JP2004057837A - Flocculant and its usage - Google Patents

Flocculant and its usage Download PDF

Info

Publication number
JP2004057837A
JP2004057837A JP2002215362A JP2002215362A JP2004057837A JP 2004057837 A JP2004057837 A JP 2004057837A JP 2002215362 A JP2002215362 A JP 2002215362A JP 2002215362 A JP2002215362 A JP 2002215362A JP 2004057837 A JP2004057837 A JP 2004057837A
Authority
JP
Japan
Prior art keywords
water
monomer
soluble
papermaking
ionic polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002215362A
Other languages
Japanese (ja)
Other versions
JP4425528B2 (en
Inventor
Shinsuke Ikeda
池田 慎介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hymo Corp
Original Assignee
Hymo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hymo Corp filed Critical Hymo Corp
Priority to JP2002215362A priority Critical patent/JP4425528B2/en
Publication of JP2004057837A publication Critical patent/JP2004057837A/en
Application granted granted Critical
Publication of JP4425528B2 publication Critical patent/JP4425528B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flocculant the addition amount of which can be reduced while keeping the strong point of a water-soluble cross-linkable polymer by solving the problem that, although the water-soluble cross-linkable polymer presents such advantages when it is used as a sludge dehydrating agent or an yield improving agent that the moisture content of dehydrated cake can be lowered and the quality of the dehydrated cake can be kept uniform, the addition amout must be increased in order to present such advantages and consequently the cost is increased. <P>SOLUTION: This flocculant is obtained by combining a water-soluble cross-linked ionic polymer (A) obtained by polymerizing a monomer mixture having the specified composition in the presence of a monomer having several vinyl groups with another water-soluble cross-linked ionic polymer (B) obtained by polymerizing the same monomer mixture in the absence of the monomer having several vinyl groups. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、架橋性イオン性水溶性高分子と非架橋性水溶性高分子からなる凝集処理剤及びその使用方法に関するものであり、詳しくは特定のイオン性単量体及び複数のビニル基を有する単量体を必須成分とする単量体混合物を重合した架橋性イオン性水溶性高分子(A)と、前記複数のビニル基を有する単量体の不存在下で特定のイオン性単量体を必須成分とする単量体混合物を重合したイオン性水溶性高分子(B)からなる処理剤とその使用方法に関する。
【0002】
【従来の技術】
製紙における歩留向上剤や下水などの汚泥脱水には、従来カチオン性高分子凝集剤が使用されている。特に汚泥脱水剤は、近年の汚泥発生量の増加及び汚泥性状の悪化により、従来のカチオン性高分子凝集剤では、汚泥の処理量に限界があることや、脱水ケーキ含水率、SS回収率、ケーキの濾布からの剥離性などの点で処理状態は必ずしも満足できるものではなく、改善が求められている。これら従来のカチオン性高分子凝集剤の欠点を改良するために、両性高分子凝集剤が種々提案されているが、これらの両性高分子脱水剤は必ずしも十分に満足しうるものではない。また、脱水ケーキ含水率の低下や濾布からの剥離性改善を目的として、たとえば特開平2−219887公報や特公平8−164公報などには、架橋性のイオン性高分子凝集剤が開示されている。
【0003】
製紙における歩留向上剤に関しては、抄紙速度の高速化や製紙原料中への不純物の増加に対応するため凝集力の向上が追求されてきたため、架橋性高分子の応用という観点は考慮されてこなかった。高分子凝集剤は、性能向上のため一方向では高分子量化が追求されてきたため凝集力は確かに向上はしてきたが、特に製紙工業における歩留向上剤として使用した場合、地合の乱れなど副作用も発生する例が度々みられるようになった。これに対し架橋性高分子は水中における分子の広がりが直鎖状高分子に較べ相対的に小さいので、凝集力が抑制されていて製紙工業におけるプロセス薬剤に適している。
【0004】
上記のように架橋性水溶性高分子は、種々の特徴や機能を有しているが、水溶液中における分子の広がりが相対的に小さいためか、汚泥脱水剤あるいは製紙における歩留向上剤などに適用した場合、直鎖状高分子に較べ添加量が増加してしまうという問題が存在する。架橋性水溶性高分子のこのような欠点を改良するため特開平7−256299号公報あるいは特開平7−256300号公報には、四級アンモニウム塩基を含有し、メタクリレ−ト系単量体、アクリレ−ト系単量体及びアニオン性単量体を一定の比率で共重合した両性高分子脱水剤が開示されている。しかし、これらも目的を十分満足するものではない。
【0005】
【発明が解決しようとする課題】
架橋性の水溶性高分子を汚泥脱水剤あるいは歩留向上剤として使用した場合、脱水ケーキ含水率の低下、または地合の維持が容易に可能であるなど優れた点が発現するが、その反面、効果の発現するまで添加するにはどうしても添加量が増加し、その結果、コストの増大という問題が発生する。本発明の目的は、架橋性の水溶性高分子の長所を残し、添加量の削減という問題を解決する凝集処理剤を開発する。
【0006】
【課題を解決するための手段】
本発明者は、上記課題を解決するため鋭意検討した結果、下記のような発明に達した。すなわち本発明の請求項1の発明は、下記一般式(1)及び/又は(2)で表される単量体5〜99.999モル%、下記一般式(3)で表される単量体0〜50モル%、水溶性非イオン性単量体0〜95モル%及び複数のビニル基を有する単量体0.001〜1モル%からなる単量体混合物を重合した架橋性水溶性イオン性高分子(A)と、前記複数のビニル基を有する単量体の非存在下で、下記一般式(1)及び/又は(2)で表される単量体5〜100モル%、下記一般式(3)で表される単量体0〜50モル%及び水溶性非イオン性単量体0〜95モル%からなる単量体(混合物)を重合した水溶性イオン性高分子(B)とを組み合わせた凝集処理剤。
【化1】

Figure 2004057837
一般式(1)
R1は水素又はメチル基、R2、R3は炭素数1〜3のアルキルあるいはアルコキシル基、R4は水素、炭素数1〜3のアルキル基、アルコキシル基あるいはベンジル基であり、同種でも異種でも良い、Aは酸素またはNH、Bは炭素数2〜4のアルキレン基またはアルコキシレン基を表わす、X1は陰イオンをそれぞれ表わす。
【化2】
Figure 2004057837
一般式(2)
R5は水素又はメチル基、R6、R7は炭素数1〜3のアルキル基、アルコキシ基あるいはベンジル基、X2は陰イオンをそれぞれ表わす
【化3】
Figure 2004057837
一般式(3)
R8は水素、メチル基またはカルボキシメチル基、QはSO3、C6H4SO3、
CONHC(CH3)2CH2SO3、C6H4COOあるいはCOO、R9は水素またはCOOY2、Y1あるいはY2は水素または陽イオン
【0006】
請求項2の発明は、前記架橋性水溶性イオン性高分子(A)が噴霧乾燥品であることを特徴とする請求項1に記載の凝集処理剤である。
【0007】
請求項3の発明は、前記複数のビニル基を有する単量体が、下記一般式(4)で表される多官能性水溶性ポリカチオン単量体であることを特徴とする請求項1あるいは2に記載の凝集処理剤である。
【化4】
Figure 2004057837
一般式(4)
R10〜R13は水素又はメチル基、X3、X4は陰イオン、pは0〜20の整数をそれぞれ表わす、ただしPは下記一般式(5)で表わされる。
【化5】
Figure 2004057837
一般式(5)
14、15は水素、炭素数1〜3のアルキル基又はベンジル基、R16は水素又はメチル基、Gは炭素数2〜4のアルキレン基あるいはアルコキシレン基、Lは−O−又は−NH−、X5は陰イオン、ただしR14〜R15が水素である場合は、部分的にPに置換されても良い
【0008】
請求項4の発明は、前記多官能性水溶性ポリカチオン単量体がアンモニア、脂肪族第1級アミン、脂肪族第2級アミン選択された一種以上のアミン類とエピハロヒドリンから生成した重縮合物とジアルキルアミノアルキル(メタ)アクリルアミドとの反応物であることを特徴とする請求項3に記載の凝集処理剤である。
【0009】
請求項5の発明は、請求項1〜4に記載の架橋性水溶性イオン性高分子(A)と前記水溶性イオン性高分子(B)とを組み合わせた凝集処理剤を有機汚泥に添加、凝集させた後、脱水機により脱水することを特徴とする汚泥脱水方法である。
【0010】
請求項6の発明は、請求項1〜4に記載の架橋性水溶性イオン性高分子(A)と前記水溶性イオン性高分子(B)とを組み合わせた凝集処理剤を製紙スラッジに添加、凝集させた後、脱水機により脱水することを特徴とする製紙スラッジの脱水方法である。
【0011】
請求項7の発明は、請求項1〜4に記載の架橋性水溶性イオン性高分子(A)と前記水溶性イオン性高分子(B)とを組み合わせた凝集処理剤を抄紙前の製紙原料中に添加、処理することを特徴とする製紙原料の前処理方法。
【0012】
請求項8の発明は、請求項1〜4に記載の架橋性水溶性イオン性高分子(A)と前記水溶性イオン性高分子(B)とを組み合わせた凝集処理剤を、歩留向上及び/又は濾水性向上を目的として抄紙前の製紙原料中に添加し抄紙することを特徴とする製紙方法である。
【0013】
請求項9の発明は、請求項1〜4に記載の架橋性水溶性イオン性高分子(A)と前記水溶性イオン性高分子(B)とを組み合わせた凝集処理剤と、無機及び/または有機のアニオン性物質と組み合わせて、歩留向上及び/又は濾水性向上を目的として、抄紙前の製紙原料中に添加し抄紙することを特徴とする製紙方法である。
【0014】
請求項10の発明は、前記アニオン性物質が、コロイダルシリカあるいはベントナイトであることを特徴とする請求項9に記載の製紙方法である。
【0015】
請求項11の発明は、前記アニオン性物質が、前記一般式(3)で表されるアニオン性単量体3〜100モル%と水溶性非イオン性単量体を0〜97モル%含有する単量体(混合物)を塩水溶液中、該塩水溶液に可溶な高分子分散剤共存下、分散重合法により製造された粒径100μm以下のアニオン性水溶性高分子からなる微粒子の分散液であることを特徴とする請求項9に記載の製紙方法である。
【0016】
【発明の実施の形態】
本発明の架橋性水溶性イオン性高分子(A)は、前記一般式(1)及び/又は(2)で表される単量体5〜99.999モル%、下記一般式(3)で表される単量体0〜50モル%、非イオン性単量体0〜95モル%及び複数のビニル基を有する単量体0.001〜1モル%からなる単量体混合物を重合することによって製造することができる。重合はこれら単量体を混合した水溶液を調製した後、通常の重合法によって行うことができる。
【0017】
重合法としては、水溶液重合、油中水型エマルジョン重合、油中水型分散重合、塩水中分散重合などによって重合した後、水溶液、分散液、エマルジョンあるいは粉末など任意の製品形態にすることができる。好ましい形態としては、濃度を高められ、溶解時間も短い油中水型エマルジョン重合品、あるいは塩水中分散重合品が好ましい。また、油中水型エマルジョン重合品を噴霧乾燥した粉末品も好ましい。
【0018】
油中水型高分子エマルジョンの製造方法としては、カチオン性単量体、あるいはカチオン性単量体と共重合可能な単量体からなる単量体混合物を水、少なくとも水と非混和性の炭化水素からなる油状物質、油中水型エマルジョンを形成するに有効な量とHLBを有する少なくとも一種類の界面活性剤を混合し、強攪拌し油中水型エマルジョンを形成させた後、重合することにより合成する。
【0019】
分散媒として使用する炭化水素からなる油状物質の例としては、パラフィン類あるいは灯油、軽油、中油などの鉱油、あるいはこれらと実質的に同じ範囲の沸点や粘度などの特性を有する炭化水素系合成油、あるいはこれらの混合物があげられる。
【0020】
油中水型エマルジョンを形成するに有効な量とHLBを有する少なくとも一種類の界面活性剤の例としては、HLB3〜11のノニオン性界面活性剤であり、その具体例としては、ソルビタンモノオレ−ト、ソルビタンモノステアレ−ト、ソルビタンモノパルミテ−トなどがあげられる。これら界面活性剤の添加量としては、油中水型エマルジョン全量に対して0.5〜10重量%であり、好ましくは1〜5重量%である。
【0021】
重合後は、転相剤と呼ばれる親水性界面化成剤を添加して油の膜で被われたエマルジョン粒子が水になじみ易くし、中の水溶性高分子が溶解しやすくする処理を行い、水で希釈しそれぞれの用途に用いる。親水性界面化成剤の例としては、カチオン性界面化成剤やHLB9〜15のノニオン性界面化成剤であり、ポリオキシエチレンアルキルエ−テル系、ポリオキシエチレンアルコールエ−テル系などである。
【0022】
また、油中水型エマルジョン重合した重合物を、そのまま噴霧乾燥することもできる。従来、架橋性の水溶性高分子を粉末化することは、乾燥時、架橋反応が進行する副反応が起き、なかなか実用化が難しかった。しかし、この噴霧乾燥
することにより架橋性水溶性高分子の粉末を容易に企業的規模で生産可能となった。噴霧化を用意にするため油中水型エマルジョン重合品の濃度を多少調節後、噴霧乾燥機に送り、70〜110℃程度の温度により、乾燥する。また乾燥時、熱によって架橋反応が進み、その分汚泥脱水剤としての性能が向上することも期待できる。
【0023】
また、塩水溶液中に分散した高分子微粒子分散液からなる水溶性重合体は、特開昭62−15251号公報などによって製造することができる。この方法は、カチオン性単量体あるいはカチオン性単量体と非イオン性単量体を、塩水溶液中で該塩水溶液に可溶な高分子からなる分散剤共存下で、攪拌しながら製造された粒系100mμ以下の高分子微粒子の分散液からなるもである。イオン性架橋性水溶性高分子を製造する場合は、これら単量体に複数のビニル基を有する単量体を重合時共存させる。
【0024】
高分子からなる分散剤は、カチオン性高分子としては、ジメチルジアリルアンモニウム塩化物、(メタ)アクリロイルオキシエチルトリメチルアンモニウム塩化物の単独重合体や非イオン性単量体との共重合体を使用である。また、非イオン性高分子は、ポリビニルピロリドン、アクリルアミド/ポリビニルカプロラクタム共重合体、アクリルアミド/スチレン共重合体、無水マレイン酸/ブテン共重物の完全アミド化物などアミド基と若干の疎水性基を有する水溶性高分子が有効である。
【0025】
塩水溶液を構成する無機塩類は、多価アニオン塩類が、より好ましく、硫酸塩又は燐酸塩が適当であり、具体的には、硫酸アンモニウム、硫酸ナトリウム、硫酸マグネシウム、硫酸アルミニウム、燐酸水素アンモニウム、燐酸水素ナトリウム、燐酸水素カリウム等を例示することができ、これらの塩を濃度15%以上の水溶液として用いることが好ましい
【0026】
次に本発明で使用する複数のビニル基を有する単量体について説明する。このような単量体の例として、メチレンビスアクリルアミドやエチレングルコ−ルジ(メタ)アクリレ−トなどの多官能性単量体、あるいはN、N−ジメチルアクリルアミドのような熱架橋性単量体などがあげられる。また、好ましい複数のビニル基を有する単量体として、前記一般式(5)で表される多官能性水溶性ポリカチオン単量体である。この単量体は、以下のようにして合成することができる。すなわちエピハロヒドリンとアンモニア、第1級アミンまたは第2級アミンのうち、一種以上のアミン類と反応させた生成物を得た後、第3級アミノ基含有アクリルモノマーとを反応させ、その反応物の末端の少なくとも2つがビニル基を有するポリカチオン多官能性単量体である。すなわち、R1〜R4、R6、R7は水素または炭素数1〜3のアルキル基のなかから選ばれた同種または異種のアルキル基が結合したエピハロヒドリン残基を示す。このエピハロヒドリン残基は、一種類のアミンを使用すれば、同種の繰り返し単位が重合したものとなる。一方、二種以上のアミンを使用すれば異なった繰り返し単位が重合したものとなる。
【0027】
前記第3級アミノ基含有アクリルモノマーは、例えばN,N−ジメチルアミノプロピル(メタ)アクリルアミド、N,N−ジエチルアミノプロピル(メタ)アクリルアミド、N,N−ジメチルアミノエチル(メタ)アクリレート、N,N−ジエチルアミノエチル(メタ)アクリレートなどを挙げることができる。また最も好ましいものは、N,N−ジメチルアミノプロピル(メタ)アクリルアミドである。
【0028】
多官能性水溶性ポリカチオン単量体の前記単量体混合物に対する添加量は、単量体混合物質量に0.001〜1モル%であり、好ましくは0.002〜0.5%であり、更に好ましくは0.005〜0.5%である。重合温度は前記のような通常の重合条件で行うことができる。また、重合度を調節するためイソプロピルアルコールを対単量体0.1〜5重量%など併用すると効果的である。
【0029】
前記多官能性水溶性ポリカチオン単量体を前記単量体混合物と共重合することにより製造したイオン性架橋性水溶性高分子は、従来のN,N−メチレンビスアクリルアミドあるいはエチレングリコールジ(メタ)アクリレートなどのような架橋点間の比較的短い架橋剤を使用した場合に較べ、架橋点間が長く、その上カチオン性基が架橋点間に存在する。従って分子が収縮し過ぎず、水中における形態が適度な状態で存在できる。その結果、架橋性高分子の特徴を保持し、懸濁粒子との接触も効率的に行なわれる。
【0030】
前記一般式(1)で表されるカチオン性単量体の例としては、(メタ)アクリル酸ジメチルアミノエチルやジメチルアミノプロピル(メタ)アクリルアミドなどが上げられ、四級アンモニウム基含重合体の例は、前記三級アミノ含有単量体の塩化メチルや塩化ベンジルによる四級化物である(メタ)アクリロイルオキシエチルトリメチルアンモニウム塩化物、(メタ)アクリロイルオキシ2−ヒドロキシプロピルトリメチルアンモニウム塩化物、(メタ)アクリロイルアミノプロピルトリメチルアンモニウム塩化物、(メタ)アクリロイルオキシエチルジメチルベンジルアンモニウム塩化物、(メタ)アクリロイルオキシ2−ヒドロキシプロピルジメチルベンジルアンモニウム塩化物、(メタ)アクリロイルアミノプロピルジメチルベンジルアンモニウム塩化物などである。また前記一般式(2)で表されるカチオン性単量体の例としては、ジメチルジアリルアンモニウム系単量も使用可能であり、その例としてジメチルジアリルアンモニウム塩化物、ジアリルメチルベンジルアンモニウム塩化物などである。
【0031】
さらに一般式(3)で表されるアニオン性単量体の例としては、スルフォン基でもカルボキシル基でもさしつかいなく、両方を併用しても良い。スルフォン基含有単量体の例は、ビニルスルフォン酸、ビニルベンゼンスルフォン酸あるいは2−アクリルアミド2−メチルプロパンスルフォン酸などである。またカルボキシル基含有単量体の例は、メタクリル酸、アクリル酸、イタコン酸、マレイン酸あるいはp−カルボキシスチレンなどである。
【0032】
水溶性非イオン性単量体の例としては、(メタ)アクリルアミド、N,N−ジメチルアクリルアミド、酢酸ビニル、アクリロニトリル、(メタ)アクリル酸2−ヒドロキシエチル、ジアセトンアクリルアミド、N−ビニルピロリドン、N−ビニルホルムアミド、N−ビニルアセトアミド、アクリロイルモルホリン、アクリロイルピペラジンなどがあげられる。
【0033】
油中水型エマルジョン重合の場合は重合濃度として、20〜50重量%であり、好ましくは25〜40重量%である。また、塩水溶液中分散重合の場合は、15〜40重量%であり、好ましくは20〜35重量%である。またどちらも重合温度としては、0〜80℃であり、好ましくは20〜50℃、最も好ましくは20〜40℃であり、単量体の組成、重合法、開始剤の選択によって適宜重合温度を設定する。
【0034】
これらの第1級アミンの中で、好ましくは、メチルアミン及びエチルアミンである。前記第2級アミンは、例えばジメチルアミン、ジエチルアミン、などである。これらの第2級アミンは1種を単独で用いることができ、あるいは、2種以上を組み合わせて用いることもできる。
【0035】
前記第3級アミノ基含有アクリルモノマーは、例えばN,N−ジメチルアミノプロピル(メタ)アクリルアミド、N,N−ジエチルアミノプロピル(メタ)アクリルアミド、N,N−ジメチルアミノエチル(メタ)アクリレート、N,N−ジエチルアミノエチル(メタ)アクリレートなどを挙げることができる。また最も好ましいものは、N,N−ジメチルアミノプロピル(メタ)アクリルアミドである。
【0036】
前記単量体を共重合して得られる架橋性水溶性イオン性高分子の分子量は、300万〜2,000万であり、好ましくは500万〜1500万、さらに好ましくは500万〜1000万である。
【0037】
次に架橋性水溶性イオン性高分子(A)と組み合わせる複数のビニル基を有する単量体の非存在下で単量体(混合物)を重合した水溶性イオン性高分子(B)について説明する。この高分子は、前記架橋性水溶性イオン性高分子を重合する場合、複数のビニル基を有する単量体の非存在下において、単量体(混合物)を重合することによって製造できる。重合方法は、水溶液重合、油中水型エマルジョン重合、油中水型分散重合、塩水中分散重合などそのまま適用する。単量体の組成もそのまま適用する。分子量は、300万〜2,000万であり、好ましくは500万〜1500万、さらに好ましくは500万〜1000万である。
【0038】
これら架橋性水溶性イオン性高分子(A)と複数のビニル基を有する単量体の非存在下で単量体(混合物)を重合した水溶性イオン性高分子(B)との使用割合は、重量で30:70〜70:30であり、好ましくは60:40〜40:60である。この範囲よりどちらかの成分が多くなると、片方の性質が強く現れすぎ、特徴がなくなる。また、添加方法としては、ニ物質を混合したものを溶解、添加しても良いし、かどちら一方を別々に前後して添加しても良いし、同時に添加しても良い。
【0039】
本発明の架橋性水溶性イオン性高分子(A)と水溶性イオン性高分子(B)とを組み合わせた凝集処理剤は、製紙排水、化学工業排水、食品工業排水などの生物処理したときに発生する余剰汚泥、あるいは都市下水の生汚泥、混合生汚泥、余剰汚泥、消化汚泥などの有機汚泥、あるいは製紙スラッジの脱水に使用することができる。さらに、古紙や機械パルプに由来するピッチあるいは類アニオン性物質の前処理を行なうため、抄紙前の製紙原料中に添加して使用することもできる。
【0040】
更に本発明の架橋性水溶性イオン性高分子(A)と水溶性イオン性高分子(B)とを組み合わせた凝集処理剤は、歩留向上及び/又は濾水性向上を目的として抄紙前の製紙原料中に添加し使用することもできる。また、架橋性イオン性水溶性高分子からなる処理剤と、無機あるいは有機のアニオン性物質と組み合わせて、歩留向上及び/又は濾水性向上を目的として、抄紙前の製紙原料中に添加し使用することもできる。前記アニオン性物質のうち、無機物としては、ベントナイト、カオリン、クレイあるいはタルクなどであり、またコロイダルシリカも使用できる。
【0041】
前記アニオン性物質が、アニオン性水溶性高分子の場合は、どのようなアニオン性水溶性高分子も使用できるが、前記一般式(3)で表されるアニオン性単量体3〜100モル%と(メタ)アクリルアミドを0〜97モル%含有する単量体混合物を塩水溶液中、該塩水溶液に可溶な高分子分散剤共存下、分散重合法により製造された粒径100μm以下のアニオン性水溶性高分子からなる微粒子の分散液を使用することが好ましい。この高分子の製造法は、前記架橋性カチオン性あるいは両性水溶性高分子の場合と同様である。高分子分散剤は、アニオン性高分子を使用することが好ましい。例えば、アクリルアミド2−メチルプロパンスルホン酸(塩)やスチレンスルホン酸(塩)などのアニオン性単量体の(共)重合体である。これらアニオン性単量体とカルボキシル基含有単量体、例えばアクリル酸、メタクリル酸、イタコン酸などとの共重合体も使用可能である。さらに非イオン性の単量体であるアクリルアミドとの共重合体も使用できる。
【0042】
本発明の架橋性水溶性イオン性高分子(A)と水溶性イオン性高分子(B)とを組み合わせた凝集処理剤の添加量は、汚泥固形分に対し重量で0.1〜1.0%であり、好ましくは0.2〜0.5%である。また、前処理として使用するには、製紙原料中乾燥分に対し、50〜10,000ppmであり、好ましくは100〜2,000ppmである。
【0043】
【実施例】
以下、実施例および比較例によって本発明をさらに詳しく説明するが、本発明はその要旨を超えない限り、以下の実施例に制約されるものではない。
【0044】
(合成例1)攪拌機および温度制御装置を備えた反応槽に沸点190°Cないし230°Cのイソパラフィン126.0gにソルビタンモノオレート6.0g及びポリリシノ−ル酸/ポリオキシエチレンブロック共重合物0.6gを仕込み溶解させた。別に脱イオン水113.1gとアクリル酸(AACと略記)60%水溶液23.6gを混合し、これを35%水酸化ナトリウム水溶液22.4gで当量中和した。中和後、アクリロイルオキシエチルトリメチルアンモニウム塩化物(以下DMQと略記)80%水溶液126.7g、メタクリロイルオキシエチルトリメチルアンモニウム塩化物(以下DMCと略記)80%水溶液34.0g、アクリルアミド(AAMと略記)50%水溶液65.1g及び合成例で作成した多官能性水溶性ポリカチオン単量体60%水溶液0.8g(対単量体0.3重量%)各々採取し前記アクリル酸溶液に添加し、完全に溶解させた。また、pHを4.01に調節し、油と水溶液を混合し、ホモジナイザーにて1000rpmで15分間攪拌乳化した。この時の単量体組成は、DMQ/DMC/AAC/AAM=40/10/15/35(モル%)である。
【0045】
得られたエマルジョンにイソプロピルアルコール40%水溶液2.0g(対単量体0.5重量%)を加え、単量体溶液の温度を30〜33℃に保ち、窒素置換を30分行った後、2、2’−アゾビス〔2−(5−メチル−2−イミダゾリン−2−イル)プロパン〕二塩化水素化物の10%水溶液0.35g(対単量体0.02重量%)を加え、重合反応を開始させた。反応温度を32±2℃で12時間重合させ反応を完結させた。重合後、生成した油中水型エマルジョンに転相剤としてポリオキシエチレントリデシルエ−テル10.0g(対液2.0重量%)を添加混合して試験に供する試料(試料−1)とした。また静的光散乱法による分子量測定器(大塚電子製DLS−7000)によって重量平均分子量を測定した。結果を表1に示す。
【0046】
(合成例2)攪拌機および温度制御装置を備えた反応槽に沸点190°Cないし230°Cのイソパラフィン120.0gにソルビタンモノオレート6.0g及びポリリシノ−ル酸/ポリオキシエチレンブロック共重合物0.6gを仕込み溶解させた。別に脱イオン水32.0g、アクリロイルオキシエチルトリメチルアンモニウム塩化物(以下DMQと略記)80%水溶液184.4g、アクリルアミド(AAMと略記)50%水溶液27.0g及び合成例で作成した多官能性水溶性ポリカチオン単量体60%水溶液1.1g(対単量体0.4重量%)各々採取し前記アクリル酸溶液に添加し、完全に溶解させた。また、pHを4.35に調節し、油と水溶液を混合し、ホモジナイザーにて1000rpmで15分間攪拌乳化した。この時の単量体組成は、DMQ/AAM=80/20(モル%)である。
【0047】
得られたエマルジョンにイソプロピルアルコール40%水溶液2.4g(対単量体0.6重量%)を加え、単量体溶液の温度を30〜33℃に保ち、窒素置換を30分行った後、2、2’−アゾビス〔2−(5−メチル−2−イミダゾリン−2−イル)プロパン〕二塩化水素化物の10%水溶液0.35g(対単量体0.02重量%)を加え、重合反応を開始させた。反応温度を32±2℃で12時間重合させ反応を完結させた。重合後、生成した油中水型エマルジョンに転相剤としてポリオキシエチレントリデシルエ−テル10.0g(対液2.0重量%)を添加混合して試験に供する試料(試料−2)とした。結果を表1に示す。
【0048】
(合成例3)実施例1あるいは実施例2と同様な操作により、それぞれDMQ/AAC/AAM=60/20/20(試料−3)(モル%)からなる組成の油中水型両性高分子エマルジョンを合成した。組成を表1に、結果を表2に示す。
【0049】
(合成例4)温度計、攪拌機、窒素導入管、ペリスタポンプ(SMP−21型、東京理化器械製)に接続した単量体供給管およびコンデンサ−を備えた500mLの4ツ口フラスコ内にメタクロイルオキシエチルトリメチルアンモニウム塩化物(以下DMCと略記)の80重量水溶液%46.3g、アクリロイルオキシエチルトリメチルアンモニウム塩化物(以下DMQと略記)の80重量%水溶液60.5g、アクリル酸(以下AACと略記)の60重量%水溶液20.6g、アクリルアミド(以下AAMと略記)の50%水溶液36.5g、イオン交換水173.1g、硫酸アンモニウム125.0g、分散剤としてアクリロイルオキシエチルトリメチルアンモニウム塩化物単独重合体30.0g(20重量%液、粘度6450mPa・s)をそれぞれしこみpHを3.3に調節した。この時各単量体のモル%は、DMC/DMQ/AAC/AAM=25/35/20/20である。次ぎに反応器内の温度を30±2℃に保ち、30分間窒素置換をした後、開始剤として2、2’−アゾビス〔2−(5−メチル−2−イミダゾリン−2−イル)プロパン〕ニ塩化水素化物の1%水溶液1.0g(対単量体0.01%)を添加し重合を開始させた。内部温度を30±2℃に保ち重合開始から7時間反応させた時点で上記開始剤を対単量体0.01%追加し、さらに7時間反応させ終了した。得られた分散液のしこみ単量体濃度は20%であり、ポリマー粒径は10μm以下、分散液の粘度は750mPa・sであった。また、静的光散乱法による分子量測定器(大塚電子製DLS−7000)によって重量平均分子量を測定した。この試料を試料−6とする。結果を表1及び表2に示す。
【0050】
(合成例5〜6)合成例4と同様な操作により、塩水溶液中分散重合品DMQ/AAM=80/20(試料−5)、DMQ/AAC/AAM=60/20/20(試料−6)を合成した。
【0051】
(合成例7〜8)合成例2〜3で作成した親水性界面活性剤添加前の油中水型エマルジョンを、噴霧乾燥機により乾燥し、粉末品を得た。組成を表1に、結果を表2に示す。
【0052】
(合成例9〜11)重合時、複数のビニル基を有する単量体を添加しないほかは合成例1〜6と同様な操作により、DMQ/AAC/AAM=60/20/20からなる組成により、油中水型両性高分子エマルジョン(試料−9)、塩水中分散重合品(試料−10)及び噴霧乾燥品(試料−11)をそれぞれ作成した。
【0053】
(合成例12;アニオン性水溶性高分子分散液)攪拌機、還流冷却管、温度計および窒素導入管を備えた4つ口500mlセパラブルフラスコに脱イオン水:107.7g、硫酸アンモニウム26.8g、硫酸ナトリウム17.9g、60アクリル酸:32.7g、50%アクリルアミド:90.3gを加え、30重量%の水酸化ナトリウム5.8gによりアクリル酸の16モル%を中和した。また15重量%のメタクリル酸/アクリルアミド2−メチルプロパンスルホン酸=3/7(モル比、酸の90モル%を中和)共重合体水溶液(溶液粘度42、600mPa・s)18.9gを添加した。その後、攪拌しながら窒素導入管より窒素を導入し溶存酸素の除去を行う。この間恒温水槽により30℃に内部温度を調整する。窒素導入30分後、0.1重量%のペルオキソニ硫酸アンモニウム及び亜硫酸水素アンモニウムの0.1重量%水溶液をそれぞれこの順で0.9g添加し重合を開始させた。重合開始後3時間たったところで前記開始剤を0.6g追加し15時間で反応を終了した。この試料のアクリル酸とアクリルアミドのモル比は30:70であり、粘度は200mPa・sであった。なお、顕微鏡観察の結果、5〜20μmの粒子であることが判明した。また、重量平均分子量を測定すると、1000万であった。これをアニオン性水溶性高分子−Aとする。
【0054】
【表1】
Figure 2004057837
DMC:メタクロルオキシエチルトリメチルアンモニウムクロリド
DMQ:アクロルオキシエチルトリメチルアンモニウムクロリド、AAC:アクリル酸、AAM:アクリルアミド、PCC;ポリカチオン架橋剤、
MBA;メチレンビスアクリルアミド、架橋剤:対単量体重量%、
E;エマルジョン品、D;デイスパージョン品、SD;噴霧乾燥品
【0055】
【表2】
Figure 2004057837
製品粘度:mPa・s、分子量:万
E;エマルジョン品、D;デイスパージョン品、SD;噴霧乾燥品
【0056】
【実施例1〜8】
pH7.52、全ss分25,000mg/Lからなる物性を示す都市下水消化汚泥、200mLをポリビ−カ−に採取し、表3の架橋性水溶性イオン性高分子と複数のビニル基を有する単量体を添加しないで合成した水溶性イオン性高分子の配合物、M−1〜M−8を対汚泥固形分3000ppm添加し、ビ−カ−移し変え攪拌10回行った後、T−1179Lの濾布(ナイロン製)により濾過し、30秒後の濾液量を測定した。また濾過した汚泥をプレス圧2Kg/m2で1分間脱水する。その後、濾布剥離性を目視によりチェックし、ケ−キ含水率(105℃で20hr乾燥)を測定した。結果を表4に示す。
【0057】
【表3】
Figure 2004057837
配合比;重量比
【0058】
【比較例1〜6】
表3の比較試料CM−1〜CM−6を用い、実施例1〜8と同様な試験操作によって行った。結果を表4に示す。
【0059】
【表4】
Figure 2004057837
30秒後濾液量:ml、ケーキ含水率:重量%
濾布剥離性:○>△>×の順に良いことを示す。
【0060】
【実施例9〜16】
次に験水を分析値としてpH6.60、全ss分32,500mg/Lである都市下水混合生汚泥を用いた。200mLをポリビ−カ−に採取し、表3の架橋性水溶性イオン性高分子と複数のビニル基を有する単量体を添加しないで合成した水溶性イオン性高分子の配合物、M−1〜M−8を対汚泥固形分2500ppm添加しビ−カ−移し変え攪拌10回行った。次ぎに合成例12のアニオン性水溶性高分子A−1を対汚泥固形分2500ppm添加し、ビ−カ−移し変え攪拌10回行った後、T−1179Lの濾布(ナイロン製)により濾過し、30秒後の濾液量を測定した。また濾過した汚泥をプレス圧2Kg/m2で1分間脱水する。その後、濾布剥離性を目視によりチェックし、ケ−キ含水率(105℃で20hr乾燥)を測定した。結果を表5に示す。
【0061】
【比較例7〜12】
比較試料CM−1〜CM−6を用い、実施例9〜16と同様な試験操作によって行った。結果を表5に示す。
【0062】
【表5】
Figure 2004057837
30秒後濾液量:ml、ケーキ含水率:重量%
濾布剥離性:○>△>×の順に良いことを示す。
【0063】
【実施例17〜24】
製紙会社のパルプ製造工程及び抄紙工程より発生した製紙スラッジ、pH6.15、全ss分23,100mg/L、200mlをポリビ−カ−に採取し、表3の架橋性水溶性イオン性高分子と複数のビニル基を有する単量体を添加しないで合成した水溶性イオン性高分子の配合物、M−1〜M−8を対乾燥固形分液0.2添加し、ビ−カ−移し変え攪拌10回行った後、T−1179Lの濾布(ナイロン製)により濾過し、30秒後の濾液量を測定した。また濾過した汚泥をプレス圧4Kg/m2で1分間脱水する。その後ケ−キの濾布剥離性及びケ−キ含水率(105℃で20hr乾燥)を測定した。結果を表6に示す。
【0064】
【比較例13〜18】
比較試料CM−1〜CM−6を用い、実施例17〜24と同様な試験操作によって行った。結果を表6に示す。
【0065】
【表6】
Figure 2004057837
30秒後濾液量:ml、ケーキ含水率:重量%
濾布剥離性:○>△>×の順に良いことを示す。
【0066】
【実施例25〜29】
機械パルプ、LBKP及びチラシ古紙からなる中質紙製紙原料(pH5.82、濁度1250FAU、全ss3.05%、灰分0.25%、カチオン要求量0.055meq/L、ゼ−タポテンシャル−9mV)100mL採取し、攪拌機にセットした。また合成例1〜8と同様な操作により表7の試料−9〜試料−19を合成し、表8に示す配合した試料M−8〜M−3を調製した。これら試料を対ss分300ppm添加し、500回転/分で60秒間攪拌する。その後、ワットマン製NO.41(90mm)の濾紙にて全量濾過し、濾液のカチオン要求量をミュ−テック社製、PCD−03型により、また濁度をHACH、DR2000P型濁度計にて測定した。結果を表9に示す。
【0067】
【比較例19〜24】
比較試料CM−7〜CM−12を用い、実施例25〜32と同様な試験操作によって行った。結果を表9に示す。
【0068】
【表7】
Figure 2004057837
【0069】
【表8】
Figure 2004057837
配合比;重量比
【0070】
【表9】
Figure 2004057837
濾液カチオン要求量:meq/L
濾液濁度:FAU
【0071】
【実施例30〜37】
脱墨古紙と機械パルプを主体とし、LBKPが配合された中質紙原(pH6.8、全ss2.160%、灰分0.25%)を用い、パルプ濃度0.9重量%に水道水を用いて希釈、ブリット式ダイナミックジャ−テスタ−により歩留率を測定した。初めに液体硫酸バンド1.5%、その後、表3のM−1〜M−8を対製紙原料0.020%添加し、合成例12で製造したアニオン性水溶性高分子−Aを対製紙原料0.020%添加した。薬剤の添加順は上記の順で15秒間隔により下記試験条件で行い、攪拌を開始する。全薬品添加後のpHは5.60であった。30秒後に10秒間白水を排出し、30秒間白水を採取し、下記条件で総歩留率を測定した。なお、攪拌条件は、回転数1000r.p.m、ワイヤー125Pスクリーン(200メッシュ相当)、総歩留率(SS濃度)はADVANTEC、NO.2にて濾過し測定した。また濾紙を乾燥後、濾紙を800℃で焼却し灰分を測定することにより無機物歩留率を算出した。更に上記全種類の薬品を加え抄紙した場合の紙の地合を確認するため、タッピスタンダ−ドシ−トマシン(1/50m2)によって乾燥坪量60g/m2の紙を抄紙し、乾燥後、目視にて地合を観察した。以上の結果を表10に示す。
【0072】
【比較例20〜25】
比較試料CM−1〜CM−6を用い、実施例30〜37と同様な試験操作によって行った。結果を表10に示す。
【0073】
【実施例38〜45】
LBKPを主体とした上質紙製造用の製紙原料(pH6.10、全ss分2.25%、灰分0.40%)を検体として、パルプ濃度0.9重量%に水道水を用いて希釈、ブリット式ダイナミックジャ−テスタ−により歩留率を測定した。添加薬品として、カチオン性デンプン、対製紙原料0.5重量%(以下同様)、軽質炭酸カルシウム、20%、中性ロジンサイズ、0.2%、硫酸バンド1.0%、表3のM−1〜M−8をそれぞれ0.025%この順で15秒間隔により下記試験条件で表1に示した試作品を添加し、攪拌を開始する。全薬品添加後のpHは6.87であった。30秒後に10秒間白水を排出し、30秒間白水を採取し、下記条件で総歩留率を測定した。なお、攪拌条件は、回転数1000r.p.m.、ワイヤー125Pスクリーン(200メッシュ相当)、総歩留率(SS濃度)はADVANTEC NO.2にて濾過し測定した。また乾燥後、濾紙を600℃で焼却し灰分を測定することにより炭酸カルシウムの歩留率を算出した。結果を表11に示す。
【0074】
【比較例26〜31】
比較試料CM−1〜CM−6を用い、実施例38〜45と同様な試験操作によって行った。結果を表11に示す。
【0075】
【表10】
Figure 2004057837
総歩留率;重量%、無機物歩留率;重量%
【0076】
【表11】
Figure 2004057837
総歩留率;重量%、無機物歩留率;重量%[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an aggregating agent comprising a crosslinkable ionic water-soluble polymer and a non-crosslinkable water-soluble polymer and a method for using the same, and more particularly, to a specific ionic monomer and a compound having a plurality of vinyl groups. A crosslinkable ionic water-soluble polymer (A) obtained by polymerizing a monomer mixture containing a monomer as an essential component, and a specific ionic monomer in the absence of the monomer having a plurality of vinyl groups The present invention relates to a treating agent comprising an ionic water-soluble polymer (B) obtained by polymerizing a monomer mixture containing as an essential component, and a method of using the treating agent.
[0002]
[Prior art]
Conventionally, cationic polymer flocculants have been used for sludge dewatering such as retention aids and sewage in papermaking. In particular, sludge dewatering agents, due to the recent increase in sludge generation and deterioration of sludge properties, with conventional cationic polymer flocculants, there is a limit to the sludge treatment amount, dewatering cake water content, SS recovery rate, The treatment state is not always satisfactory in terms of the releasability of the cake from the filter cloth, and improvement is required. Various amphoteric polymer flocculants have been proposed in order to improve the drawbacks of these conventional cationic polymer flocculants, but these amphoteric polymer dehydrants are not always satisfactory. Further, for the purpose of lowering the water content of the dewatered cake and improving the releasability from the filter cloth, for example, Japanese Patent Application Laid-Open Nos. 2-219878 and 8-164 discloses a crosslinkable ionic polymer flocculant. ing.
[0003]
Regarding retention improvers in papermaking, the viewpoint of application of cross-linkable polymers has not been considered because the improvement of cohesion has been pursued in order to respond to the increase in papermaking speed and the increase of impurities in papermaking raw materials. Was. Polymer flocculants have certainly improved their cohesive force due to the pursuit of higher molecular weight in one direction to improve performance, but especially when used as a retention improver in the papermaking industry, formation disturbances, etc. Side effects often occur. On the other hand, since the crosslinkable polymer has a relatively small molecular spread in water as compared with the linear polymer, the cohesive force is suppressed and the crosslinkable polymer is suitable for a process chemical in the papermaking industry.
[0004]
As described above, the crosslinkable water-soluble polymer has various characteristics and functions, but because of the relatively small spread of the molecule in the aqueous solution, it may be used as a sludge dewatering agent or a retention enhancer in papermaking. When applied, there is a problem that the amount of addition increases as compared with the linear polymer. In order to improve such disadvantages of the crosslinkable water-soluble polymer, JP-A-7-256299 or JP-A-7-256300 discloses a methacrylate monomer, an acrylate monomer containing a quaternary ammonium base. -Amphoteric polymer dehydrating agents are disclosed in which a meth-based monomer and an anionic monomer are copolymerized at a fixed ratio. However, these also do not sufficiently satisfy the purpose.
[0005]
[Problems to be solved by the invention]
When a cross-linkable water-soluble polymer is used as a sludge dewatering agent or a retention aid, excellent points such as a decrease in the water content of the dewatered cake or an easy maintenance of the formation are exhibited, but on the other hand, However, the amount of addition is inevitably increased until the effect is exhibited, and as a result, there arises a problem that the cost is increased. An object of the present invention is to develop an aggregating treatment agent which has the advantages of a crosslinkable water-soluble polymer and solves the problem of reducing the amount of addition.
[0006]
[Means for Solving the Problems]
As a result of intensive studies to solve the above-mentioned problems, the present inventors have reached the following invention. That is, the invention of claim 1 of the present invention is characterized in that the monomer represented by the following general formula (1) and / or (2) is 5 to 99.999 mol%, and the monomer represented by the following general formula (3) A crosslinkable water-soluble polymer obtained by polymerizing a monomer mixture comprising 0 to 50 mol% of a body, 0 to 95 mol% of a water-soluble nonionic monomer, and 0.001 to 1 mol% of a monomer having a plurality of vinyl groups. In the absence of the ionic polymer (A) and the monomer having a plurality of vinyl groups, 5 to 100 mol% of a monomer represented by the following general formula (1) and / or (2): A water-soluble ionic polymer obtained by polymerizing a monomer (mixture) comprising 0 to 50 mol% of a monomer represented by the following general formula (3) and 0 to 95 mol% of a water-soluble nonionic monomer ( An aggregating agent combined with (B).
Embedded image
Figure 2004057837
General formula (1)
R1 is hydrogen or a methyl group; R2 and R3 are alkyl or alkoxyl groups having 1 to 3 carbon atoms; R4 is hydrogen, an alkyl group, alkoxyl group or benzyl group having 1 to 3 carbon atoms; Represents oxygen or NH, B represents an alkylene group or an alkoxylene group having 2 to 4 carbon atoms, and X1 represents an anion, respectively.
Embedded image
Figure 2004057837
General formula (2)
R5 represents hydrogen or a methyl group, R6 and R7 represent an alkyl group having 1 to 3 carbon atoms, an alkoxy group or a benzyl group, and X2 represents an anion.
Figure 2004057837
General formula (3)
R8 is hydrogen, a methyl group or a carboxymethyl group, Q is SO3, C6H4SO3,
CONHC (CH3) 2CH2SO3, C6H4COO or COO, R9 is hydrogen or COOY2, Y1 or Y2 is hydrogen or cation.
The invention according to claim 2 is the coagulation treatment agent according to claim 1, wherein the crosslinkable water-soluble ionic polymer (A) is a spray-dried product.
[0007]
The invention according to claim 3 is characterized in that the monomer having a plurality of vinyl groups is a polyfunctional water-soluble polycation monomer represented by the following general formula (4). 2. The aggregating agent according to item 2.
Embedded image
Figure 2004057837
General formula (4)
R10 to R13 are hydrogen or a methyl group; X3 and X4 are anions; and p is an integer of 0 to 20, provided that P is represented by the following general formula (5).
Embedded image
Figure 2004057837
General formula (5)
R 14 and R 15 are hydrogen, an alkyl group or a benzyl group having 1 to 3 carbon atoms, R 16 is a hydrogen or methyl group, G is an alkylene group or an alkoxylene group having 2 to 4 carbon atoms, and L is -O- or-. NH-, X5 - if the anion, provided that R 14 to R 15 are hydrogen, may partially be substituted by P [0008]
The polycondensate formed from epihalohydrin and one or more amines, wherein the polyfunctional water-soluble polycation monomer is selected from ammonia, an aliphatic primary amine, and an aliphatic secondary amine. The coagulant according to claim 3, wherein the coagulant is a reaction product of a dialkylaminoalkyl (meth) acrylamide and a dialkylaminoalkyl (meth) acrylamide.
[0009]
According to a fifth aspect of the present invention, an aggregating agent obtained by combining the crosslinkable water-soluble ionic polymer (A) and the water-soluble ionic polymer (B) according to the first to fourth aspects is added to the organic sludge, This is a sludge dewatering method characterized by dewatering with a dewatering machine after coagulation.
[0010]
According to a sixth aspect of the present invention, an aggregating agent obtained by combining the crosslinkable water-soluble ionic polymer (A) and the water-soluble ionic polymer (B) according to the first to fourth aspects is added to papermaking sludge. This is a method for dewatering papermaking sludge, which comprises dewatering with a dewatering machine after coagulation.
[0011]
According to a seventh aspect of the present invention, there is provided a papermaking raw material before the papermaking, wherein an aggregating agent obtained by combining the crosslinkable water-soluble ionic polymer (A) and the water-soluble ionic polymer (B) according to the first to fourth aspects is used. A method for pretreating a papermaking raw material, wherein the pretreatment is carried out by adding to the inside.
[0012]
The invention of claim 8 provides an aggregating agent obtained by combining the crosslinkable water-soluble ionic polymer (A) according to any one of claims 1 to 4 with the water-soluble ionic polymer (B) to improve the yield and improve the yield. A papermaking method characterized by adding paper into a papermaking raw material before papermaking for the purpose of improving drainage and / or papermaking.
[0013]
The invention of claim 9 provides an aggregating agent obtained by combining the crosslinkable water-soluble ionic polymer (A) according to any one of claims 1 to 4 with the water-soluble ionic polymer (B), and an inorganic and / or inorganic coagulant. This papermaking method is characterized in that it is added to a papermaking raw material before papermaking and papermaking is performed in combination with an organic anionic substance for the purpose of improving yield and / or drainage.
[0014]
The invention according to claim 10 is the papermaking method according to claim 9, wherein the anionic substance is colloidal silica or bentonite.
[0015]
In the invention according to claim 11, the anionic substance contains 3 to 100 mol% of an anionic monomer represented by the general formula (3) and 0 to 97 mol% of a water-soluble nonionic monomer. The monomer (mixture) is a dispersion of fine particles of an anionic water-soluble polymer having a particle size of 100 μm or less produced by a dispersion polymerization method in the presence of a polymer dispersant soluble in the salt aqueous solution in a salt aqueous solution. The papermaking method according to claim 9, wherein:
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
The crosslinkable water-soluble ionic polymer (A) of the present invention comprises 5-99.999 mol% of a monomer represented by the general formula (1) and / or (2), Polymerizing a monomer mixture consisting of 0 to 50 mol% of the represented monomer, 0 to 95 mol% of a nonionic monomer and 0.001 to 1 mol% of a monomer having a plurality of vinyl groups. Can be manufactured by The polymerization can be carried out by an ordinary polymerization method after preparing an aqueous solution in which these monomers are mixed.
[0017]
As the polymerization method, after polymerization by aqueous solution polymerization, water-in-oil emulsion polymerization, water-in-oil dispersion polymerization, dispersion polymerization in salt water, etc., any product form such as aqueous solution, dispersion, emulsion or powder can be obtained. . As a preferred form, a water-in-oil emulsion polymer product having a high concentration and a short dissolution time or a dispersion polymer product in salt water is preferable. A powder product obtained by spray-drying a water-in-oil emulsion polymerization product is also preferable.
[0018]
As a method for producing a water-in-oil polymer emulsion, a monomer mixture of a cationic monomer or a monomer copolymerizable with a cationic monomer is prepared by mixing water, at least water-immiscible Mixing an oily substance consisting of hydrogen, an effective amount for forming a water-in-oil emulsion and at least one surfactant having HLB, and stirring vigorously to form a water-in-oil emulsion, followed by polymerization. To synthesize.
[0019]
Examples of hydrocarbon oils used as a dispersion medium include mineral oils such as paraffins, kerosene, light oil, and medium oils, and hydrocarbon synthetic oils having substantially the same range of boiling point and viscosity as these. Or mixtures thereof.
[0020]
An example of at least one surfactant having an HLB and an amount effective to form a water-in-oil emulsion is a nonionic surfactant of HLB 3 to 11, and a specific example thereof is sorbitan monooleate. Sorbitan monostearate, sorbitan monopalmitate and the like. The addition amount of these surfactants is 0.5 to 10% by weight, preferably 1 to 5% by weight, based on the total amount of the water-in-oil emulsion.
[0021]
After the polymerization, a hydrophilic interfacial conversion agent called a phase change agent is added to make the emulsion particles covered with the oil film easy to adjust to water and to dissolve the water-soluble polymer therein. Diluted for use in each application. Examples of hydrophilic interfacial chemicals include cationic interfacial chemicals and nonionic interfacial chemicals of HLB 9 to 15, such as polyoxyethylene alkyl ethers and polyoxyethylene alcohol ethers.
[0022]
Further, the polymer obtained by the water-in-oil emulsion polymerization can be spray-dried as it is. Conventionally, when a crosslinkable water-soluble polymer is powdered, a side reaction in which a crosslinking reaction proceeds during drying occurs, and it has been difficult to commercialize the polymer. However, this spray drying has made it possible to easily produce a crosslinkable water-soluble polymer powder on a corporate scale. After slightly adjusting the concentration of the water-in-oil emulsion polymerized product in order to prepare for atomization, the product is sent to a spray dryer and dried at a temperature of about 70 to 110 ° C. Further, at the time of drying, the crosslinking reaction proceeds by heat, and it can be expected that the performance as a sludge dewatering agent is improved by that much.
[0023]
In addition, a water-soluble polymer composed of a polymer fine particle dispersion dispersed in a salt aqueous solution can be produced by JP-A-62-15251. This method is manufactured by stirring a cationic monomer or a cationic monomer and a nonionic monomer in a salt aqueous solution in the presence of a dispersant comprising a polymer soluble in the salt aqueous solution. And a dispersion of polymer fine particles having a particle size of 100 μm or less. In the case of producing an ionic crosslinkable water-soluble polymer, a monomer having a plurality of vinyl groups is allowed to coexist with these monomers during polymerization.
[0024]
The dispersant composed of a polymer can be a homopolymer of dimethyldiallylammonium chloride or (meth) acryloyloxyethyltrimethylammonium chloride or a copolymer with a nonionic monomer as the cationic polymer. is there. The nonionic polymer has an amide group and some hydrophobic groups such as polyvinylpyrrolidone, acrylamide / polyvinylcaprolactam copolymer, acrylamide / styrene copolymer, and fully amidated maleic anhydride / butene copolymer. Water-soluble polymers are effective.
[0025]
As the inorganic salts constituting the salt aqueous solution, polyvalent anion salts are more preferable, and sulfates or phosphates are suitable. Specifically, ammonium sulfate, sodium sulfate, magnesium sulfate, aluminum sulfate, ammonium hydrogen phosphate, hydrogen phosphate Examples thereof include sodium and potassium hydrogen phosphate, and it is preferable to use these salts as an aqueous solution having a concentration of 15% or more.
Next, the monomer having a plurality of vinyl groups used in the present invention will be described. Examples of such a monomer include polyfunctional monomers such as methylenebisacrylamide and ethylene glycol di (meth) acrylate, and thermally crosslinkable monomers such as N, N-dimethylacrylamide. Is raised. Further, a preferable monomer having a plurality of vinyl groups is a polyfunctional water-soluble polycation monomer represented by the general formula (5). This monomer can be synthesized as follows. That is, after a product obtained by reacting epihalohydrin with one or more amines among ammonia, a primary amine or a secondary amine is obtained, the resulting product is reacted with a tertiary amino group-containing acrylic monomer. It is a polycationic polyfunctional monomer having at least two terminal groups having a vinyl group. That is, R1 to R4, R6 and R7 represent epihalohydrin residues to which the same or different alkyl groups selected from hydrogen or alkyl groups having 1 to 3 carbon atoms are bonded. If one kind of amine is used, this epihalohydrin residue is a polymer of the same kind of repeating unit. On the other hand, if two or more amines are used, different repeating units will be polymerized.
[0027]
Examples of the tertiary amino group-containing acrylic monomer include N, N-dimethylaminopropyl (meth) acrylamide, N, N-diethylaminopropyl (meth) acrylamide, N, N-dimethylaminoethyl (meth) acrylate, N, N -Diethylaminoethyl (meth) acrylate and the like. Most preferred is N, N-dimethylaminopropyl (meth) acrylamide.
[0028]
The amount of the polyfunctional water-soluble polycation monomer added to the monomer mixture is 0.001 to 1 mol%, preferably 0.002 to 0.5%, based on the amount of the monomer mixture. More preferably, it is 0.005 to 0.5%. The polymerization can be carried out under the usual polymerization conditions as described above. It is also effective to use isopropyl alcohol in combination with the monomer in an amount of 0.1 to 5% by weight to adjust the degree of polymerization.
[0029]
The ionic cross-linkable water-soluble polymer produced by copolymerizing the polyfunctional water-soluble polycation monomer with the monomer mixture is a conventional N, N-methylenebisacrylamide or ethylene glycol di (meth) acrylate. ) Compared to using a relatively short cross-linking agent between cross-linking points, such as acrylate, etc., the distance between cross-linking points is long, and a cationic group is present between cross-linking points. Therefore, the molecule does not shrink too much, and can exist in an appropriate state in water. As a result, the characteristics of the crosslinkable polymer are maintained, and the contact with the suspended particles is efficiently performed.
[0030]
Examples of the cationic monomer represented by the general formula (1) include dimethylaminoethyl (meth) acrylate and dimethylaminopropyl (meth) acrylamide, and examples of the quaternary ammonium group-containing polymer Are (meth) acryloyloxyethyltrimethylammonium chloride, (meth) acryloyloxy-2-hydroxypropyltrimethylammonium chloride, which are quaternized compounds of the tertiary amino-containing monomer with methyl chloride or benzyl chloride; Acryloylaminopropyltrimethylammonium chloride, (meth) acryloyloxyethyldimethylbenzylammonium chloride, (meth) acryloyloxy 2-hydroxypropyldimethylbenzylammonium chloride, (meth) acryloylaminopropyldimethylbenzyl Ammonium chloride, and the like. Further, as an example of the cationic monomer represented by the general formula (2), a dimethyldiallylammonium-based monomer can be used, and examples thereof include dimethyldiallylammonium chloride and diallylmethylbenzylammonium chloride. is there.
[0031]
Further, as an example of the anionic monomer represented by the general formula (3), a sulfone group or a carboxyl group may be used, and both may be used in combination. Examples of the sulfone group-containing monomer include vinylsulfonic acid, vinylbenzenesulfonic acid, and 2-acrylamido-2-methylpropanesulfonic acid. Examples of the carboxyl group-containing monomer include methacrylic acid, acrylic acid, itaconic acid, maleic acid and p-carboxystyrene.
[0032]
Examples of the water-soluble nonionic monomer include (meth) acrylamide, N, N-dimethylacrylamide, vinyl acetate, acrylonitrile, 2-hydroxyethyl (meth) acrylate, diacetone acrylamide, N-vinylpyrrolidone, and N-vinylpyrrolidone. -Vinylformamide, N-vinylacetamide, acryloylmorpholine, acryloylpiperazine and the like.
[0033]
In the case of water-in-oil emulsion polymerization, the polymerization concentration is 20 to 50% by weight, preferably 25 to 40% by weight. In the case of dispersion polymerization in an aqueous salt solution, the content is 15 to 40% by weight, preferably 20 to 35% by weight. In both cases, the polymerization temperature is from 0 to 80 ° C., preferably from 20 to 50 ° C., and most preferably from 20 to 40 ° C., and the polymerization temperature may be appropriately adjusted depending on the composition of the monomer, the polymerization method, and the selection of the initiator. Set.
[0034]
Among these primary amines, preferred are methylamine and ethylamine. The secondary amine is, for example, dimethylamine, diethylamine, or the like. One of these secondary amines can be used alone, or two or more can be used in combination.
[0035]
Examples of the tertiary amino group-containing acrylic monomer include N, N-dimethylaminopropyl (meth) acrylamide, N, N-diethylaminopropyl (meth) acrylamide, N, N-dimethylaminoethyl (meth) acrylate, N, N -Diethylaminoethyl (meth) acrylate and the like. Most preferred is N, N-dimethylaminopropyl (meth) acrylamide.
[0036]
The molecular weight of the crosslinkable water-soluble ionic polymer obtained by copolymerizing the monomer is 3,000,000 to 20,000,000, preferably 5,000,000 to 15,000,000, more preferably 5,000,000 to 10,000,000. is there.
[0037]
Next, the water-soluble ionic polymer (B) obtained by polymerizing a monomer (mixture) in the absence of a monomer having a plurality of vinyl groups combined with the crosslinkable water-soluble ionic polymer (A) will be described. . When polymerizing the crosslinkable water-soluble ionic polymer, the polymer can be produced by polymerizing a monomer (mixture) in the absence of a monomer having a plurality of vinyl groups. The polymerization method is applied as it is, such as aqueous solution polymerization, water-in-oil emulsion polymerization, water-in-oil dispersion polymerization, and dispersion polymerization in salt water. The composition of the monomer is applied as it is. The molecular weight is 3,000,000 to 20,000,000, preferably 5,000,000 to 15,000,000, more preferably 5,000,000 to 10,000,000.
[0038]
The use ratio of the crosslinkable water-soluble ionic polymer (A) and the water-soluble ionic polymer (B) obtained by polymerizing a monomer (mixture) in the absence of a monomer having a plurality of vinyl groups is as follows: And the weight is 30:70 to 70:30, preferably 60:40 to 40:60. If either component is larger than this range, one of the properties will appear too strong and the feature will be lost. As an addition method, a mixture of two substances may be dissolved and added, or either one of them may be added separately before or after, or may be added simultaneously.
[0039]
The flocculating agent comprising the crosslinkable water-soluble ionic polymer (A) and the water-soluble ionic polymer (B) of the present invention can be used for biological treatment of papermaking wastewater, chemical industrial wastewater, food industrial wastewater and the like. It can be used for dehydration of generated excess sludge, organic sludge such as raw sludge of municipal sewage, mixed raw sludge, excess sludge, digested sludge, or papermaking sludge. Furthermore, in order to perform a pretreatment of pitch or anionic substances derived from waste paper or mechanical pulp, it can be used by being added to a papermaking raw material before papermaking.
[0040]
Further, the aggregating agent comprising the crosslinkable water-soluble ionic polymer (A) and the water-soluble ionic polymer (B) of the present invention can be used for papermaking before papermaking for the purpose of improving the yield and / or drainage. It can also be used by adding it to the raw material. In addition, in combination with a treating agent comprising a crosslinkable ionic water-soluble polymer and an inorganic or organic anionic substance, it is added to a papermaking raw material before papermaking for the purpose of improving yield and / or drainage. You can also. Among the anionic substances, examples of the inorganic substance include bentonite, kaolin, clay, and talc, and colloidal silica can also be used.
[0041]
When the anionic substance is an anionic water-soluble polymer, any anionic water-soluble polymer can be used, but 3 to 100 mol% of the anionic monomer represented by the general formula (3). And a (meth) acrylamide in a salt aqueous solution containing a monomer mixture containing 0 to 97 mol% in the presence of a polymer dispersant soluble in the salt aqueous solution and having a particle size of 100 μm or less produced by a dispersion polymerization method. It is preferable to use a dispersion of fine particles composed of a water-soluble polymer. The method for producing this polymer is the same as that for the crosslinkable cationic or amphoteric water-soluble polymer. As the polymer dispersant, it is preferable to use an anionic polymer. For example, it is a (co) polymer of an anionic monomer such as acrylamide 2-methylpropanesulfonic acid (salt) and styrenesulfonic acid (salt). Copolymers of these anionic monomers and carboxyl group-containing monomers such as acrylic acid, methacrylic acid, and itaconic acid can also be used. Further, a copolymer with acrylamide, which is a nonionic monomer, can also be used.
[0042]
The amount of the coagulation agent in which the crosslinkable water-soluble ionic polymer (A) and the water-soluble ionic polymer (B) of the present invention are combined is 0.1 to 1.0 by weight based on the sludge solid content. %, Preferably 0.2 to 0.5%. When used as a pretreatment, the amount is 50 to 10,000 ppm, preferably 100 to 2,000 ppm, based on the dry matter in the papermaking raw material.
[0043]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. However, the present invention is not limited to the following Examples as long as the gist of the present invention is not exceeded.
[0044]
(Synthesis Example 1) In a reaction vessel equipped with a stirrer and a temperature controller, 126.0 g of isoparaffin having a boiling point of 190 to 230 ° C, 6.0 g of sorbitan monooleate, and a polyricinoleic acid / polyoxyethylene block copolymer 0 0.6 g was charged and dissolved. Separately, 113.1 g of deionized water and 23.6 g of a 60% aqueous solution of acrylic acid (abbreviated as AAC) were mixed, and the mixture was neutralized with an equivalent amount of 22.4 g of a 35% aqueous sodium hydroxide solution. After neutralization, 126.7 g of an 80% aqueous solution of acryloyloxyethyltrimethylammonium chloride (hereinafter abbreviated as DMQ), 34.0 g of an 80% aqueous solution of methacryloyloxyethyltrimethylammonium chloride (hereinafter abbreviated as DMC), and acrylamide (abbreviated as AAM) 65.1 g of a 50% aqueous solution and 0.8 g of a 60% aqueous solution of a polyfunctional water-soluble polycation monomer prepared in the synthesis example (based on 0.3% by weight of the monomer) were respectively collected and added to the acrylic acid solution. Completely dissolved. The pH was adjusted to 4.01, the oil and the aqueous solution were mixed, and the mixture was emulsified with a homogenizer at 1000 rpm for 15 minutes. The monomer composition at this time is DMQ / DMC / AAC / AAM = 40/10/15/35 (mol%).
[0045]
2.0 g of a 40% aqueous solution of isopropyl alcohol (based on 0.5% by weight of monomer) was added to the obtained emulsion, and the temperature of the monomer solution was maintained at 30 to 33 ° C., and nitrogen replacement was performed for 30 minutes. 0.35 g of a 10% aqueous solution of 2,2′-azobis [2- (5-methyl-2-imidazolin-2-yl) propane] dichloride (0.02% by weight based on a monomer) was added, and polymerization was performed. The reaction was started. Polymerization was carried out at a reaction temperature of 32 ± 2 ° C. for 12 hours to complete the reaction. After the polymerization, 10.0 g of polyoxyethylene tridecyl ether (2.0% by weight with respect to the liquid) was added and mixed as a phase inversion agent to the produced water-in-oil emulsion to prepare a sample (sample-1) to be subjected to the test. . The weight average molecular weight was measured with a molecular weight measuring device (DLS-7000 manufactured by Otsuka Electronics Co., Ltd.) based on static light scattering. Table 1 shows the results.
[0046]
(Synthesis Example 2) In a reaction vessel equipped with a stirrer and a temperature controller, 120.0 g of isoparaffin having a boiling point of 190 ° C to 230 ° C, 6.0 g of sorbitan monooleate, and polyricinoleic acid / polyoxyethylene block copolymer 0 0.6 g was charged and dissolved. Separately, 32.0 g of deionized water, 184.4 g of an 80% aqueous solution of acryloyloxyethyltrimethylammonium chloride (hereinafter abbreviated as DMQ), 27.0 g of a 50% aqueous solution of acrylamide (abbreviated as AAM), and a polyfunctional aqueous solution prepared in Synthesis Examples 1.1 g of a 60% aqueous solution of a conductive polycation monomer (0.4% by weight based on the monomer) was separately collected and added to the acrylic acid solution to completely dissolve it. Further, the pH was adjusted to 4.35, the oil and the aqueous solution were mixed, and the mixture was emulsified with stirring at 1000 rpm for 15 minutes using a homogenizer. The monomer composition at this time is DMQ / AAM = 80/20 (mol%).
[0047]
To the obtained emulsion, 2.4 g of a 40% aqueous solution of isopropyl alcohol (0.6% by weight with respect to the monomer) was added, the temperature of the monomer solution was maintained at 30 to 33 ° C., and nitrogen replacement was performed for 30 minutes. 0.35 g of a 10% aqueous solution of 2,2′-azobis [2- (5-methyl-2-imidazolin-2-yl) propane] dichloride (0.02% by weight based on a monomer) was added, and polymerization was performed. The reaction was started. Polymerization was carried out at a reaction temperature of 32 ± 2 ° C. for 12 hours to complete the reaction. After polymerization, 10.0 g of polyoxyethylene tridecyl ether (2.0% by weight with respect to the solution) was added and mixed as a phase inversion agent to the resulting water-in-oil emulsion to prepare a sample (sample-2) to be subjected to the test. . Table 1 shows the results.
[0048]
(Synthesis Example 3) A water-in-oil amphoteric polymer having a composition of DMQ / AAC / AAM = 60/20/20 (sample-3) (mol%) by the same operation as in Example 1 or Example 2. An emulsion was synthesized. The composition is shown in Table 1 and the results are shown in Table 2.
[0049]
(Synthesis Example 4) Methacrylol in a 500 mL four-necked flask equipped with a thermometer, a stirrer, a nitrogen introduction tube, a monomer supply tube connected to a peristaltic pump (SMP-21, manufactured by Tokyo Rika Instruments) and a condenser. 46.3 g of an 80% aqueous solution of oxyethyltrimethylammonium chloride (hereinafter abbreviated as DMC), 60.5 g of an 80% aqueous solution of acryloyloxyethyltrimethylammonium chloride (hereinafter abbreviated as DMQ), and acrylic acid (hereinafter abbreviated as AAC) ), 36.5 g of a 50% aqueous solution of acrylamide (hereinafter abbreviated as AAM), 173.1 g of ion-exchanged water, 125.0 g of ammonium sulfate, and acryloyloxyethyltrimethylammonium chloride homopolymer as a dispersant 30.0 g (20% by weight liquid, viscosity 6450 mPa. ) Was adjusted to 3.3 and the pH were charged respectively. At this time, the mol% of each monomer is DMC / DMQ / AAC / AAM = 25/35/20/20. Next, the temperature in the reactor was maintained at 30 ± 2 ° C., and after purging with nitrogen for 30 minutes, 2,2′-azobis [2- (5-methyl-2-imidazolin-2-yl) propane] was used as an initiator. 1.0 g of a 1% aqueous solution of hydrogen dichloride (0.01% based on monomer) was added to initiate polymerization. When the internal temperature was kept at 30 ± 2 ° C. and the reaction was carried out for 7 hours from the start of the polymerization, the above initiator was added in an amount of 0.01% relative to the monomer, and the reaction was carried out for a further 7 hours to complete the reaction. The resulting dispersion had a penetration monomer concentration of 20%, a polymer particle size of 10 μm or less, and a viscosity of the dispersion of 750 mPa · s. Further, the weight average molecular weight was measured by a molecular weight measuring device (DLS-7000 manufactured by Otsuka Electronics Co., Ltd.) by a static light scattering method. This sample is referred to as Sample-6. The results are shown in Tables 1 and 2.
[0050]
(Synthesis Examples 5 to 6) By the same operation as in Synthesis Example 4, the dispersion polymer product in salt aqueous solution DMQ / AAM = 80/20 (sample-5), DMQ / AAC / AAM = 60/20/20 (sample-6) ) Was synthesized.
[0051]
(Synthesis Examples 7 and 8) The water-in-oil emulsion before addition of the hydrophilic surfactant prepared in Synthesis Examples 2 and 3 was dried by a spray dryer to obtain a powdered product. The composition is shown in Table 1 and the results are shown in Table 2.
[0052]
(Synthesis Examples 9 to 11) At the time of polymerization, DMQ / AAC / AAM = 60/20/20 by the same operation as in Synthesis Examples 1 to 6, except that a monomer having a plurality of vinyl groups was not added. , A water-in-oil amphoteric polymer emulsion (Sample-9), a dispersion polymerized product in salt water (Sample-10), and a spray-dried product (Sample-11).
[0053]
(Synthesis Example 12: Anionic water-soluble polymer dispersion) In a four-necked 500 ml separable flask equipped with a stirrer, a reflux condenser, a thermometer, and a nitrogen inlet tube, deionized water: 107.7 g, ammonium sulfate 26.8 g, 17.9 g of sodium sulfate, 32.7 g of 60 acrylic acid and 90.3 g of 50% acrylamide were added, and 16 mol% of acrylic acid was neutralized with 5.8 g of 30% by weight sodium hydroxide. Also, 18.9 g of a 15% by weight methacrylic acid / acrylamide 2-methylpropanesulfonic acid = 3/7 (molar ratio, neutralizing 90 mol% of the acid) copolymer aqueous solution (solution viscosity 42, 600 mPa · s) was added. did. Thereafter, nitrogen is introduced from a nitrogen introduction tube while stirring to remove dissolved oxygen. During this time, the internal temperature is adjusted to 30 ° C. by a constant temperature water bath. Thirty minutes after the introduction of nitrogen, 0.9 g of a 0.1 wt% aqueous solution of ammonium peroxodisulfate and 0.1 wt% of an aqueous solution of ammonium bisulfite were added in this order to initiate polymerization. Three hours after the start of the polymerization, 0.6 g of the initiator was added, and the reaction was completed in 15 hours. The molar ratio of acrylic acid to acrylamide in this sample was 30:70, and the viscosity was 200 mPa · s. As a result of microscopic observation, it was found that the particles had a size of 5 to 20 μm. The weight-average molecular weight measured was 10,000,000. This is designated as anionic water-soluble polymer-A.
[0054]
[Table 1]
Figure 2004057837
DMC: methacryloxyethyltrimethylammonium chloride DMQ: acryloxyethyltrimethylammonium chloride, AAC: acrylic acid, AAM: acrylamide, PCC; polycationic crosslinking agent,
MBA; methylene bisacrylamide, cross-linking agent:% by weight of monomer,
E: Emulsion product, D: Dispersion product, SD: Spray-dried product
[Table 2]
Figure 2004057837
Product viscosity: mPa · s, molecular weight: 10,000 E: emulsion product, D: dispersion product, SD: spray-dried product
[Examples 1 to 8]
200 mL of municipal sewage digested sludge exhibiting physical properties of pH 7.52 and a total ss content of 25,000 mg / L is collected in a polybeaker, and has a crosslinkable water-soluble ionic polymer shown in Table 3 and a plurality of vinyl groups. A mixture of water-soluble ionic polymers synthesized without adding a monomer, M-1 to M-8, was added to the sludge solids at 3000 ppm, and the mixture was transferred to a beaker and stirred 10 times. The solution was filtered through a 1179 L filter cloth (made of nylon), and the filtrate amount after 30 seconds was measured. The filtered sludge is dewatered at a press pressure of 2 kg / m2 for 1 minute. Thereafter, the releasability of the filter cloth was visually checked, and the water content of the cake (dried at 105 ° C. for 20 hours) was measured. Table 4 shows the results.
[0057]
[Table 3]
Figure 2004057837
Mixing ratio; weight ratio
[Comparative Examples 1 to 6]
Using comparative samples CM-1 to CM-6 shown in Table 3, the same test operation as in Examples 1 to 8 was performed. Table 4 shows the results.
[0059]
[Table 4]
Figure 2004057837
After 30 seconds, the filtrate volume: ml, the water content of the cake:% by weight
Filter cloth releasability: Good is shown in the order of △>×> ×.
[0060]
Embodiments 9 to 16
Next, municipal sewage mixed raw sludge having a pH of 6.60 and a total ss content of 32,500 mg / L was used as an analysis value of test water. 200 mL was collected in a polybeaker, and a blend of a water-soluble ionic polymer synthesized without adding a crosslinkable water-soluble ionic polymer and a monomer having a plurality of vinyl groups shown in Table 3, M-1 M-8 was added to sludge with a solid content of 2500 ppm, and the mixture was transferred to a beaker and stirred 10 times. Next, 2500 ppm of solid content with respect to sludge was added to the anionic water-soluble polymer A-1 of Synthesis Example 12, and the mixture was transferred to a beaker, stirred 10 times, and filtered through a T-1179L filter cloth (made of nylon). After 30 seconds, the filtrate volume was measured. The filtered sludge is dewatered at a press pressure of 2 kg / m2 for 1 minute. Thereafter, the releasability of the filter cloth was visually checked, and the water content of the cake (dried at 105 ° C. for 20 hours) was measured. Table 5 shows the results.
[0061]
[Comparative Examples 7 to 12]
The same test operation as in Examples 9 to 16 was performed using comparative samples CM-1 to CM-6. Table 5 shows the results.
[0062]
[Table 5]
Figure 2004057837
After 30 seconds, the filtrate volume: ml, the water content of the cake:% by weight
Filter cloth releasability: Good is shown in the order of △>×> ×.
[0063]
Examples 17 to 24
200 ml of papermaking sludge, pH 6.15, total ss, 23,100 mg / L, 200 ml, collected from the pulp manufacturing process and the papermaking process of a papermaking company were collected in a poly-beaker. A blend of a water-soluble ionic polymer synthesized without adding a monomer having a plurality of vinyl groups, M-1 to M-8, was added to 0.2 of a dry solid solution, and transferred to a beaker. After stirring 10 times, the mixture was filtered with a T-1179L filter cloth (made of nylon), and the amount of the filtrate after 30 seconds was measured. The filtered sludge is dewatered for 1 minute at a press pressure of 4 kg / m2. Thereafter, the cake was measured for filter releasability and cake moisture content (dried at 105 ° C. for 20 hours). Table 6 shows the results.
[0064]
[Comparative Examples 13 to 18]
The same test operation as in Examples 17 to 24 was performed using comparative samples CM-1 to CM-6. Table 6 shows the results.
[0065]
[Table 6]
Figure 2004057837
After 30 seconds, the filtrate volume: ml, the water content of the cake:% by weight
Filter cloth releasability: Good is shown in the order of △>×> ×.
[0066]
Examples 25 to 29
Medium-grade papermaking raw material consisting of mechanical pulp, LBKP and waste flyer (pH 5.82, turbidity 1250 FAU, total ss 3.05%, ash content 0.25%, cation demand 0.055 meq / L, zeta potential -9 mV ) 100 mL was collected and set on a stirrer. Samples -9 to -19 in Table 7 were synthesized by the same operation as in Synthesis Examples 1 to 8, and blended samples M-8 to M-3 shown in Table 8 were prepared. These samples are added at 300 ppm per ss and stirred at 500 rpm for 60 seconds. Then, the Whatman NO. The whole amount was filtered with a filter paper of 41 (90 mm), and the required amount of cation of the filtrate was measured with a PCD-03 model manufactured by Mu-Tech Co., Ltd., and the turbidity was measured with a HACH, DR2000P turbidimeter. Table 9 shows the results.
[0067]
[Comparative Examples 19 to 24]
The same test operation as in Examples 25 to 32 was performed using comparative samples CM-7 to CM-12. Table 9 shows the results.
[0068]
[Table 7]
Figure 2004057837
[0069]
[Table 8]
Figure 2004057837
Mixing ratio; weight ratio
[Table 9]
Figure 2004057837
Filtrate cation requirement: meq / L
Filtrate turbidity: FAU
[0071]
Examples 30 to 37
Using deinked waste paper and mechanical pulp as the main components, and using medium-grade paper raw material (pH 6.8, total ss 2.160%, ash content 0.25%) blended with LBKP, tap water with a pulp concentration of 0.9% by weight And the yield was measured by a dilution and Brit type dynamic jaw tester. First, 1.5% of a liquid sulfuric acid band was added, and then M-1 to M-8 in Table 3 were added to 0.020% of a papermaking raw material, and the anionic water-soluble polymer-A produced in Synthesis Example 12 was added to a papermaking paper. 0.020% of a raw material was added. The order of addition of the chemicals is as described above under the following test conditions at intervals of 15 seconds, and stirring is started. The pH after all the chemicals were added was 5.60. After 30 seconds, the white water was discharged for 10 seconds, the white water was collected for 30 seconds, and the total yield was measured under the following conditions. The stirring conditions were as follows: p. m, wire 125P screen (equivalent to 200 mesh), total yield (SS concentration) is ADVANTEC, NO. It filtered after 2 and measured. After drying the filter paper, the filter paper was incinerated at 800 ° C. and the ash content was measured to calculate the inorganic substance yield. Further, in order to confirm the formation of the paper when all the above-mentioned chemicals were added and the paper was formed, a paper having a dry basis weight of 60 g / m2 was formed with a tappi standard sheet machine (1/50 m2), dried, and visually observed. The formation was observed at. Table 10 shows the above results.
[0072]
[Comparative Examples 20 to 25]
The same test operation as in Examples 30 to 37 was performed using comparative samples CM-1 to CM-6. Table 10 shows the results.
[0073]
Embodiments 38 to 45
Using a raw material (pH 6.10, total ss content 2.25%, ash content 0.40%) for the production of high quality paper mainly composed of LBKP as a sample, dilute it with tap water to a pulp concentration of 0.9% by weight, The yield was measured by a brit type dynamic jaw tester. As additives, cationic starch, 0.5% by weight of papermaking raw material (the same applies hereinafter), light calcium carbonate, 20%, neutral rosin size, 0.2%, sulfate band 1.0%, M- The samples shown in Table 1 are added under the following test conditions at intervals of 15 seconds in the order of 1 to M-8 at 0.025% each, and stirring is started. The pH after all the chemicals were added was 6.87. After 30 seconds, the white water was discharged for 10 seconds, the white water was collected for 30 seconds, and the total yield was measured under the following conditions. The stirring conditions were as follows: p. m. , Wire 125P screen (equivalent to 200 mesh), total yield (SS concentration) is ADVANTEC NO. It filtered after 2 and measured. After drying, the filter paper was incinerated at 600 ° C., and the ash content was measured to calculate the calcium carbonate yield. Table 11 shows the results.
[0074]
[Comparative Examples 26 to 31]
The same test operation as in Examples 38 to 45 was performed using comparative samples CM-1 to CM-6. Table 11 shows the results.
[0075]
[Table 10]
Figure 2004057837
Total yield; wt%, inorganic yield; wt%
[0076]
[Table 11]
Figure 2004057837
Total yield; wt%, inorganic yield; wt%

Claims (11)

下記一般式(1)及び/又は(2)で表される単量体5〜99.999モル%、下記一般式(3)で表される単量体0〜50モル%、水溶性非イオン性単量体0〜95モル%及び複数のビニル基を有する単量体0.001〜1モル%からなる単量体混合物を重合した架橋性水溶性イオン性高分子(A)と、前記複数のビニル基を有する単量体の非存在下で、下記一般式(1)及び/又は(2)で表される単量体5〜100モル%、下記一般式(3)で表される単量体0〜50モル%及び水溶性非イオン性単量体0〜95モル%からなる単量体(混合物)を重合した水溶性イオン性高分子(B)とを組み合わせた凝集処理剤。
Figure 2004057837
一般式(1)
R1は水素又はメチル基、R2、R3は炭素数1〜3のアルキルあるいはアルコキシル基、R4は水素、炭素数1〜3のアルキル基、アルコキシル基あるいはベンジル基であり、同種でも異種でも良い、Aは酸素またはNH、Bは炭素数2〜4のアルキレン基またはアルコキシレン基を表わす、X1は陰イオンをそれぞれ表わす。
Figure 2004057837
一般式(2)
R5は水素又はメチル基、R6、R7は炭素数1〜3のアルキル基、アルコキシル基あるいはベンジル基、X2は陰イオンをそれぞれ表わす
Figure 2004057837
一般式(3)
R8は水素、メチル基またはカルボキシメチル基、QはSO3、C6H4SO3、
CONHC(CH3)2CH2SO3、C6H4COOあるいはCOO、R9は水素またはCOOY2、Y1あるいはY2は水素または陽イオン
5-99.999 mol% of a monomer represented by the following general formula (1) and / or (2), 0-50 mol% of a monomer represented by the following general formula (3), water-soluble nonionic A cross-linkable water-soluble ionic polymer (A) obtained by polymerizing a monomer mixture comprising 0 to 95 mol% of a water-soluble monomer and 0.001 to 1 mol% of a monomer having a plurality of vinyl groups; In the absence of a monomer having a vinyl group, 5 to 100 mol% of a monomer represented by the following general formula (1) and / or (2), and a monomer represented by the following general formula (3) An aggregating agent obtained by combining a water-soluble ionic polymer (B) obtained by polymerizing a monomer (mixture) comprising 0 to 50 mol% of a monomer and 0 to 95 mol% of a water-soluble nonionic monomer.
Figure 2004057837
General formula (1)
R1 is hydrogen or a methyl group; R2 and R3 are alkyl or alkoxyl groups having 1 to 3 carbon atoms; R4 is hydrogen, an alkyl group, alkoxyl group or benzyl group having 1 to 3 carbon atoms; Represents oxygen or NH, B represents an alkylene group or an alkoxylene group having 2 to 4 carbon atoms, and X1 represents an anion, respectively.
Figure 2004057837
General formula (2)
R5 represents hydrogen or a methyl group; R6 and R7 represent an alkyl group having 1 to 3 carbon atoms, an alkoxyl group or a benzyl group; and X2 represents an anion.
Figure 2004057837
General formula (3)
R8 is hydrogen, a methyl group or a carboxymethyl group, Q is SO3, C6H4SO3,
CONHC (CH3) 2CH2SO3, C6H4COO or COO, R9 is hydrogen or COOY2, Y1 or Y2 is hydrogen or cation
前記架橋性水溶性イオン性高分子(A)が噴霧乾燥品であることを特徴とする請求項1に記載の凝集処理剤。The flocculating agent according to claim 1, wherein the crosslinkable water-soluble ionic polymer (A) is a spray-dried product. 前記複数のビニル基を有する単量体が、下記一般式(4)で表される多官能性水溶性ポリカチオン単量体であることを特徴とする請求項1あるいは2に記載の凝集処理剤。
Figure 2004057837
一般式(4)
R10〜R13は水素又はメチル基、X3、X4は陰イオン、pは0〜20の整数をそれぞれ表わす、ただしPは下記一般式(5)で表わされる。
Figure 2004057837
一般式(5)
14、15は水素、炭素数1〜3のアルキル基又はベンジル基、R16は水素又はメチル基、Gは炭素数2〜4のアルキレン基あるいはアルコキシレン基、Lは−O−又は−NH−、X5は陰イオン、
The aggregation treating agent according to claim 1 or 2, wherein the monomer having a plurality of vinyl groups is a polyfunctional water-soluble polycation monomer represented by the following general formula (4). .
Figure 2004057837
General formula (4)
R10 to R13 are hydrogen or a methyl group; X3 and X4 are anions; and p is an integer of 0 to 20, provided that P is represented by the following general formula (5).
Figure 2004057837
General formula (5)
R 14 and R 15 are hydrogen, an alkyl group or a benzyl group having 1 to 3 carbon atoms, R 16 is a hydrogen or methyl group, G is an alkylene group or an alkoxylene group having 2 to 4 carbon atoms, and L is -O- or-. NH-, X5 - is an anion,
前記多官能性水溶性ポリカチオン単量体がアンモニア、脂肪族第1級アミン、脂肪族第2級アミンから選択された一種以上のアミン類とエピハロヒドリンから生成した重縮合物とジアルキルアミノアルキル(メタ)アクリルアミドとの反応物であることを特徴とする請求項3に記載の凝集処理剤。The polyfunctional water-soluble polycation monomer is a polycondensate formed from epihalohydrin and one or more amines selected from ammonia, aliphatic primary amines and aliphatic secondary amines, and dialkylaminoalkyl (meth) 4. The aggregating agent according to claim 3, which is a reaction product with acrylamide. 請求項1〜4に記載の架橋性水溶性イオン性高分子(A)と前記水溶性イオン性高分子(B)とを組み合わせた凝集処理剤を有機汚泥に添加、凝集させた後、脱水機により脱水することを特徴とする汚泥脱水方法。A dehydrator after adding and coagulating an aggregating agent obtained by combining the crosslinkable water-soluble ionic polymer (A) and the water-soluble ionic polymer (B) according to claim 1 to organic sludge. A sludge dewatering method characterized by dewatering by sludge. 請求項1〜4に記載の架橋性水溶性イオン性高分子(A)と前記水溶性イオン性高分子(B)とを組み合わせた凝集処理剤を製紙スラッジに添加、凝集させた後、脱水機により脱水することを特徴とする製紙スラッジの脱水方法。A dewatering machine after adding and coagulating an aggregating agent obtained by combining the crosslinkable water-soluble ionic polymer (A) and the water-soluble ionic polymer (B) according to claim 1 to papermaking sludge. A method for dewatering papermaking sludge, characterized by dewatering the papermaking sludge. 請求項1〜4に記載の架橋性水溶性イオン性高分子(A)と前記水溶性イオン性高分子(B)とを組み合わせた凝集処理剤を抄紙前の製紙原料中に添加、処理することを特徴とする製紙原料の前処理方法。Addition and treatment of an aggregating agent obtained by combining the crosslinkable water-soluble ionic polymer (A) according to claim 1 and the water-soluble ionic polymer (B) into a papermaking raw material before papermaking. A pretreatment method for papermaking raw materials, characterized by the following. 請求項1〜4に記載の架橋性水溶性イオン性高分子(A)と前記水溶性イオン性高分子(B)とを組み合わせた凝集処理剤を、歩留向上及び/又は濾水性向上を目的として抄紙前の製紙原料中に添加し抄紙することを特徴とする製紙方法。An aggregating agent obtained by combining the crosslinkable water-soluble ionic polymer (A) and the water-soluble ionic polymer (B) according to claim 1 with the object of improving yield and / or drainage. A papermaking method comprising adding papermaking raw materials before papermaking to make paper. 請求項1〜4に記載の架橋性水溶性イオン性高分子(A)と前記水溶性イオン性高分子(B)とを組み合わせたからなる凝集処理剤と、無機及び/または有機のアニオン性物質と組み合わせて、歩留向上及び/又は濾水性向上を目的として、抄紙前の製紙原料中に添加し抄紙することを特徴とする製紙方法。An aggregating agent comprising a combination of the crosslinkable water-soluble ionic polymer (A) according to claim 1 and the water-soluble ionic polymer (B), and an inorganic and / or organic anionic substance. A papermaking method comprising adding to a papermaking raw material before papermaking for papermaking for the purpose of improving yield and / or drainage in combination. 前記アニオン性物質が、コロイダルシリカあるいはベントナイトであることを特徴とする請求項9に記載の製紙方法。The papermaking method according to claim 9, wherein the anionic substance is colloidal silica or bentonite. 前記アニオン性物質が、前記一般式(3)で表されるアニオン性単量体3〜100モル%と水溶性非イオン性単量体を0〜97モル%含有する単量体(混合物)を塩水溶液中、該塩水溶液に可溶な高分子分散剤共存下、分散重合法により製造された粒径100μm以下のアニオン性水溶性高分子からなる微粒子の分散液であることを特徴とする請求項9に記載の製紙方法。The anionic substance includes a monomer (mixture) containing 3 to 100 mol% of an anionic monomer represented by the general formula (3) and 0 to 97 mol% of a water-soluble nonionic monomer. A dispersion of fine particles made of an anionic water-soluble polymer having a particle size of 100 μm or less produced by a dispersion polymerization method in the presence of a polymer dispersant soluble in the salt aqueous solution in the salt aqueous solution. Item 10. The papermaking method according to Item 9.
JP2002215362A 2002-07-24 2002-07-24 Paper making method Expired - Fee Related JP4425528B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002215362A JP4425528B2 (en) 2002-07-24 2002-07-24 Paper making method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002215362A JP4425528B2 (en) 2002-07-24 2002-07-24 Paper making method

Publications (2)

Publication Number Publication Date
JP2004057837A true JP2004057837A (en) 2004-02-26
JP4425528B2 JP4425528B2 (en) 2010-03-03

Family

ID=31937415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002215362A Expired - Fee Related JP4425528B2 (en) 2002-07-24 2002-07-24 Paper making method

Country Status (1)

Country Link
JP (1) JP4425528B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004059748A (en) * 2002-07-30 2004-02-26 Hymo Corp Water-soluble polymer emulsion and method for using the same
WO2008015769A1 (en) * 2006-08-03 2008-02-07 Hymo Corporation Flocculant composition and process for producing the same
JP2009039653A (en) * 2007-08-09 2009-02-26 Hymo Corp Sludge dewatering method
JP2009072754A (en) * 2007-08-29 2009-04-09 Hymo Corp Method for dehydrating sludge
JP2009280925A (en) * 2008-05-20 2009-12-03 Hymo Corp Papermaking method
CN101608047A (en) * 2008-06-19 2009-12-23 荒川化学工业株式会社 Water-soluble polymer dispersion, paper strengthening agent, paper grade (stock) drainability rising agent and retention aid for paper making
JP2010159387A (en) * 2008-07-10 2010-07-22 Hymo Corp Powdery ionic water-soluble polymer, and use thereof
JP2010194446A (en) * 2009-02-25 2010-09-09 Hymo Corp Sludge dehydrating method
JP2011184818A (en) * 2010-03-08 2011-09-22 Hymo Corp Method for making acid-free newsprint paper
JP2013248583A (en) * 2012-06-01 2013-12-12 Hymo Corp Flocculant and wastewater treatment method
JP2014117625A (en) * 2012-12-13 2014-06-30 Hymo Corp Waste disposal method
CN109518523A (en) * 2017-09-20 2019-03-26 索马龙株式会社 Cationic fillers inorganic agent

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004059748A (en) * 2002-07-30 2004-02-26 Hymo Corp Water-soluble polymer emulsion and method for using the same
JP5103395B2 (en) * 2006-08-03 2012-12-19 ハイモ株式会社 Flocculant composition and method for producing the same
WO2008015769A1 (en) * 2006-08-03 2008-02-07 Hymo Corporation Flocculant composition and process for producing the same
JPWO2008015769A1 (en) * 2006-08-03 2009-12-17 ハイモ株式会社 Flocculant composition and method for producing the same
US7745529B2 (en) 2006-08-03 2010-06-29 Hymo Corporation Flocculant composition and method for manufacturing the same
JP2009039653A (en) * 2007-08-09 2009-02-26 Hymo Corp Sludge dewatering method
JP2009072754A (en) * 2007-08-29 2009-04-09 Hymo Corp Method for dehydrating sludge
JP2009280925A (en) * 2008-05-20 2009-12-03 Hymo Corp Papermaking method
CN101608047A (en) * 2008-06-19 2009-12-23 荒川化学工业株式会社 Water-soluble polymer dispersion, paper strengthening agent, paper grade (stock) drainability rising agent and retention aid for paper making
CN101608047B (en) * 2008-06-19 2014-10-29 荒川化学工业株式会社 Water-soluble polymer dispersion liquid, paper strengthening agent, drainability improving agent and retention agent for making paper
JP2010159387A (en) * 2008-07-10 2010-07-22 Hymo Corp Powdery ionic water-soluble polymer, and use thereof
JP2010194446A (en) * 2009-02-25 2010-09-09 Hymo Corp Sludge dehydrating method
JP2011184818A (en) * 2010-03-08 2011-09-22 Hymo Corp Method for making acid-free newsprint paper
JP2013248583A (en) * 2012-06-01 2013-12-12 Hymo Corp Flocculant and wastewater treatment method
JP2014117625A (en) * 2012-12-13 2014-06-30 Hymo Corp Waste disposal method
CN109518523A (en) * 2017-09-20 2019-03-26 索马龙株式会社 Cationic fillers inorganic agent

Also Published As

Publication number Publication date
JP4425528B2 (en) 2010-03-03

Similar Documents

Publication Publication Date Title
JP2004025094A (en) Flocculating and treating agent consisting of cross-linking, ionizable and water-soluble polymer and its use
KR101457740B1 (en) Inverse emulstion polymers containing a polymeric coagulant
JP5557366B2 (en) Ionic water-soluble polymer composed of powder, production method thereof and use thereof
JP3963361B2 (en) Aggregation treatment agent and method of using the same
KR100853926B1 (en) Amphoteric water-soluble polymer dispersion and use thereof
JP3936894B2 (en) Aggregation treatment agent and method of using the same
JP2004057837A (en) Flocculant and its usage
JP2007023146A (en) Ionic fine particle and application of the same
JP2010053234A (en) Powdered ionic water-soluble polymer and application thereof
JP3886098B2 (en) Sludge dewatering agent and sludge dewatering method
JP2004059747A (en) Water-soluble polymer emulsion and method for using the same
JP4167972B2 (en) Organic sludge dewatering method
JP2009072754A (en) Method for dehydrating sludge
JP3750082B2 (en) Amidine-based water-soluble polymer emulsion and method of using the same
JP3218578B2 (en) Organic sludge dehydrating agent, method for treating organic sludge, and method for producing organic sludge dehydrating agent
JP4064194B2 (en) Flocculant and method of using the same
JP4058305B2 (en) Water-soluble polymer emulsion
JP4047120B2 (en) Flocculant and method of using the same
EP1418194A1 (en) Modified polyalkyleneimine and methods of using the same
JP3707669B2 (en) Method for producing water-in-oil polymer emulsion
JP3681143B2 (en) High salt concentration sludge dewatering agent and sludge dewatering method
JP2004250807A (en) Method for making paper
JP2004044015A (en) Method for using water-soluble polymer dispersion
JP2004044011A (en) Method for using water-soluble polymer dispersion
JP4433434B2 (en) Organic sludge dewatering method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091209

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151218

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees