて基体又は中間膜上に堆積させる場合には、式〔1〕で表されるインジウム化合物と式〔2〕で表されるスズ化合物とが、所定温度のもとでほぼ同時に熱分解を起こすことで両者が均一に拡散して堆積(蒸着)すると考えられ、膜質の極めて均一な膜を形成して、極めて均一な導電性及び透明性を保有する透明導電膜を形成することができる。また、透明導電膜形成液をコーティングした後、式〔1〕で表されるインジウム化合物及び式〔2〕で表されるスズ化合物を熱により分解させて基体又は中間膜上に固定する場合には、コーティング後の乾燥及び/又は焼成において、式〔1〕で表されるインジウム化合物及び式〔2〕で表されるスズ化合物が、所定温度のもとでほぼ同時に熱分解を起こして均一に拡散して基体又は中間膜上に固定されると考えられ、膜質の極めて均一な膜を形成して、極めて均一な導電性及び透明性を保有する透明導電膜を形成することができる。また、本発明の透明導電膜形成液を用いて形成した膜は、導電性及び透明性に優れているので、液晶ディスプレイ、エレクトロルミネッセンスディスプレイ、面発熱体、タッチパネル電極、太陽電池等に広く利用することができる。
【0013】
本発明の透明導電膜形成液は、式〔1〕で表されるインジウム化合物と、式〔2〕で表されるスズ化合物を含有すれば特に制限されるものではないが、式〔1〕で表されるインジウム化合物中のInが、質量で、式〔2〕で表されるスズ化合物中のSnより多く含有されていること(形成される透明導電膜がITO膜であること)が好ましく、式〔2〕で表されるスズ化合物中のSnが、質量比で、式〔1〕で表されるインジウム化合物中のIn1に対して0.001〜0.5含有されていることがより好ましく、0.05〜0.35含有されていることがさらに好ましい。
上記質量比の範囲で式〔1〕で表されるインジウム化合物と式〔2〕で表されるスズ化合物を含有することにより、透明度及び抵抗値の均一性に優れた透明導電膜の形成が可能となって、かかる抵抗値を有する透明導電膜は、例えば、タッチパネル用の透明電極として特に有用である。
【0014】
本発明の透明導電膜形成液は、式〔1〕で表されるインジウム化合物を含有するが、他のインジウム化合物を併用することもできる。併用するインジウム化合物としては、熱分解して酸化インジウムとなるものが好ましく、例えば、三塩化インジウム(InCl)、硝酸インジウム(In(NO)、インジウムトリイソプロポキシド(In(OiPr))等が挙げられる。
他のインジウム化合物を併用する場合、式〔1〕で表されるインジウム化合物は、全インジウム化合物中、80質量%以上含有されていることが好ましく、90質量%以上含有されていることがより好ましく、95質量%以上含有されていることがさらに好ましく、式〔1〕で表されるインジウム化合物がより多く含有されているほど好ましい。
【0015】
本発明の透明導電膜形成液は、式〔2〕で表されるスズ化合物を含有するが、他のスズ化合物を併用することもできる。併用するスズ化合物としては、熱分解して酸化第2スズとなるものが好ましく、例えば、塩化第2スズ、ジメチルスズジクロライド、ジブチルスズジクロライド、テトラブチルスズ、スタニアスオクトエート(Sn(OCOC15)、ジブチルスズマレエート、ジブチルスズビスアセチルアセトナート等を挙げることができる。
他のスズ化合物を併用する場合、式〔2〕で表されるスズ化合物は、全スズ化合物中、80質量%以上含有されていることが好ましく、90質量%以上含有されていることがより好ましく、95質量%以上含有されていることがさらに好ましく、式〔2〕で表されるスズ化合物がより多く含有されているほど好ましい。
【0016】
また、本発明の透明導電膜形成液は、前記式〔1〕で表されるインジウム化合物及び式〔2〕で表されるスズ化合物に加えて、第3成分として、Mg、Ca、Sr、Ba等の周期律表第2族元素、Sc、Y等の第3族元素、La、Ce、Nd、Sm、Gd等のランタノイド、Ti、Zr、Hf等の第4族元素、V、Nb、Ta等の第5族元素、Cr、Mo、W等の第6族元素、Mn等の第7族元素、Co等の第9族元素、Ni、Pd、Pt等の第10族元素、Cu、Ag等の第11族元素、Zn、Cd等の第12族元素、B、Al、Ga等の第13族元素、Si、Ge、Pb等の第14族元素、P、As、Sb等の第15族元素、Se、Te等の第16族元素等からなる単体若しくはこれらの化合物を含有することも好ましい。
これらの元素の添加割合は、インジウムに対して、0.05〜20原子%程度が好ましく、添加元素によって添加割合は異なり、目的とする抵抗値にあった元素及び添加量を適宜選定することができる。
【0017】
本発明の透明導電膜形成液に用いられる有機溶媒としては、アセチルアセトン、アセトン、メチルイソブチルケトン、ジエチルケトン等のケトン系溶媒、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール等のアルコール系溶媒、酢酸エチル、酢酸ブチル等のエステル系溶媒、メチルセルソルブ、テトラヒドロフラン等のエーテル系溶媒、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、ヘキサン、ヘプタン、オクタン、シクロヘキサン等の脂肪族炭化水素類等を挙げることができる。
これらの有機溶媒の種類及び添加量は、透明導電膜のシート抵抗値の設定値等に依存し、透明導電膜の種類、透明導電膜の膜厚、用いる有機溶媒の種類、加熱温度、加熱時間等により適宜定めることができる。例えば、他の条件を同一にして、より熱分解しやすい有機溶媒を多量に添加することにより、シート抵抗値をより低くすることができる。以上のようにして、用いる有機溶媒の種類、添加量及び加熱温度を適宜選択・設定することにより、所望のシート抵抗値を有する透明導電膜を得ることができる。
【0018】
以下、本発明の透明導電膜付基体の製造方法について説明する。
本発明の透明導電膜付基体の製造方法は、基体上に、直接又は中間膜を介して透明導電膜を形成して透明導電膜付基体を製造する方法であって、前記基体又は中間膜上に、式〔1〕で表されるインジウム化合物と式〔2〕で表されるスズ化合物とを含有する透明導電膜形成液を用いて化学的熱分解法により透明導電膜を形成することを特徴とする。即ち、上記透明導電膜形成液を用いて化学的熱分解法により透明導電膜を形成することを特徴とする。
【0019】
ここで、前記化学的熱分解法とは、透明導電膜形成液に含有される式〔1〕で表されるインジウム化合物及び式〔2〕で表されるスズ化合物を熱により分解させて基体又は中間膜上に堆積させる方法、並びに透明導電膜形成液をコーティングした後、式〔1〕で表されるインジウム化合物及び式〔2〕で表されるスズ化合物を熱により分解させて基体又は中間膜上に固定する方法をいい、例えば、スプレー法、ディップコーティング法、スピンコート法、LB法、ゾル−ゲル法、液相エピタキシー法、熱CVD法、プラズマCVD法、MOCVD法、パイロゾルプロセス法、(超音波霧化による常圧CVD法)、SPD法、Cat−CVD法等のCVD法(chemical vapor deposition)等が挙げられ、これらの中でもパイロゾルプロセス法を用いることが特に好ましい。パイロゾルプロセス法を用いることにより、より均一な膜質を有する透明導電膜を製造することができる。
【0020】
本発明の透明導電膜付基体の製造方法によれば、熱分解温度が近い式〔1〕で表されるインジウム化合物と式〔2〕で表されるスズ化合物が、所定温度のもとで均一に拡散し、均一な膜質の透明導電膜を形成することができる。具体的には、透明導電膜形成液中の式〔1〕で表されるインジウム化合物及び式〔2〕で表されるスズ化合物を熱により分解させて基体又は中間膜上に堆積させる場合には、式〔1〕で表されるインジウム化合物と式〔2〕で表されるスズ化合物とが、所定温度のもとでほぼ同時に熱分解を起こすことで両者が均一に拡散して堆積(蒸着)すると考えられ、膜質の極めて均一な膜を形成して、極めて均一な導電性及び透明性を保有する透明導電膜を形成することができる。また、透明導電膜形成液をコーティングした後、式〔1〕で表されるインジウム化合物及び式〔2〕で表されるスズ化合物を熱により分解させて基体又は中間膜上に固定する場合には、コーティング後の乾燥及び/又は焼成において、式〔1〕で表されるインジウム化合物及び式〔2〕で表されるスズ化合物が、所定温度のもとでほぼ同時に熱分解を起こして均一に拡散して基体又は中間膜上に固定されると考えられ、膜質の極めて均一な膜を形成して、極めて均一な導電性及び透明性を保有する透明導電膜を形成することができる。
【0021】
また、本発明の透明導電膜付基体の製造方法により製造された透明導電膜は導電性及び透明性に優れているので、液晶ディスプレイ、エレクトロルミネッセンスディスプレイ、面発熱体、タッチパネル電極、太陽電池等に広く利用することができる。さらに、本発明の透明導電膜付基体の製造方法においては、成膜の一般的手法である化学的熱分解法を用いることによって簡便に均質な膜を形成することができる。
【0022】
前記中間膜は、一層の膜であってもよく、二層以上の膜であってもよい。かかる中間膜としては、例えば、酸化シリコン膜、有機ポリシラン化合物から形成されるポリシラン膜、MgF膜、CaF膜、SiOとTiOの複合酸化物膜等を挙げることができる。これらの中間膜は、例えば、基板としてソーダーガラスを用いる場合のNaイオンの拡散防止の為に形成される。また、透明導電膜と異なる屈折率、好ましくは低屈折率の下地膜を形成することによって、反射防止或いは透明性を向上させることもできる。これらの膜は、一般に知られている成膜方法、例えば、スパッタ法、CVD法、スプレー法、ディップ法等により形成することができ、膜厚としては、特に制限されるものではないが、通常20〜200nm程度である。
【0023】
前記基体としては、シート状(基板)、ハニカム状、ファイバー状、ビーズ状、発泡状やそれらが集積したもの等であってもよく、透明導電膜形成液の成分が熱分解を起こす温度で耐熱性を有するものであれば特に制限されるものではないが、例えば、ガラス基板、セラミックス基板、金属基板等を挙げることができる。これらのうち、本発明の透明導電膜付基体の製造方法においてはガラス基板を用いるのが好ましい。ガラス基板としては、例えば、ケイ酸ガラス(石英ガラス)、ケイ酸アルカリガラス、ソーダ石灰ガラス、カリ石灰ガラス、鉛ガラス、バリウムガラス、ホウケイ酸ガラス等を挙げることができる。
【0024】
なお、本発明の透明導電膜付基体の製造方法において形成する透明導電膜の膜厚としては、特に制限されるものではなく、その用途等によって適宜選定すればよいが、シート抵抗値が30Ω/□以下のITO膜を形成する場合には、一般に80nm以上であり、シート抵抗値が60〜200Ω/□のITO膜を形成する場合には、一般に30nm程度であり、シート抵抗値が200〜3000Ω/□のITO膜を形成する場合には、一般に10〜25nmである。
【0025】
また、本発明の透明導電膜付基体の製造方法において、上記パイロゾルプロセス法を用いる場合には、式〔1〕で表されるインジウム化合物及び式〔2〕で表されるスズ化合物を有機溶媒に溶解させた透明導電膜形成液を超音波によるアトマイジング法を利用して、粒状の比較的そろった微小な小液滴からなるエアロゾルにし、式〔1〕で表されるインジウム化合物及び式〔2〕で表されるスズ化合物が熱分解を起こして酸化インジウム及び酸化第2スズを形成し得る温度、例えば、300〜800℃の均一な温度に管理した加熱炉内の基体上に供給して、式〔1〕で表されるインジウム化合物及び式〔2〕で表されるスズ化合物を加熱炉内で気化させ気相状態から基体上で反応させて透明導電膜を形成する。
【0026】
【実施例】
以下、実施例により本発明をより具体的に説明するが、本発明の技術的範囲はこれらの例示に限定されるものではない。
[実施例1]
インジウムトリスアセチルアセトナート(In(AcAc))をアセチルアセトンにモル濃度で0.2mol/Lになるように溶解して黄色透明溶液を得た。この溶液にSn/In=5質量%となるようにスズ化合物としてジ−n−ブチルスズジアセテートを加えたITO膜形成液(透明導電膜形成液)を調製した。
このITO膜形成液を用いてパイロゾルプロセス法により、ITO膜形成液の霧化による化学的熱分解量を調整しながら、ガラス基板上に厚さ20nmのITO膜を形成し、無色透明のITO膜を有するITO膜付ガラス基板(透明導電膜付基体)を得た。
【0027】
[実施例2]
上記実施例1と同様にして、ガラス基板上に厚さ40nmのITO膜を形成し、透明のITO膜を有するITO膜付ガラス基板を得た。
[実施例3]
上記実施例1と同様にして、ガラス基板上に厚さ200nmのITO膜を形成し、透明のITO膜を有するITO膜付ガラス基板を得た。
【0028】
[比較例1]
インジウムトリスアセチルアセトナート(In(AcAc))をアセチルアセトンにモル濃度で0.2mol/Lになるように溶解して黄色透明溶液を得た。この溶液にSn/In=5質量%となるようにスズ化合物としてトリ−n−オクチルスズオキサイドを加えたITO膜形成液を調製した。
このITO膜形成液を用いてパイロゾルプロセス法により、ITO膜形成液の霧化による化学的熱分解量を調整しながら、ガラス基板上に厚さ30nmのITO膜を形成し、黄色味を帯びた透明のITO膜を有するITO膜付ガラス基板を製造した。
【0029】
<評価>
上記実施例1〜3及び比較例1に係るITO膜付ガラス基板の比抵抗値をロレスタ(三菱化学社製)を用いて測定し、シート抵抗値を算出した。なお、シート抵抗値は、比抵抗/導電膜の膜厚で求められる値である。また、実施例1〜3及び比較例1に係るITO膜付ガラス基板の任意に選ばれた部分a〜c(3箇所)について550nmの波長における光透過率を磁気分光光度計(日立製作所製)を用いて測定した。さらに、実施例1〜3及び比較例1に係るITO膜付ガラス基板のITO膜の深さ方向でのインジウムとスズの含有量をESCAで測定した。
シート抵抗値の測定結果を下記表1に示し、光透過率の測定結果を下記表2に示す。また、実施例1〜3に係るITO膜付ガラス基板についてのESCAによる測定結果を図1に示す。
【0030】
【表1】

Figure 2004018913
【0031】
【表2】
Figure 2004018913
【0032】
(結果)
表1から明らかなように、本発明の透明導電膜付基体の製造方法により、膜厚を変化させることによって、シート抵抗値が10〜500Ω/□のITO膜付基体を製造することができ、種々の用途に対応した所望のシート抵抗値のITO膜を有するITO膜付基体を得ることができることが明らかとなった。
また、表2から明らかなように、本発明に係る実施例1〜3のITO膜付ガラス基板は、それぞれ、任意の部分において光透過率がほぼ等しく、膜の透明度が均一なことが明らかとなった。
【0033】
また、図1から明らかなように、本発明に係る実施例1〜3のITO膜付ガラス基板においては、スズの含有率がほぼ一定しており、膜の表面及び内部でインジウムとスズが均一に分散した膜が形成されたことが明らかになった。一方、比較例1に係るITO膜付基体においては、ESCAの測定によってスズは検出されず、スズは単に熱分解されただけでインジウムと共に膜になっていないことが明らかとなった。
【0034】
【発明の効果】
本発明の透明導電膜形成液によれば、シート抵抗値、透明性、及び透明導電膜の深さ方向でのインジウムとスズの分布において、極めて均一な透明導電膜を形成することができる。また、本発明の透明導電膜付基体の製造方法によれば、シート抵抗値、透明性、及び透明導電膜の深さ方向でのインジウムとスズの分布において極めて均一な透明導電膜を有する膜付基体を製造することができる。
【図面の簡単な説明】
【図1】本発明の透明導電膜付基体(実施例のITO膜付ガラス基板)についてのESCAによる測定結果を示す図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a liquid for forming a transparent conductive film and a method for producing a substrate with a transparent conductive film using the liquid for forming a transparent conductive film.
[0002]
[Prior art]
BACKGROUND ART Transparent conductive films (ITO films) are widely used in liquid crystal displays, electroluminescent displays, surface heating elements, touch panel electrodes, solar cells, and the like, utilizing their excellent transparency and conductivity.
Since the transparent conductive film is used in such a wide field, it is required to have various sheet resistance values and transparency depending on the purpose of use. For example, a transparent conductive film for a flat panel display is required to have a low resistance and a high transmittance, and a transparent conductive film for a touch panel is required to have a high resistance and a high transmittance. You. In particular, a transparent conductive film for pen input touch panels, which has been developed in recent years and is expected to grow in the market, requires high position recognition accuracy, and is a high-resistance film having a sheet resistance value of 200 to 3000 Ω / □. There is a demand. Here, the sheet resistance value is a value determined by specific resistance / film thickness of the conductive film.
[0003]
As a method of forming a transparent conductive film having a desired sheet resistance value as described above, for example, JP-A-2001-35273 and JP-A-2002-133956 disclose a sputtering method, an electron beam method, and an ion plating method. A method is described in which after a transparent conductive film is formed by a method or a chemical vapor deposition method, the transparent conductive film is subjected to a heat treatment in the presence of a predetermined concentration of an organic solvent. In this publication, as a raw material for forming a transparent conductive film, indium compounds such as indium trisacetylacetonate, indium trisbenzoylmethanate, indium trichloride, indium nitrate, and indium triisopropoxide are exemplified. Examples of the tin compound include stannic chloride, dimethyltin dichloride, dibutyltin dichloride, tetrabutyltin, staniasoctoate, dibutyltin maleate, dibutyltin acetate, dibutyltin bisacetylacetonate, and the like.
[0004]
However, the above publication describes a method for obtaining a transparent conductive film having a desired resistance value, and studies a preferable combination of an indium compound and a tin compound, and describes a relationship between the indium compound and the tin compound. No studies have been made on the uniformity of the sheet resistance and the transparency of the transparent conductive film in the above. The present inventors have studied further improvement of the sheet resistance value and the uniformity of the transparency in consideration of the future application of the transparent conductive film, particularly the ITO film, and the like.
[0005]
[Problems to be solved by the invention]
The present invention has been made in view of such circumstances, and an object of the present invention is to provide a transparent conductive film forming liquid capable of forming a transparent conductive film having extremely uniform sheet resistance and transparency, and a sheet resistance value. Another object of the present invention is to provide a method of manufacturing a substrate with a transparent conductive film having a transparent conductive film which is extremely uniform in transparency.
[0006]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to form a transparent conductive film having a more uniform film quality. As a result, the indium compound contained in the transparent conductive film forming liquid for forming the transparent conductive film is represented by the following formula [1]. By using an indium compound represented by the formula (1), and using a tin compound represented by the following formula [2] as a tin compound, it has been found that a transparent conductive film having more uniform film quality can be formed. Reached.
[0007]
That is, the present invention relates to formula [1]
In (R 1 COCHCOR 2 ) 3 [1]
(Wherein, R 1 and R 2 each independently represent an alkyl group having 1 to 10 carbon atoms or a phenyl group), and an indium compound represented by the formula [2]:
(R 3 ) 2 Sn (OR 4 ) 2 [2]
(Wherein, R 3 represents an alkyl group having 1 to 10 carbon atoms, and R 4 represents an alkyl group having 1 to 10 carbon atoms or an acyl group having 1 to 10 carbon atoms). The transparent conductive film forming liquid (claim 1) characterized in that the indium compound represented by the formula [1] or indium trisacetylacetonate is indium trisacetylacetonate. 3. The transparent conductive film forming liquid according to claim 1, wherein the conductive film forming liquid (claim 2) or the tin compound represented by the formula [2] is di-n-butyltin diacetate. (Claim 3) The invention is characterized in that In in the indium compound represented by the formula [1] is contained more in mass than Sn in the tin compound represented by the formula [2]. The liquid for forming a transparent conductive film according to any one of claims 1 to 3 (claim 4) Or that Sn in the tin compound represented by the formula [2] is contained in a mass ratio of 0.001 to 0.5 with respect to In1 in the indium compound represented by the formula [1]. A liquid for forming a transparent conductive film according to claim 4 (claim 5).
[0008]
The present invention also relates to a method for producing a substrate with a transparent conductive film by forming a transparent conductive film directly or via an intermediate film on a substrate, wherein the substrate or the intermediate film is represented by the formula [1]. A transparent conductive film formed by a chemical thermal decomposition method using a transparent conductive film forming solution containing an indium compound to be produced and a tin compound represented by the formula [2]. And Sn in the tin compound represented by the formula [2] is 0.001 to 0 in mass ratio to In1 in the indium compound represented by the formula [1]. The method for producing a substrate with a transparent conductive film according to claim 6, wherein the indium compound represented by the formula [1] The tin compound represented by the formula [2] is decomposed by heat and deposited on a substrate or an intermediate film. The method for producing a substrate with a transparent conductive film according to claim 6 or 7, wherein the indium compound represented by the formula [1] and the indium compound represented by the formula [2] are provided. 9. The method for producing a substrate with a transparent conductive film according to claim 8, wherein the method of decomposing the tin compound by heat and depositing it on the substrate or the intermediate film is a pyrosol process method. Further, the present invention relates to a method for producing a substrate with a transparent conductive film according to any one of claims 6 to 9, wherein the substrate is a glass substrate.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
The liquid for forming a transparent conductive film of the present invention has the formula [1]
In (R 1 COCHCOR 2 ) 3 [1]
An indium compound represented by the formula [2]:
(R 3 ) 2 Sn (OR 4 ) 2 [2]
And a tin compound represented by the formula:
In Formula [1], R 1 and R 2 each independently represent an alkyl group having 1 to 10 carbon atoms or a phenyl group, and specifically, for example, a methyl group, an ethyl group, an n-propyl group, -Butyl group, tertiary butyl group and the like. Among these, the indium compound represented by the formula [1] is particularly preferably indium trisacetylacetonate (In (CH 3 COCHCOCH 3 ) 3 ).
[0010]
In the formula [2], R 3 represents an alkyl group having 1 to 10 carbon atoms, and R 4 represents an alkyl group having 1 to 10 carbon atoms or an acyl group having 1 to 10 carbon atoms. Specifically, examples of R 3 include a methyl group, an ethyl group, an n-propyl group, an n-butyl group, and a tertiary butyl group, and examples of R 4 include a methyl group, an ethyl group, and an n- An acyl group such as an alkyl group such as a propyl group, an n-butyl group and a tertiary butyl group, an acetyl group and a propionyl group is exemplified. Among these, the tin compounds represented by the formula (2), particularly preferably di -n- butyl tin diacetate ((n-Bu) 2 Sn (OCOCH 3) 2).
[0011]
In the case of forming a transparent conductive film using the transparent conductive film forming solution, the closer the thermal decomposition temperature of the indium compound and the tin compound contained in the transparent conductive film forming solution, the more uniform the two are diffused and uniform. It is considered that a good film quality can be formed. In the transparent conductive film forming solution of the present invention, the indium compound represented by the formula [1] and the tin compound represented by the formula [2] have close thermal decomposition temperatures, and specifically, indium trisacetylacetonate has a temperature of around 320 ° C. The di-n-butyltin diacetate is around 360 ° C.
[0012]
Therefore, when a transparent conductive film is formed using the transparent conductive film forming liquid of the present invention, the indium compound represented by the formula [1] and the tin compound represented by the formula [2] are decomposed by heat to form a substrate. Alternatively, when deposited on an intermediate film, the indium compound represented by the formula [1] and the tin compound represented by the formula [2] undergo thermal decomposition almost simultaneously at a predetermined temperature, whereby Is considered to be uniformly diffused and deposited (deposited), so that a film having extremely uniform film quality can be formed, and a transparent conductive film having extremely uniform conductivity and transparency can be formed. In addition, after coating the transparent conductive film forming solution, the indium compound represented by the formula [1] and the tin compound represented by the formula [2] are decomposed by heat and fixed on a substrate or an intermediate film. In the drying and / or baking after coating, the indium compound represented by the formula [1] and the tin compound represented by the formula [2] are thermally decomposed almost simultaneously at a predetermined temperature and diffuse uniformly. It is considered that the film is fixed on the substrate or the intermediate film, and a film having extremely uniform film quality can be formed, and a transparent conductive film having extremely uniform conductivity and transparency can be formed. Further, since the film formed using the transparent conductive film forming solution of the present invention has excellent conductivity and transparency, it is widely used for liquid crystal displays, electroluminescence displays, surface heating elements, touch panel electrodes, solar cells, and the like. be able to.
[0013]
The transparent conductive film forming solution of the present invention is not particularly limited as long as it contains an indium compound represented by the formula [1] and a tin compound represented by the formula [2]. It is preferable that the In in the indium compound represented by mass contains more In by mass than the Sn in the tin compound represented by the formula [2] (the formed transparent conductive film is an ITO film), More preferably, Sn in the tin compound represented by the formula [2] is contained in a mass ratio of 0.001 to 0.5 with respect to In1 in the indium compound represented by the formula [1]. , 0.05 to 0.35.
By containing the indium compound represented by the formula [1] and the tin compound represented by the formula [2] in the above range of the mass ratio, it is possible to form a transparent conductive film excellent in uniformity of transparency and resistance value. Thus, a transparent conductive film having such a resistance value is particularly useful, for example, as a transparent electrode for a touch panel.
[0014]
The liquid for forming a transparent conductive film of the present invention contains the indium compound represented by the formula [1], but other indium compounds may be used in combination. As the indium compound to be used in combination, a compound which is thermally decomposed to indium oxide is preferable. For example, indium trichloride (InCl 3 ), indium nitrate (In (NO 3 ) 3 ), indium triisopropoxide (In (OiPr)) 3 ) and the like.
When another indium compound is used in combination, the indium compound represented by the formula [1] is preferably contained in an amount of 80% by mass or more, more preferably 90% by mass or more in all the indium compounds. , 95% by mass or more, and more preferably the indium compound represented by the formula [1].
[0015]
The liquid for forming a transparent conductive film of the present invention contains a tin compound represented by the formula [2], but another tin compound may be used in combination. As the tin compound to be used in combination, a compound which is thermally decomposed into stannic oxide is preferable. For example, stannic chloride, dimethyltin dichloride, dibutyltin dichloride, tetrabutyltin, staniasoctoate (Sn (OCOC 7 H 15 )) 2 ), dibutyltin maleate, dibutyltin bisacetylacetonate and the like.
When another tin compound is used in combination, the tin compound represented by the formula [2] is preferably contained in an amount of at least 80% by mass, more preferably at least 90% by mass of all the tin compounds. , 95% by mass or more, and more preferably the tin compound represented by the formula [2].
[0016]
Further, the liquid for forming a transparent conductive film of the present invention contains Mg, Ca, Sr, and Ba as a third component in addition to the indium compound represented by the formula [1] and the tin compound represented by the formula [2]. Group 3 elements such as Sc, Y, lanthanoids such as La, Ce, Nd, Sm, and Gd; Group 4 elements such as Ti, Zr, and Hf; V, Nb, and Ta Group 5 element such as Cr, Mo, W, etc., Group 7 element such as Mn, Group 9 element such as Co, Group 10 element such as Ni, Pd, Pt, Cu, Ag Group 11 elements such as Zn, Cd, etc., Group 13 elements such as B, Al, Ga, etc., Group 14 elements such as Si, Ge, Pb, etc., and Group 15 elements such as P, As, Sb, etc. It is also preferable to contain a simple substance composed of a Group 16 element, a Group 16 element such as Se or Te, or a compound thereof.
The addition ratio of these elements is preferably about 0.05 to 20 atomic% with respect to indium. The addition ratio differs depending on the added element, and the element and the addition amount suitable for the target resistance value can be appropriately selected. it can.
[0017]
Examples of the organic solvent used in the transparent conductive film forming liquid of the present invention include acetylacetone, acetone, methyl isobutyl ketone, ketone solvents such as diethyl ketone, methanol, ethanol, propanol, isopropanol, alcohol solvents such as butanol, ethyl acetate, and the like. Ester solvents such as butyl acetate, ether solvents such as methylcellosolve and tetrahydrofuran, aromatic hydrocarbons such as benzene, toluene and xylene, and aliphatic hydrocarbons such as hexane, heptane, octane and cyclohexane. Can be.
The type and addition amount of these organic solvents depend on the set value of the sheet resistance value of the transparent conductive film, and the like, the type of the transparent conductive film, the thickness of the transparent conductive film, the type of the organic solvent used, the heating temperature, and the heating time. Can be determined as appropriate. For example, the sheet resistance can be further reduced by adding a large amount of an organic solvent which is more easily thermally decomposed under the same other conditions. As described above, a transparent conductive film having a desired sheet resistance value can be obtained by appropriately selecting and setting the type, the addition amount, and the heating temperature of the organic solvent to be used.
[0018]
Hereinafter, a method for producing the substrate with a transparent conductive film of the present invention will be described.
The method for producing a substrate with a transparent conductive film according to the present invention is a method for producing a substrate with a transparent conductive film by forming a transparent conductive film directly or via an intermediate film on the substrate. A transparent conductive film is formed by a chemical pyrolysis method using a transparent conductive film forming solution containing an indium compound represented by the formula [1] and a tin compound represented by the formula [2]. And That is, a transparent conductive film is formed by a chemical thermal decomposition method using the above-mentioned transparent conductive film forming liquid.
[0019]
Here, the chemical pyrolysis method means that an indium compound represented by the formula [1] and a tin compound represented by the formula [2] contained in the transparent conductive film forming solution are decomposed by heat to form a substrate or A method of depositing on an intermediate film, and a method of coating a transparent conductive film forming solution, and then thermally decomposing an indium compound represented by the formula [1] and a tin compound represented by the formula [2] to form a substrate or an intermediate film. It refers to a method of fixing on the top, for example, spray method, dip coating method, spin coating method, LB method, sol-gel method, liquid phase epitaxy method, thermal CVD method, plasma CVD method, MOCVD method, pyrosol process method, (Atmospheric pressure CVD method by ultrasonic atomization), CVD method (chemical vapor deposition) such as SPD method, Cat-CVD method and the like. It is particularly preferred to use a pyrolytic sol process method. By using the pyrosol process method, a transparent conductive film having more uniform film quality can be manufactured.
[0020]
According to the method for producing a substrate with a transparent conductive film of the present invention, the indium compound represented by the formula [1] and the tin compound represented by the formula [2], which have similar thermal decomposition temperatures, are uniformly formed at a predetermined temperature. And a transparent conductive film having uniform film quality can be formed. Specifically, when the indium compound represented by the formula [1] and the tin compound represented by the formula [2] in the transparent conductive film forming liquid are thermally decomposed and deposited on a substrate or an intermediate film, When the indium compound represented by the formula [1] and the tin compound represented by the formula [2] undergo thermal decomposition almost simultaneously at a predetermined temperature, they are uniformly diffused and deposited (evaporated). It is considered that a film having extremely uniform film quality can be formed, and a transparent conductive film having extremely uniform conductivity and transparency can be formed. In addition, after coating the transparent conductive film forming solution, the indium compound represented by the formula [1] and the tin compound represented by the formula [2] are decomposed by heat and fixed on a substrate or an intermediate film. In the drying and / or baking after coating, the indium compound represented by the formula [1] and the tin compound represented by the formula [2] are thermally decomposed almost simultaneously at a predetermined temperature and diffuse uniformly. It is considered that the film is fixed on the substrate or the intermediate film, and a film having extremely uniform film quality can be formed, and a transparent conductive film having extremely uniform conductivity and transparency can be formed.
[0021]
Further, since the transparent conductive film produced by the method for producing a substrate with a transparent conductive film of the present invention has excellent conductivity and transparency, it can be used for liquid crystal displays, electroluminescent displays, surface heating elements, touch panel electrodes, solar cells, and the like. Can be widely used. Further, in the method for producing a substrate with a transparent conductive film of the present invention, a uniform film can be easily formed by using a chemical pyrolysis method which is a general method of film formation.
[0022]
The intermediate film may be a one-layer film or a two-layer or more film. Examples of such an intermediate film include a silicon oxide film, a polysilane film formed from an organic polysilane compound, an MgF 2 film, a CaF 2 film, and a composite oxide film of SiO 2 and TiO 2 . These intermediate films are formed, for example, to prevent diffusion of Na ions when soda glass is used as the substrate. Further, by forming a base film having a refractive index different from that of the transparent conductive film, preferably a low refractive index, the antireflection or the transparency can be improved. These films can be formed by a generally known film forming method, for example, a sputtering method, a CVD method, a spray method, a dipping method, and the like. The thickness is not particularly limited, but is usually It is about 20 to 200 nm.
[0023]
The substrate may be a sheet (substrate), a honeycomb, a fiber, a bead, a foam, or a combination thereof, and is heat-resistant at a temperature at which a component of the transparent conductive film forming liquid thermally decomposes. The material is not particularly limited as long as it has properties, and examples thereof include a glass substrate, a ceramics substrate, and a metal substrate. Among them, a glass substrate is preferably used in the method for producing a substrate with a transparent conductive film of the present invention. Examples of the glass substrate include silicate glass (quartz glass), alkali silicate glass, soda lime glass, potassium lime glass, lead glass, barium glass, and borosilicate glass.
[0024]
The thickness of the transparent conductive film formed in the method for producing a substrate with a transparent conductive film of the present invention is not particularly limited, and may be appropriately selected depending on the application and the like. When forming an ITO film of □ or less, it is generally 80 nm or more, and when forming an ITO film having a sheet resistance of 60 to 200 Ω / □, it is generally about 30 nm and the sheet resistance is 200 to 3000 Ω. When an ITO film of // is formed, the thickness is generally 10 to 25 nm.
[0025]
In the method for producing a substrate with a transparent conductive film according to the present invention, when the above-mentioned pyrosol process method is used, the indium compound represented by the formula [1] and the tin compound represented by the formula [2] are mixed with an organic solvent. The transparent conductive film forming liquid dissolved in the aerosol is formed into an aerosol composed of fine particles that are relatively uniform and granular using an atomizing method by ultrasonic waves, and the indium compound represented by the formula [1] and the formula [ 2] is supplied to a substrate in a heating furnace controlled to a temperature at which indium oxide and stannic oxide can be formed by thermal decomposition of the tin compound, for example, a uniform temperature of 300 to 800 ° C. The indium compound represented by the formula [1] and the tin compound represented by the formula [2] are vaporized in a heating furnace and reacted from a gaseous phase on a substrate to form a transparent conductive film.
[0026]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples, but the technical scope of the present invention is not limited to these examples.
[Example 1]
Indium trisacetylacetonate (In (AcAc) 3 ) was dissolved in acetylacetone at a molar concentration of 0.2 mol / L to obtain a yellow transparent solution. An ITO film forming solution (transparent conductive film forming solution) was prepared by adding di-n-butyltin diacetate as a tin compound to this solution so that Sn / In = 5% by mass.
A 20 nm thick ITO film is formed on a glass substrate by a pyrosol process method using the ITO film forming solution while controlling the amount of chemical thermal decomposition caused by atomization of the ITO film forming solution. A glass substrate with an ITO film (a substrate with a transparent conductive film) having a film was obtained.
[0027]
[Example 2]
An ITO film having a thickness of 40 nm was formed on a glass substrate in the same manner as in Example 1 to obtain a glass substrate with an ITO film having a transparent ITO film.
[Example 3]
A 200-nm-thick ITO film was formed on a glass substrate in the same manner as in Example 1 to obtain a glass substrate with an ITO film having a transparent ITO film.
[0028]
[Comparative Example 1]
Indium trisacetylacetonate (In (AcAc) 3 ) was dissolved in acetylacetone at a molar concentration of 0.2 mol / L to obtain a yellow transparent solution. An ITO film forming solution was prepared by adding tri-n-octyltin oxide as a tin compound to this solution so that Sn / In = 5% by mass.
A 30 nm thick ITO film is formed on a glass substrate by adjusting the amount of chemical thermal decomposition by atomization of the ITO film forming solution by a pyrosol process method using the ITO film forming solution, and has a yellow tint. A glass substrate with an ITO film having a transparent ITO film was manufactured.
[0029]
<Evaluation>
The specific resistance of the glass substrate with the ITO film according to Examples 1 to 3 and Comparative Example 1 was measured using Loresta (manufactured by Mitsubishi Chemical Corporation), and the sheet resistance was calculated. Note that the sheet resistance value is a value determined by the specific resistance / the thickness of the conductive film. In addition, the light transmittance at a wavelength of 550 nm of the arbitrarily selected portions a to c (three places) of the glass substrates with the ITO film according to Examples 1 to 3 and Comparative Example 1 was measured using a magnetic spectrophotometer (manufactured by Hitachi, Ltd.) It measured using. Furthermore, the content of indium and tin in the depth direction of the ITO film of the glass substrate with the ITO film according to Examples 1 to 3 and Comparative Example 1 was measured by ESCA.
Table 1 below shows the measurement results of the sheet resistance value, and Table 2 below shows the measurement results of the light transmittance. FIG. 1 shows the results of ESCA measurement on the glass substrates with ITO films according to Examples 1 to 3.
[0030]
[Table 1]
Figure 2004018913
[0031]
[Table 2]
Figure 2004018913
[0032]
(result)
As is clear from Table 1, by changing the film thickness by the method for producing a substrate with a transparent conductive film of the present invention, a substrate with an ITO film having a sheet resistance value of 10 to 500 Ω / □ can be produced. It has been clarified that an ITO film-coated substrate having an ITO film having a desired sheet resistance value corresponding to various uses can be obtained.
Further, as is clear from Table 2, it is clear that the glass substrates with the ITO films of Examples 1 to 3 according to the present invention have almost the same light transmittance in any part and uniform film transparency. became.
[0033]
Also, as is clear from FIG. 1, in the glass substrates with the ITO film of Examples 1 to 3 according to the present invention, the tin content is almost constant, and indium and tin are uniform on the surface and inside of the film. It was clarified that a film dispersed in was formed. On the other hand, in the substrate with an ITO film according to Comparative Example 1, tin was not detected by ESCA measurement, and it was revealed that tin was simply thermally decomposed and did not form a film with indium.
[0034]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to the transparent conductive film formation liquid of this invention, a very uniform transparent conductive film can be formed in sheet resistance value, transparency, and distribution of indium and tin in the depth direction of a transparent conductive film. Further, according to the method for producing a substrate with a transparent conductive film of the present invention, a film having a transparent conductive film which is extremely uniform in sheet resistance, transparency, and distribution of indium and tin in the depth direction of the transparent conductive film is provided. A substrate can be manufactured.
[Brief description of the drawings]
FIG. 1 is a view showing the results of ESCA measurement on a substrate with a transparent conductive film of the present invention (glass substrate with an ITO film in Examples).

Claims (10)

式〔1〕
In(RCOCHCOR 〔1〕
(式中、R及びRは、それぞれ独立して炭素数1〜10のアルキル基又はフェニル基を表す。)で表されるインジウム化合物と、式〔2〕
(RSn(OR 〔2〕
(式中、Rは炭素数1〜10のアルキル基を表し、Rは炭素数1〜10のアルキル基又は炭素数1〜10のアシル基を表す。)で表されるスズ化合物とを含有することを特徴とする透明導電膜形成液。
Equation [1]
In (R 1 COCHCOR 2 ) 3 [1]
(Wherein, R 1 and R 2 each independently represent an alkyl group having 1 to 10 carbon atoms or a phenyl group), and an indium compound represented by the formula [2]:
(R 3 ) 2 Sn (OR 4 ) 2 [2]
(Wherein, R 3 represents an alkyl group having 1 to 10 carbon atoms, and R 4 represents an alkyl group having 1 to 10 carbon atoms or an acyl group having 1 to 10 carbon atoms). A liquid for forming a transparent conductive film, comprising:
式〔1〕で表されるインジウム化合物が、インジウムトリスアセチルアセトナートであることを特徴とする請求項1に記載の透明導電膜形成液。The transparent conductive film forming liquid according to claim 1, wherein the indium compound represented by the formula (1) is indium trisacetylacetonate. 式〔2〕で表されるスズ化合物が、ジ−n−ブチルスズジアセテートであることを特徴とする請求項1又は2に記載の透明導電膜形成液。3. The transparent conductive film forming solution according to claim 1, wherein the tin compound represented by the formula [2] is di-n-butyltin diacetate. 式〔1〕で表されるインジウム化合物中のInが、質量で、式〔2〕で表されるスズ化合物中のSnより多く含有されていることを特徴とする請求項1〜3のいずれかに記載の透明導電膜形成液。The In in the indium compound represented by the formula (1) is contained in a larger amount than the Sn in the tin compound represented by the formula (2) by mass. 4. The liquid for forming a transparent conductive film according to item 1. 式〔2〕で表されるスズ化合物中のSnが、質量比で、式〔1〕で表されるインジウム化合物中のIn1に対して0.001〜0.5含有されていることを特徴とする請求項4に記載の透明導電膜形成液。Sn in the tin compound represented by the formula [2] is contained in a mass ratio of 0.001 to 0.5 with respect to In1 in the indium compound represented by the formula [1]. The liquid for forming a transparent conductive film according to claim 4. 基体上に、直接又は中間膜を介して透明導電膜を形成して透明導電膜付基体を製造する方法であって、
前記基体又は中間膜上に、 式〔1〕
In(RCOCHCOR 〔1〕
(式中、R及びRは、それぞれ独立して炭素数1〜10のアルキル基又はフェニル基を表す。)で表されるインジウム化合物と、式〔2〕
(RSn(OR 〔2〕
(式中、Rは炭素数1〜10のアルキル基を表し、Rは炭素数1〜10のアルキル基又は炭素数1〜10のアシル基を表す。)で表されるスズ化合物とを含有する透明導電膜形成液を用いて化学的熱分解法により透明導電膜を形成することを特徴とする透明導電膜付基体の製造方法。
A method for producing a substrate with a transparent conductive film by forming a transparent conductive film directly or via an intermediate film on a substrate,
On the substrate or the intermediate film, the formula [1]
In (R 1 COCHCOR 2 ) 3 [1]
(Wherein, R 1 and R 2 each independently represent an alkyl group having 1 to 10 carbon atoms or a phenyl group), and an indium compound represented by the formula [2]:
(R 3 ) 2 Sn (OR 4 ) 2 [2]
(Wherein, R 3 represents an alkyl group having 1 to 10 carbon atoms, and R 4 represents an alkyl group having 1 to 10 carbon atoms or an acyl group having 1 to 10 carbon atoms). A method for producing a substrate with a transparent conductive film, wherein a transparent conductive film is formed by a chemical pyrolysis method using a transparent conductive film forming solution contained therein.
式〔2〕で表されるスズ化合物中のSnが、質量比で、式〔1〕で表されるインジウム化合物中のIn1に対して0.001〜0.5含有されていることを特徴とする請求項6に記載の透明導電膜付基体の製造方法。Sn in the tin compound represented by the formula [2] is contained in a mass ratio of 0.001 to 0.5 with respect to In1 in the indium compound represented by the formula [1]. The method for producing a substrate with a transparent conductive film according to claim 6. 化学的熱分解法が、式〔1〕で表されるインジウム化合物及び式〔2〕で表されるスズ化合物を熱により分解させて基体又は中間膜上に堆積させる方法であることを特徴とする請求項6又は7に記載の透明導電膜付基体の製造方法。The chemical pyrolysis method is a method in which an indium compound represented by the formula [1] and a tin compound represented by the formula [2] are decomposed by heat and deposited on a substrate or an intermediate film. A method for producing a substrate with a transparent conductive film according to claim 6. 式〔1〕で表されるインジウム化合物及び式〔2〕で表されるスズ化合物を熱により分解させて基体又は中間膜上に堆積させる方法が、パイロゾルプロセス法であることを特徴とする請求項8に記載の透明導電膜付基体の製造方法。The method wherein the method of decomposing the indium compound represented by the formula [1] and the tin compound represented by the formula [2] by heat and depositing them on a substrate or an intermediate film is a pyrosol process method. Item 10. The method for producing a substrate with a transparent conductive film according to Item 8. 基体が、ガラス基板であることを特徴とする請求項6〜9のいずれかに記載の透明導電膜付基体の製造方法。The method for producing a substrate with a transparent conductive film according to any one of claims 6 to 9, wherein the substrate is a glass substrate.
JP2002173692A 2002-06-14 2002-06-14 Liquid for forming transparent conductive film and method for manufacturing substrate coated with transparent conductive film using the same Pending JP2004018913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002173692A JP2004018913A (en) 2002-06-14 2002-06-14 Liquid for forming transparent conductive film and method for manufacturing substrate coated with transparent conductive film using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002173692A JP2004018913A (en) 2002-06-14 2002-06-14 Liquid for forming transparent conductive film and method for manufacturing substrate coated with transparent conductive film using the same

Publications (1)

Publication Number Publication Date
JP2004018913A true JP2004018913A (en) 2004-01-22

Family

ID=31172849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002173692A Pending JP2004018913A (en) 2002-06-14 2002-06-14 Liquid for forming transparent conductive film and method for manufacturing substrate coated with transparent conductive film using the same

Country Status (1)

Country Link
JP (1) JP2004018913A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005302356A (en) * 2004-04-07 2005-10-27 Nippon Soda Co Ltd Transparent conductive film and transparent conductive film formation material
JP2005332748A (en) * 2004-05-21 2005-12-02 Asahi Denka Kogyo Kk Application liquid for transparent conductive film formation
WO2013022032A1 (en) * 2011-08-10 2013-02-14 日本曹達株式会社 Laminate and manufacturing process therefor
JP2013517381A (en) * 2010-01-19 2013-05-16 フラウンホーファー−ゲゼルシャフト ツル フェルデルング デル アンゲヴァンテン フォルシュング エー ファウ Method of vacuum coating a substrate having a transparent and conductive metal alloy oxide and a transparent and conductive layer made of metal alloy oxide

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005302356A (en) * 2004-04-07 2005-10-27 Nippon Soda Co Ltd Transparent conductive film and transparent conductive film formation material
JP4683525B2 (en) * 2004-04-07 2011-05-18 日本曹達株式会社 Transparent conductive film and transparent conductive film forming material
JP2005332748A (en) * 2004-05-21 2005-12-02 Asahi Denka Kogyo Kk Application liquid for transparent conductive film formation
JP4542369B2 (en) * 2004-05-21 2010-09-15 株式会社Adeka Coating liquid for forming transparent conductive film and method for forming transparent conductive film
JP2013517381A (en) * 2010-01-19 2013-05-16 フラウンホーファー−ゲゼルシャフト ツル フェルデルング デル アンゲヴァンテン フォルシュング エー ファウ Method of vacuum coating a substrate having a transparent and conductive metal alloy oxide and a transparent and conductive layer made of metal alloy oxide
WO2013022032A1 (en) * 2011-08-10 2013-02-14 日本曹達株式会社 Laminate and manufacturing process therefor
TWI470651B (en) * 2011-08-10 2015-01-21 Nippon Soda Co Laminate and manufacturing method thereof
JPWO2013022032A1 (en) * 2011-08-10 2015-03-05 日本曹達株式会社 Laminate and method for producing the same
US9338884B2 (en) 2011-08-10 2016-05-10 Nippon Soda Co., Ltd. Laminated body and manufacturing process therefor
JP2017022118A (en) * 2011-08-10 2017-01-26 日本曹達株式会社 Laminated body and method for producing the same

Similar Documents

Publication Publication Date Title
CN1041814C (en) Coated article
CN1263696C (en) Chemical vapor deposition of antimony-doped metal oxide
KR101464061B1 (en) A method of depositing niobium doped titania film on a substrate and the coated substrate made thereby
JP5406717B2 (en) Low temperature process for producing zinc oxide coated articles
US8624050B2 (en) Solution process for transparent conductive oxide coatings
NL7810511A (en) METHOD FOR MANUFACTURING IMPROVED TINOXIDE COATINGS, AND PRODUCTS FORMED THEREFORE
McCurdy Successful implementation methods of atmospheric CVD on a glass manufacturing line
US20020136832A1 (en) Volatile organometallic complexes suitable for use in chemical vapor depositions on metal oxide films
US7736698B2 (en) Method of depositing zinc oxide coatings on a substrate
JP2004026554A (en) Transparent conductive film-forming liquid and method for manufacturing substrate having transparent conductive film using the same
JP2004018913A (en) Liquid for forming transparent conductive film and method for manufacturing substrate coated with transparent conductive film using the same
JP2001035273A (en) Adjusting method for sheet resistance value of transparent conductive film and forming method for the transparent conductive film
JP3834339B2 (en) Transparent conductive film and method for producing the same
US5417757A (en) Liquid precursor for the production of fluorine doped tin oxide coatings and corresponding coating process
JPH08264022A (en) Transparent conductive film
JP4909559B2 (en) Transparent conductive substrate
JP4683525B2 (en) Transparent conductive film and transparent conductive film forming material
IE850906L (en) Liquid coating for producing flourine-doped tin oxide¹coating for glass.
JPH07257945A (en) Transparent electric conductive laminated body and pen input touch panel
JP2004022388A (en) Manufacturing method of transparent conductive film forming liquid and substrate with transparent conductive film using same
CN101042950B (en) Method for manufacturing transparent conductive film cling matrix
JP2004039269A (en) Method for manufacturing substrate with transparent electroconductive film
KR100662320B1 (en) A solution for forming a transparent conductive film and a process for forming a transparent conductive film on a substrate using the solution
KR100611538B1 (en) A solution for forming a transparent conductive film and a process for forming a transparent conductive film on a substrate using the solution
KR101206989B1 (en) Coating method of fluorine-dopped tin oxide transparent conductive

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060622

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061228

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070313

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070511