JPS6228683B2 - - Google Patents

Info

Publication number
JPS6228683B2
JPS6228683B2 JP17149479A JP17149479A JPS6228683B2 JP S6228683 B2 JPS6228683 B2 JP S6228683B2 JP 17149479 A JP17149479 A JP 17149479A JP 17149479 A JP17149479 A JP 17149479A JP S6228683 B2 JPS6228683 B2 JP S6228683B2
Authority
JP
Japan
Prior art keywords
fibers
water
flocculant
polymer flocculant
soluble solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17149479A
Other languages
Japanese (ja)
Other versions
JPS5697510A (en
Inventor
Hiroshi Asada
Kohei Kobayashi
Toshiaki Iwama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichireki Kagaku Kogyo Co Ltd
Original Assignee
Nichireki Kagaku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichireki Kagaku Kogyo Co Ltd filed Critical Nichireki Kagaku Kogyo Co Ltd
Priority to JP17149479A priority Critical patent/JPS5697510A/en
Publication of JPS5697510A publication Critical patent/JPS5697510A/en
Publication of JPS6228683B2 publication Critical patent/JPS6228683B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、繊維、高分子凝集剤、および湿潤剤
よりなり繊維と高分子凝集剤とがよく混合されて
いて材料の分離が少ない凝集剤組成物で、水に投
入したとき繊維の分散、高分子凝集剤の溶解が早
く、容易で且つ凝集剤としての効果のすぐれた凝
集剤組成物とその製造方法に関するものである。 本発明者らは、先に汚泥の凝集、固液分離(脱
水)において高分子凝集剤に繊維を併用すると高
分子凝集剤単独に比べて飛躍的に脱水効率を向上
できることを見出した。特に機械脱水において
は、高分子凝集剤単独では十分な結果を得られな
かつた加圧脱水等も容易に出来、普遍的に真空、
遠心、加圧、その他の種々の脱水機で効率よく脱
水でき過速度を早め脱水ケーキの含水率を低く
できるため脱水処理能力を大幅に向上させること
を見出した。 高分子凝集剤と繊維を併用する方法では、通常
水に高分子凝集剤を溶解し、繊維を分散させた処
理液を調製し、これを汚泥に添加する方法が用い
られるが、高分子凝集剤単独の場合に比べて計量
が複雑であり、また高分子凝集剤と繊維の溶解と
分散の際の気泡の混入は繊維の均一分散を妨げる
ため、いろいろと注意が必要であり時間と労力を
要するという問題点があつた。 本発明の目的は、叙上問題点を解消し、すぐれ
た利点を十分に発揮できるようにしたもので、計
量、取扱いが容易で水への高分子凝集剤の溶解が
早く繊維の分散も早く良好で汚泥等の固形分の凝
集、固液分離、機械脱水等にすぐれた効果を発揮
できる高分子凝集剤と繊維とを混合し一剤とした
凝集剤組成物およびその製造方法を提供するもの
である。 そして、本発明は、 (1) 繊維、高分子凝集剤、および湿潤剤よりなる
ことを特徴とする凝集剤組成物で、該湿潤剤が
液状ポリエチレングリコール、メタノール、エ
タノール、プロパノール、ブタノール等から選
ばれた1種または2種以上を混合してなる水溶
性溶媒(以下単に水溶性溶媒と称する)或は該
水溶性溶媒に界面活性剤およびまたはエマルジ
ヨン型シリコン消泡剤を添加したものである凝
集剤組成物。および (2) 繊維を上記水溶性溶媒或は水溶性溶媒に界面
活性剤およびまたはエマルジヨン型シリコン消
泡剤を添加したもので処理したものと高分子凝
集剤粉末を混合し混合物を造ることを特徴とす
る凝集剤組成物の製造方法。 に係るものである。 本発明に使用される繊維は、石綿、ガラス繊
維、岩綿などの無機繊維、木綿、麻、シユロ、牛
毛、羊毛、絹、紙、パルプ、レーヨン、醋酸人絹
などの天然繊維または人造繊維、ポリエステル、
ビニロン、ポリアミド、芳香族ポリアミド、アク
リル、ポリプロピレン、ポリ塩化ビニール、ポリ
塩化ビニリデンなどの合成繊維、炭素繊維、金属
繊維などの繊維をもちいることができるが、一般
には有機質の天然繊維、人造繊維、合成繊維が用
いられる。これらの繊維は、長さが1〜30mm程度
好ましくは2〜20mm程度のものである。 繊維は単繊維のもの、繊維を複数本集束して切
断したもの、糸状のものなどが用いられるが単繊
維のものが最も好ましい。単繊維では、その太さ
は通常50デニール以下好ましくは30デニール以下
のものが用いられる。織布、不織布、網状布等を
裁断したりほぐしたものも使用できるが繊維が十
分にほどかれてばらばらになつていなければなら
ない。 繊維は、新しいものも、再生したものも、くず
繊維等も使用できるがこれらも繊維が十分にほど
かれてばらばらになつていることが必要である。
繊維は、その表面を界面活性剤や分散剤で処理し
て水に分散しやすくしたものも、そのような処理
をしていないものも使用できる。繊維は、高分子
凝集剤の凝集効果を著しく向上させる効果を有す
る。即ち凝集フロツクの強度を大にし、また凝集
フロツクに保水されやすい水の分離を容易にす
る。機械脱水では脱水ケーキの含水率を著しく低
下させることができ且つ脱水ケーキの剥離をよく
する。 本発明でいう高分子凝集剤とは、天然あるいは
合成の有機高分子凝集剤で粉末状のもので、これ
らにはアニオン系、カチオン系、ノニオン系、両
性系などの種類がある。そのいくつかの例をあげ
ると、アニオン性のものでは、ポリアクリル酸
塩、アクリル酸・マレイン酸共重合物塩、アクリ
ルアミド・アクリル酸ソーダ共重合物、アクリル
アミド・ビニールスルホン酸ソーダ共重合物、ポ
リアクリルアミドの部分加水分解物、カルボキシ
メチルセルローズのソーダ塩、アルギン酸ソーダ
などがある。カチオン性のものでは、ポリジアル
キルアミノアルキルアクリレート(メタクリレー
ト)、ポリアミノメチルアクリルアミド、ポリビ
ニルピリジウム塩、ポリジアクリルアンモニウム
塩、ポリビニルイミダゾリン、ポリアミン、ポリ
エチレンイミン、ポリアクリルアミドのカチオン
性変性物や、カチオン性共重合物、水溶性アニリ
ン樹脂塩酸塩、ヘキサメチレンジアミン・エピク
レルヒドリン重縮合物、キトサン、カチオン澱粉
などがある。ノニオン性のものでは、ポリアクリ
ルアミド、ポリビニールアルコール、ポリエチレ
ンオキサイド、ポリビニールピロリドン、水溶性
尿素樹脂、澱粉、プルラン、グアガムなどがあ
る。両性のものではゼラチンなどがある。 これらの高分子凝集剤は単独で用いることも併
用して用いることもできる。高分子凝集剤は、本
発明の凝集剤組成物の凝集剤としての機能、効果
の主剤となるもので、その効果は繊維との相乗効
果により著しく向上している。 本発明で使用される水溶性溶媒の液状ポリエチ
レングリコールは平均分子量190〜700程度のもの
でも常温で液状のポリエチレングリコールであ
る。液状ポリエチレングリコール(以下ポリエチ
レングリコールという)、メチタノール、エタノ
ール、プロパノール(n−プロパノール、イソプ
ロパノール共に)、ブタノール(t.ブタノール、
n−ブタノール、イソブタノール、セカンダリー
ブタノール共に)等は、一般に工業用が用いられ
るが、水を含有しないものがよい。これらの水溶
性溶媒は単独でもまた混合しても用いることがで
きる。水溶性溶媒は、繊維を湿潤し、また高分子
凝集剤を湿潤し、繊維と高分子凝集剤の間に介在
して両者が分離して偏在するのを防止する。また
高分子凝集剤の水への溶解をまま粉を造ることな
く速かに溶解させる。更に繊維の水への分散を早
く、容易にし且つ均一分散させる効果がある。 水溶性溶媒に添加して用いられる界面活性剤
は、カチオン系、アニオン系、ノニオン系、両性
系等の界面活性剤のほか分散剤も用いられる。こ
れらは公知のものが用いられる。特に汚泥が有機
性のものや微細な粘土粒子を含むような汚泥で
は、カチオン系のものが有効である。例えば、長
鎖アルキル基を有する脂肪酸あるいは脂環族のモ
ノアミン、ジアミン、トリアミン、アミドアミ
ン、ポリアミノエチルイミダゾリン、長鎖ヒドロ
キシアルキルジアミン、ロデンアミン、これらの
酸化エチレン付加物、これらのアミンや酸化エチ
レン付加物の水溶性酸塩、第4級アンモニウム塩
等がある。界面活性剤は、高分子凝集剤の溶解、
繊維の分散を良くする。その他カチオン界面活性
剤では汚泥の固形分に吸着し疎水化し、高分子凝
集剤の効果を向上させることができる。 エマルジヨン型シリコン消泡剤(以下シリコン
消泡剤という)は、シリコンオイルを乳化剤を使
用して水中に乳化した水中油滴型のエマルジヨン
が用いられる。シリコン消泡剤は水溶性溶媒に添
加して用いるが水への高分子凝集剤の溶解、繊維
の分散を助け、早く容易にする。即ち溶解や分散
の際に気泡の導入を防止し、また内部からの発泡
等を防止するため高分子凝集剤の溶解を早くし、
特に繊維が気泡により浮上することを防止し繊維
を均一に分散できるようにし、更に分散したあと
の均一分散の保持、繊維のからみ合うのを防止す
る作用がある。 本発明の凝集剤組成物の各構成材料の割合は、
対象とする汚泥や懸濁液の種類により異るが、一
般に繊維1重量部に対し高分子凝集剤0.04〜10重
量部、水溶性溶媒の量は繊維に水溶性溶媒を噴霧
する場合は繊維1重量部に対する水溶性溶媒の量
は0.01〜1重量部を用いれば良く好ましくは0.05
〜0.6重量部である。繊維を水溶性溶媒に浸漬し
て湿潤するときは上記より多い量(約2重量部程
度)になる。界面活性剤やシリコン消泡剤を添加
する場合はそれらのいづれかの単独の場合も両方
用いる場合もある。その量は、繊維1重量部に対
し界面活性剤では0.004〜20重量部、シリコン消
泡剤では0.001〜1.5重量部の範囲である。 本発明の凝集剤組成物は、上述のような割合で
造られるがその製造方法としては高分子凝集剤粉
末を水溶性溶媒で湿潤してこれに繊維を混合する
方法、高分子凝集剤粉末と繊維を水溶性溶媒で
夫々湿潤する方法、繊維を水溶性溶媒で湿潤しこ
れに高分子凝集剤粉末を混合する方法、その他い
ろいろの方法があるが最も好ましい製造方法は以
下に説明する通りである。 即ち、本発明の凝集剤組成物の製造方法は、繊
維に水溶性溶媒あるいは界面活性剤およびまたは
シリコン消泡剤を添加した水溶性溶媒を噴霧、吹
付、散布その他の手段で添加して混合し繊維を湿
潤する。あるいは繊維を水溶性溶媒あるいは界面
活性剤およびまたはシリコン消泡剤を添加した水
溶性溶媒中に浸漬することにより湿潤する。この
ようにしても水溶性溶媒あるいは界面活性剤およ
びまたはシリコン消泡剤を添加した水溶性溶媒で
処理した繊維に高分子凝集剤粉末を散布などの方
法で添加し混合させる。混合には公知の種々の混
合機を用いることができる。このようにして混合
されると繊維と高分子凝集剤が湿潤剤によつてま
とまるので両者の分離がない混合物即ち、本発明
の凝集剤組成物を造ることができる。 次に本発明の凝集剤組成物およびその製造方法
に関する作用効果について要約する。 (1) 繊維と高分子凝集剤の分離がないので計量そ
の他取扱いが容易である。 (2) 水に一挙に投入しても高分子凝集剤はまま粉
を生ずることなくすみやかに完全に溶解でき、
更に繊維の分散が早く、しかも均一に繊維が分
散できる。気泡が溶解や分散の際に入りにくい
ので溶解、分散の時間が短縮できるばかりでな
く繊維が経時的に分離しにくい。 (3) シリコン消泡剤の使用は、水への高分子凝集
剤の溶解繊維の分散をより早くより良くし、本
凝集剤組成物の効果を十分に発揮させる。水に
本凝集剤組成物を投入して高分子凝集剤を溶解
し繊維を分散させた処理液を造る場合に処理液
に気泡が入ることがないので繊維の気泡による
浮上がないため繊維が均一に分散しからみ合う
心配がない。処理液に気泡が入らない上に繊維
の分散が均一のために汚泥や懸濁液にこの処理
液を添加し固形分を凝集フロツクを形成させた
とき気泡を内泡しないフロツクを形成するので
機械脱水等を行つたとき気泡による脱水効率の
ロスがなくなる。 (4) 汚泥、懸濁液の固形分の凝集、固液分離、機
械脱水等が非常にすぐれている。(高分子凝集
剤と繊維の併用効果)凝集フロツクが丈夫で水
分離性がよいために自然過でかなり良く固液
分離ができるがさらに加圧により十分に脱水で
きる。機械脱水(ベルトフイルター、デカンタ
ー、ベルトプレスフイルター、その他による)
では脱水速度が早く脱水ケーキの含水率が低く
よく水がしぼれしかも脱水ケーキの剥離性がよ
い。そのため著しく脱水効率が向上し機械の処
理能力をますことができる。 (5) 凝集剤組成物が経時によつてもその効果が変
らない。 本発明の凝集剤組成物は、叙上の如く構成され
すぐれた効果を有するので下水汚泥、し尿汚泥、
上水汚泥、河川、湖沼、港湾、海域等の底質汚
泥、工場排水などの汚泥、スラツジその他懸濁液
の固形分の凝集、固液分離、脱水等のため凝集剤
として好適である。 以下実施例により説明する。 実施例 1 表−1のNo.1およびNo.2の配合で、ポリプロピ
レン繊維P−チヨツプ(チツソ(株)製品、商品名、
2デニール、長さ6mm)にポリエチレングリコー
ル PEG 400(三洋化成工業製品、商品名、平
均分子量380〜420)あるいは PEG 400に界面
活性剤として牛脂モノアミンの酸化エチレン付加
物の第4級塩とシリコン消泡剤東芝シリコン
TSA−730とを添加したものをスプレーガンで噴
霧し、これにカチオン系高分子凝集剤アコフロツ
ク C−485(三井サイアミツド製品、商品名)
を散布し、小型ドラムミキサーで混合し本発明の
凝集剤組成物と造る。これを約200mlのガラス製
薬瓶にとり10cmの高さから瓶の底を下に向けてゴ
ムマツト上へ続けて200回落下させ高分子凝集剤
と繊維の分離を肉眼で観察した。No.1とNo.2のい
づれも分離がなく良好に混合されている状態であ
つた。 比較例 1 比較のために表−1に示した比較例Aの配合で
繊維に高分子凝集剤を散布し同様に混合した。そ
してこの混合物を実施例1と同様にガラス製薬瓶
に入れて落下試験を行つたが高分子凝集剤が下方
に分散された状態となつた。
The present invention is a flocculant composition consisting of fibers, a polymer flocculant, and a wetting agent, in which the fibers and the polymer flocculant are well mixed, resulting in less material separation. The present invention relates to a flocculant composition in which a molecular flocculant is quickly and easily dissolved and has excellent effects as a flocculant, and a method for producing the same. The present inventors have previously discovered that when fibers are used in combination with a polymer flocculant in sludge flocculation and solid-liquid separation (dewatering), the dewatering efficiency can be dramatically improved compared to using a polymer flocculant alone. Particularly in mechanical dehydration, pressure dehydration, for which sufficient results could not be obtained with polymer flocculants alone, can easily be performed, and vacuum,
It has been found that dewatering can be performed efficiently using centrifugal, pressurized, and other types of dehydrators, and the overspeed can be accelerated and the water content of the dehydrated cake can be lowered, thereby greatly improving the dehydration processing capacity. In the method of using a polymer flocculant and fibers together, a method is usually used in which a polymer flocculant is dissolved in water to prepare a treatment liquid in which fibers are dispersed, and this is added to sludge. Measuring is more complicated than when using it alone, and the inclusion of air bubbles when dissolving and dispersing the polymer flocculant and fibers prevents uniform dispersion of the fibers, so various precautions are required and it takes time and effort. There was a problem. The purpose of the present invention is to solve the above-mentioned problems and fully exhibit the excellent advantages.It is easy to measure and handle, and the polymer flocculant dissolves quickly in water, and the fibers disperse quickly. To provide a flocculant composition in which a polymer flocculant and fibers are mixed together as a single agent, and which exhibits excellent effects on flocculation of solids such as sludge, solid-liquid separation, mechanical dewatering, etc., and a method for producing the same. It is. The present invention also provides a flocculant composition comprising (1) fibers, a polymer flocculant, and a wetting agent, where the wetting agent is selected from liquid polyethylene glycol, methanol, ethanol, propanol, butanol, etc. (hereinafter simply referred to as water-soluble solvent), or agglomerated water-soluble solvent prepared by adding a surfactant and/or an emulsion-type silicone antifoaming agent to the water-soluble solvent. agent composition. and (2) a mixture is prepared by mixing the fibers treated with the above-mentioned water-soluble solvent or a water-soluble solvent with a surfactant and/or an emulsion-type silicone antifoaming agent added and a polymer flocculant powder. A method for producing a flocculant composition. This is related to. The fibers used in the present invention include inorganic fibers such as asbestos, glass fiber, and rock wool; natural fibers or artificial fibers such as cotton, hemp, wool, cow wool, wool, silk, paper, pulp, rayon, and acetic acid human silk; polyester,
Synthetic fibers such as vinylon, polyamide, aromatic polyamide, acrylic, polypropylene, polyvinyl chloride, and polyvinylidene chloride, carbon fiber, and metal fiber can be used, but in general, organic natural fibers, artificial fibers, Synthetic fibers are used. These fibers have a length of about 1 to 30 mm, preferably about 2 to 20 mm. The fibers used may be single fibers, fibers obtained by cutting a plurality of bundled fibers, thread-like fibers, etc., but single fibers are most preferred. The thickness of the monofilament used is usually 50 deniers or less, preferably 30 deniers or less. Cut or loosened woven fabrics, non-woven fabrics, reticulated fabrics, etc. can also be used, but the fibers must be sufficiently unraveled and separated. New fibers, recycled fibers, waste fibers, etc. can be used, but these fibers must be sufficiently unraveled and separated.
The fibers can be surface-treated with surfactants or dispersants to make them more easily dispersed in water, or fibers that have not been subjected to such treatment can be used. Fibers have the effect of significantly improving the coagulation effect of the polymer flocculant. That is, it increases the strength of the flocs and facilitates the separation of water that is likely to be retained in the flocs. Mechanical dewatering can significantly reduce the moisture content of the dehydrated cake and improve the peeling of the dehydrated cake. The polymer flocculant used in the present invention is a natural or synthetic organic polymer flocculant in powder form, and these include anionic, cationic, nonionic, and amphoteric types. Some examples are anionic ones such as polyacrylates, acrylic acid/maleic acid copolymer salts, acrylamide/sodium acrylate copolymers, acrylamide/sodium vinyl sulfonate copolymers, Examples include partial hydrolyzate of acrylamide, carboxymethyl cellulose soda salt, and sodium alginate. Cationic products include polydialkylaminoalkyl acrylate (methacrylate), polyaminomethylacrylamide, polyvinylpyridium salt, polydiacrylammonium salt, polyvinylimidazoline, polyamine, polyethyleneimine, cationic modified products of polyacrylamide, and cationic copolymers. water-soluble aniline resin hydrochloride, hexamethylene diamine/epiclerhydrin polycondensate, chitosan, cationic starch, etc. Nonionic materials include polyacrylamide, polyvinyl alcohol, polyethylene oxide, polyvinyl pyrrolidone, water-soluble urea resin, starch, pullulan, and guar gum. Bisexual types include gelatin. These polymer flocculants can be used alone or in combination. The polymer flocculant is the main ingredient that provides the flocculant function and effect of the flocculant composition of the present invention, and its effects are significantly improved due to the synergistic effect with the fibers. The liquid polyethylene glycol used as the water-soluble solvent used in the present invention is a polyethylene glycol that is liquid at room temperature even if it has an average molecular weight of about 190 to 700. Liquid polyethylene glycol (hereinafter referred to as polyethylene glycol), methitanol, ethanol, propanol (both n-propanol and isopropanol), butanol (t.butanol,
Although n-butanol, isobutanol, secondary butanol, etc. are generally used for industrial purposes, those that do not contain water are preferred. These water-soluble solvents can be used alone or in combination. The water-soluble solvent wets the fibers and the polymer flocculant, and is interposed between the fibers and the polymer flocculant to prevent them from being separated and unevenly distributed. In addition, the polymer flocculant can be quickly dissolved in water without forming powder. Furthermore, it has the effect of dispersing fibers into water quickly, easily, and uniformly. The surfactant used by adding to the water-soluble solvent includes cationic, anionic, nonionic, and amphoteric surfactants as well as dispersants. Known ones are used as these. In particular, cationic sludge is effective for organic sludge or sludge containing fine clay particles. For example, fatty acids or alicyclic monoamines having long-chain alkyl groups, diamines, triamines, amidoamines, polyaminoethyl imidazolines, long-chain hydroxyalkyl diamines, lodenamines, ethylene oxide adducts of these, and amines and ethylene oxide adducts of these. There are water-soluble acid salts, quaternary ammonium salts, etc. Surfactants dissolve polymer flocculants,
Improves fiber dispersion. Other cationic surfactants can adsorb to the solid content of sludge and make it hydrophobic, thereby improving the effectiveness of polymer flocculants. The emulsion type silicone antifoaming agent (hereinafter referred to as silicone antifoaming agent) is an oil-in-water type emulsion in which silicone oil is emulsified in water using an emulsifier. The silicone antifoaming agent is used by adding it to a water-soluble solvent, and it helps the dissolution of the polymer flocculant in water and the dispersion of fibers, making it quick and easy. In other words, it prevents the introduction of air bubbles during dissolution and dispersion, and also speeds up the dissolution of the polymer flocculant to prevent foaming from inside.
In particular, it prevents the fibers from floating due to air bubbles, allows the fibers to be uniformly dispersed, maintains uniform dispersion after being dispersed, and prevents the fibers from becoming entangled. The proportions of each constituent material of the flocculant composition of the present invention are:
Although it varies depending on the type of sludge or suspension to be targeted, in general, the amount of polymer flocculant is 0.04 to 10 parts by weight per 1 part by weight of fibers, and the amount of water-soluble solvent is 1 part by weight when spraying a water-soluble solvent onto fibers. The amount of water-soluble solvent relative to parts by weight may be 0.01 to 1 part by weight, preferably 0.05 parts by weight.
~0.6 parts by weight. When the fibers are wetted by immersing them in a water-soluble solvent, the amount is larger than the above amount (about 2 parts by weight). When a surfactant or a silicone antifoaming agent is added, either one of them or both may be used. The amount ranges from 0.004 to 20 parts by weight for surfactants and from 0.001 to 1.5 parts by weight for silicone antifoaming agents per part by weight of fiber. The flocculant composition of the present invention can be produced in the proportions described above, and the manufacturing method includes a method in which polymer flocculant powder is wetted with a water-soluble solvent and fibers are mixed therein, and polymer flocculant powder and fibers are mixed therein. There are various methods such as wetting the fibers with a water-soluble solvent, wetting the fibers with a water-soluble solvent and mixing the polymer flocculant powder with it, and the most preferred manufacturing method is as described below. . That is, the method for producing the flocculant composition of the present invention involves adding and mixing a water-soluble solvent or a water-soluble solvent containing a surfactant and/or a silicone antifoaming agent to fibers by spraying, spraying, scattering, or other means. Wet the fibers. Alternatively, the fibers are wetted by immersing them in a water-soluble solvent or a water-soluble solvent to which a surfactant and/or silicone antifoaming agent has been added. Even in this case, the polymer flocculant powder is added to the fibers treated with a water-soluble solvent or a water-soluble solvent containing a surfactant and/or a silicon antifoaming agent by a method such as scattering and mixed. Various known mixers can be used for mixing. When mixed in this manner, the fibers and polymer flocculant are brought together by the wetting agent, so that a mixture without separation of the two, ie, the flocculant composition of the present invention, can be produced. Next, the effects of the flocculant composition of the present invention and its manufacturing method will be summarized. (1) Since there is no separation of fibers and polymer flocculant, it is easy to measure and handle. (2) Even if the polymer flocculant is added to water all at once, it can be completely dissolved without forming any lumps.
Furthermore, the fibers can be dispersed quickly and evenly. Since air bubbles are difficult to enter during dissolution and dispersion, not only can the dissolution and dispersion time be shortened, but the fibers are also difficult to separate over time. (3) The use of silicone antifoaming agent makes the dispersion of the dissolved fibers of the polymer flocculant into water faster and better, and the effect of the present flocculant composition is fully exhibited. When this flocculant composition is added to water to dissolve the polymer flocculant and create a treatment liquid in which fibers are dispersed, no air bubbles enter the treatment liquid, so the fibers do not float due to air bubbles, so the fibers are uniform. There is no need to worry about them being dispersed and intertwined. Because the treatment liquid does not contain air bubbles and the fibers are uniformly dispersed, when this treatment liquid is added to sludge or suspension to coagulate the solids to form a floc, it forms a floc that does not contain air bubbles, so it is difficult to machine. When performing dehydration, there is no loss in dehydration efficiency due to air bubbles. (4) Excellent coagulation of solid content in sludge and suspension, solid-liquid separation, mechanical dewatering, etc. (Effect of combined use of polymer flocculant and fibers) Since the flocs are strong and have good water separation properties, solid-liquid separation can be achieved fairly well by natural evaporation, but water can also be sufficiently dehydrated by pressurization. Mechanical dewatering (by belt filter, decanter, belt press filter, etc.)
The dehydration rate is fast, the water content of the dehydrated cake is low, the water is well squeezed out, and the dehydrated cake has good peelability. Therefore, the dewatering efficiency is significantly improved and the processing capacity of the machine can be increased. (5) The effect of the flocculant composition does not change over time. The flocculant composition of the present invention is constituted as described above and has excellent effects, so that it can
It is suitable as a flocculant for flocculation, solid-liquid separation, dewatering, etc. of solid content of water sludge, bottom sludge from rivers, lakes, ports, sea areas, sludge from industrial wastewater, sludge, and other suspensions. This will be explained below using examples. Example 1 Polypropylene fiber P-tip (Chitsuso Co., Ltd. product, trade name,
2 denier, length 6 mm) and polyethylene glycol PEG 400 (manufactured by Sanyo Chemical Industries, trade name, average molecular weight 380-420), or PEG 400 with a quaternary salt of ethylene oxide adduct of beef tallow monoamine and silicone ester as a surfactant. foam agent toshiba silicone
Spray the mixture with TSA-730 using a spray gun, and add the cationic polymer flocculant Acofloc C-485 (Mitsui Cyamitsu product, trade name).
and mixed with a small drum mixer to form the flocculant composition of the present invention. This was placed in an approximately 200 ml glass pharmaceutical bottle, and the bottle was dropped from a height of 10 cm onto a rubber mat 200 times in succession with the bottom facing down, and the separation of the polymer flocculant and fibers was observed with the naked eye. Both No. 1 and No. 2 were well mixed with no separation. Comparative Example 1 For comparison, a polymer flocculant was sprinkled on fibers according to the formulation of Comparative Example A shown in Table 1 and mixed in the same manner. Then, this mixture was placed in a glass pharmaceutical bottle and subjected to a drop test in the same manner as in Example 1, but the polymer flocculant was dispersed downward.

【表】 実施例2及び比較例 表−1に示したNo.1とNo.2の配合の凝集剤組成
物と比較例として表−1のAと実施例1に使用し
た高分子凝集剤のみ(これをBとする)を夫々水
に溶解し高分子凝集剤の濃度が0.2%になるよう
に溶解させた処理液を造り、これを下水混合生汚
泥(固形分3.2重量%、固形分の灼熱減量52重量
%PH6.2)に汚泥の固形分に対し高分子凝集剤の
量が5000ppmになるように添加1分間混合し凝
集フロツクを形成させフロツクの状態を観察す
る。引続いて固液共に自然過試験を行い1分間
の液量を測定した。試験結果を表−2に示し
た。尚試験方法は次のようである。 試験方法:下水汚泥100gに処理液の所定量
(汚泥の固形分に対し高分子凝集剤の量が
5000ppmになるように)を添加約1分間混合し
フロツクを形成させフロツク形成の良好で固液分
離の良いものを良好、そうでないものを不良とす
る。 引続いて、これら固液を共にブフナー漏斗にNo.
5A紙を敷いた上にあけて1分間放置し自然に
過させ、1分間に流出した水量と液量を汚泥
処理液の和の百分率(%)で表わす。
[Table] Example 2 and Comparative Example The flocculant compositions of No. 1 and No. 2 shown in Table 1 and only the polymer flocculant used in A of Table 1 and Example 1 as a comparative example (this will be referred to as B) are dissolved in water to prepare a treatment solution in which the polymer flocculant concentration is 0.2%, and this is mixed raw sewage sludge (solid content 3.2% by weight, solid content A polymer flocculant was added to the sludge (loss by weight: 52% by weight, pH 6.2) in an amount of 5,000 ppm based on the solid content of the sludge, and mixed for 1 minute to form flocs, and the condition of the flocs was observed. Subsequently, a natural flow test was conducted for both solid and liquid, and the liquid volume per minute was measured. The test results are shown in Table-2. The test method is as follows. Test method: 100g of sewage sludge is treated with a specified amount of treatment liquid (the amount of polymer flocculant is
5000 ppm) was added and mixed for about 1 minute to form flocs. Those with good floc formation and good solid-liquid separation were evaluated as good, and those that did not were evaluated as poor. Subsequently, these solids and liquids were placed together in a Buchner funnel.
Place it on a sheet of 5A paper and leave it for 1 minute to let it cool down naturally.The amount of water and liquid flowing out in 1 minute is expressed as a percentage (%) of the sum of the sludge treatment liquid.

【表】 実施例 3 Pチヨツプ100重量部を金網のかごに入れ
PEG400の中に1分間浸漬し引上げて10分間静置
したものに、アコフロツク C−485粉末12.5重
量部を散布しホバート型ミキサで混合し凝集剤組
成物(No.3)を造る。このものについて実施例1
と同様に落下試験を行つたが高分子凝集剤と繊維
の分離、分級等の変化が全く認められなかつた。 またこのもので実施例2と同様に下水混合生汚
泥に添加して凝集試験を行つたがフロツクの形成
良好で液量は79.3%であつた。 実施例 4 実施例1のNo.1とNo.2及び実施例3のNo.3の
各々について容器に入れて室温で1ケ月保存した
ものについて実施例1及び実施例2同様に落下試
験と凝集試験を行つたがいづれも良好な成績で性
能の低下が全く認められなかつた。
[Table] Example 3 Put 100 parts by weight of P chips into a wire mesh basket.
A flocculant composition (No. 3) was prepared by immersing the sample in PEG400 for 1 minute, pulling it out and leaving it for 10 minutes, then scattering 12.5 parts by weight of Acofloc C-485 powder and mixing in a Hobart mixer. Example 1 about this item
A drop test was conducted in the same manner as above, but no changes in separation or classification of the polymer flocculant and fibers were observed. In addition, this product was added to sewage mixed raw sludge in the same manner as in Example 2, and a flocculation test was conducted, and floc formation was good and the liquid volume was 79.3%. Example 4 No. 1 and No. 2 of Example 1 and No. 3 of Example 3 were stored in a container at room temperature for one month and subjected to a drop test and aggregation in the same manner as in Example 1 and Example 2. In all tests conducted, good results were obtained and no deterioration in performance was observed.

Claims (1)

【特許請求の範囲】 1 繊維、高分子凝集剤、および湿潤剤よりなる
ことを特徴とする凝集剤組成物。 2 湿潤剤が液状ポリエチレングリコール、メタ
ノール、エタノール、プロパノール、ブタノール
等から選ばれた1種または2種以上を混合してな
る水溶性溶媒であることを特徴とする特許請求の
範囲第1項記載の凝集剤組成物。 3 湿潤剤が液状ポリエチレングリコール、メタ
ノール、エタノール、プロパノール、ブタノール
等から選ばれた1種または2種以上を混合してな
る水溶性溶媒に界面活性剤および又はエマルジヨ
ン型シリコン消泡剤を添加したものであることを
特徴とする特許請求の範囲第1項記載の凝集剤組
成物。 4 繊維を湿潤剤で処理したものと高分子凝集剤
粉末を混合し混合物を造ることを特徴とする凝集
剤組成物の製造方法。 5 湿潤剤が液状ポリエチレングリコール、メタ
ノール、エタノール、プロパノール、ブタノール
等から選ばれた1種または2種以上を混合してな
る水溶性溶媒であることを特徴とする特許請求の
範囲第4項記載の凝集剤組成物の製造方法。 6 湿潤剤が液状ポリエチレングリコール、メタ
ノール、エタノール、プロパノール、ブタノール
等から選ばれた1種または2種以上を混合してな
る水溶性溶媒に界面活性剤および又はエマルジヨ
ン型シリコン消泡剤を添加したものであることを
特徴とする特許請求の範囲第4項記載の凝集剤組
成物の製造方法。
[Scope of Claims] 1. A flocculant composition comprising fibers, a polymer flocculant, and a wetting agent. 2. The wetting agent according to claim 1, wherein the wetting agent is a water-soluble solvent formed by mixing one or more selected from liquid polyethylene glycol, methanol, ethanol, propanol, butanol, etc. Flocculant composition. 3 A water-soluble solvent in which the wetting agent is a mixture of one or more selected from liquid polyethylene glycol, methanol, ethanol, propanol, butanol, etc., and a surfactant and/or an emulsion-type silicone antifoaming agent added thereto. The flocculant composition according to claim 1, characterized in that: 4. A method for producing a flocculant composition, which comprises mixing fibers treated with a wetting agent with polymer flocculant powder to prepare a mixture. 5. The wetting agent according to claim 4, wherein the wetting agent is a water-soluble solvent obtained by mixing one or more selected from liquid polyethylene glycol, methanol, ethanol, propanol, butanol, etc. A method for producing a flocculant composition. 6 A water-soluble solvent in which the wetting agent is a mixture of one or more selected from liquid polyethylene glycol, methanol, ethanol, propanol, butanol, etc., and a surfactant and/or an emulsion-type silicone antifoaming agent added thereto. A method for producing a flocculant composition according to claim 4, characterized in that:
JP17149479A 1979-12-30 1979-12-30 Coagulant composition and preparation thereof Granted JPS5697510A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17149479A JPS5697510A (en) 1979-12-30 1979-12-30 Coagulant composition and preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17149479A JPS5697510A (en) 1979-12-30 1979-12-30 Coagulant composition and preparation thereof

Publications (2)

Publication Number Publication Date
JPS5697510A JPS5697510A (en) 1981-08-06
JPS6228683B2 true JPS6228683B2 (en) 1987-06-22

Family

ID=15924132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17149479A Granted JPS5697510A (en) 1979-12-30 1979-12-30 Coagulant composition and preparation thereof

Country Status (1)

Country Link
JP (1) JPS5697510A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63240999A (en) * 1987-03-30 1988-10-06 Ebara Infilco Co Ltd Dehydration of organic sludge
JPS63258607A (en) * 1987-04-17 1988-10-26 Ebara Infilco Co Ltd Flocculant
JP6861554B2 (en) * 2017-03-30 2021-04-21 帝人フロンティア株式会社 Dehydrating agent for sludge

Also Published As

Publication number Publication date
JPS5697510A (en) 1981-08-06

Similar Documents

Publication Publication Date Title
US4559143A (en) Sludge treating method
KR101196243B1 (en) Dewatering process
US4710298A (en) Auxiliary for dewatering of sludge
CA2076011C (en) Purification of aqueous liquor
JP4043517B2 (en) Spray-dried granule and method for producing the same, method for producing flocculant solution and thickener solution, and method for coagulating suspension
TWI227704B (en) Anionic and nonionic dispersion polymers for clarification and dewatering
US6805803B1 (en) Process for flocculating suspensions
US20070187333A1 (en) Dewatering process
CN104470612B (en) Flocculation treatment agent
JPH0638882B2 (en) Aggregation method of suspension
WO1992013912A1 (en) Agglomerated polymer particles produced from finely divided water-soluble or water-swellable polymerisates
JP5658107B2 (en) Sludge dewatering aid and sludge dewatering method and apparatus
CN110088397A (en) Polymer composition and application thereof
JPS61181600A (en) Aid for dehydrating sludge and its method
JPS6228683B2 (en)
JPS60227898A (en) Dehydrating method of sludge
JP2004057837A (en) Flocculant and its usage
JP4072075B2 (en) Oil-containing wastewater treatment method
JPS6313760B2 (en)
JPS5987098A (en) Vacuum dehydration of sludge
JP4029021B2 (en) Sludge dewatering agent and sludge dewatering method
JP3064878B2 (en) Organic sludge treatment
FI95827C (en) Process for making paper and cardboard
JP2021506585A (en) Methods for treating aqueous feeds by levitation separation of dissolved gases
KR100508069B1 (en) Polymer dispersion, preparation method thereof and use thereof