JPS62285395A - Dc driven thin film el device - Google Patents

Dc driven thin film el device

Info

Publication number
JPS62285395A
JPS62285395A JP61127564A JP12756486A JPS62285395A JP S62285395 A JPS62285395 A JP S62285395A JP 61127564 A JP61127564 A JP 61127564A JP 12756486 A JP12756486 A JP 12756486A JP S62285395 A JPS62285395 A JP S62285395A
Authority
JP
Japan
Prior art keywords
thin film
driven
oxide
light
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61127564A
Other languages
Japanese (ja)
Inventor
富造 松岡
任田 隆夫
洋介 藤田
雅博 西川
純 桑田
阿部 惇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61127564A priority Critical patent/JPS62285395A/en
Publication of JPS62285395A publication Critical patent/JPS62285395A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 3、発明の詳細な説明 産業上の利用分野 本発明は直流駆動薄膜EL素子に関し、とシわけ、コン
トラストおよび安定性に優れ、駆動が容易な直流駆動薄
膜EL素子に関する。
Detailed Description of the Invention 3. Detailed Description of the Invention Industrial Application Field The present invention relates to a DC-driven thin-film EL device, and particularly relates to a DC-driven thin-film EL device that has excellent contrast and stability and is easy to drive. .

従来の技術 ]ンピュータ端末等に用いるフラットパネルディスプレ
イとして、交流駆動薄膜EL素子が盛んに研究されてい
る。従来このような薄膜EL素子は、ガラス基板上にイ
ンジラム、スズG晶酸化物(以後IT○と記す)からな
る透明電極、酸化イツトリウム、酸化チタニウム、チタ
ン酸ストロンチウム、酸化タンタル、酸化珪素、酸化ア
ルミニウムおよび窒化珪素等からなる第1誘電体層、マ
ンガン、テルビウムおよびサマリウム等を添加した硫化
亜鉛からなる螢光体層、第1誘電体層と同材質から成る
第2誘電体層、およびアルミニウム薄膜からなる背面篭
筒を順次積層した構造を有するものである。
BACKGROUND OF THE INVENTION AC-driven thin film EL devices are being actively researched as flat panel displays used in computer terminals and the like. Conventionally, such a thin film EL element has a transparent electrode made of indilum, tin G crystal oxide (hereinafter referred to as IT○) on a glass substrate, yttrium oxide, titanium oxide, strontium titanate, tantalum oxide, silicon oxide, aluminum oxide. and a first dielectric layer made of silicon nitride, a phosphor layer made of zinc sulfide doped with manganese, terbium, samarium, etc., a second dielectric layer made of the same material as the first dielectric layer, and a thin aluminum film. It has a structure in which rear baskets are sequentially stacked.

ドツトマトリックスを形成するためにITo電極とアル
ミニウム電極はストライプ状に加工され、互いに直交し
ている。この両電極間に交流パルス電圧を印加すること
により、両電唖にはさまれた交点を発光せしめ、文字や
図形を表示する。かかる交流、駆動薄膜EL素子は、輝
度が高く、長時間に渡り安定に動作するという大きな特
徴を有するが、動作電圧が高くまた交流パルスで駆動す
るため、駆動回路が複雑になシ高価なものとなる欠点が
あった。また輝度変調がしにくいという欠点もあった。
To form a dot matrix, the ITo electrodes and aluminum electrodes are processed into stripes and are orthogonal to each other. By applying an alternating current pulse voltage between the two electrodes, the intersection between the two electrodes is made to emit light, thereby displaying characters and figures. Such AC-driven thin-film EL elements have the great characteristics of high brightness and stable operation over long periods of time, but because they have a high operating voltage and are driven by AC pulses, the driving circuit is complicated and expensive. There was a drawback. Another drawback was that it was difficult to modulate the brightness.

これに対し直流駆動薄膜EL素子は、誘電体層を用いず
EL発光体層を直接電極で挟んだ構成のものや、誘電体
層のかわシに抵抗体層や半導体層を用いた構成のものが
試作されている(特開昭59−181485号公報)。
On the other hand, DC-driven thin-film EL devices have a structure in which the EL light emitting layer is directly sandwiched between electrodes without using a dielectric layer, or a structure in which a resistor layer or a semiconductor layer is used in place of the dielectric layer. has been prototyped (Japanese Unexamined Patent Publication No. 181485/1985).

直流駆動薄膜EL素子は、マトリックス型表示装置を構
成した場合、駆動回路が単純で低コストの表示装置が可
能となり、輝度変調も容易であるという特徴を有する。
A DC-driven thin film EL element has the characteristics that when a matrix type display device is configured, a low-cost display device with a simple drive circuit is possible, and brightness modulation is easy.

発明が解決しようとする問題点 直流、駆動薄膜EL素子は前記のような長所を有するが
、安定性に欠けるという欠点がある。つまり電圧を印加
して素子を発光させた時、絶縁破壊が生じ易く、長時間
駆動した場合、絵素欠けや断線が発生するという問題点
があった。また薄膜EL素子は交流および直流1駆動タ
イプ両方とも一般にコントラストが悪いが、本発明は直
流駆動EL素子のコントラストも改善するものである。
Problems to be Solved by the Invention Although the direct current driven thin film EL device has the above-mentioned advantages, it has the drawback of lacking stability. In other words, when a voltage is applied to cause the device to emit light, dielectric breakdown is likely to occur, and when the device is operated for a long time, there are problems in that pixel elements are missing or wire breaks occur. Furthermore, thin film EL elements generally have poor contrast in both AC and DC single drive types, but the present invention also improves the contrast of DC driven EL elements.

問題点を解決するだめの手段 透明電極とEL発光体層と、Mn2O3酸化物薄膜から
なる電流制御層と、背面電極とを順次配置した構成の素
子とする。
Means for Solving the Problems An element is constructed in which a transparent electrode, an EL light emitter layer, a current control layer made of a thin Mn2O3 oxide film, and a back electrode are arranged in sequence.

作  用 Mn O酸化物薄膜は抵抗率として3×1Q8Ω−aの
値を持ち、また絶縁破壊電界強度も大きく長期間に渡り
安定な抵抗体として動作する。その結果、直流駆動EL
素子の電流制御層として用いることにより、長期間に渡
り安定に発光する直流EL素子が可能となる。
Function: The MnO oxide thin film has a resistivity of 3×1Q8Ω-a, and also has a large dielectric breakdown field strength and operates as a stable resistor for a long period of time. As a result, the DC drive EL
By using it as a current control layer of the device, it becomes possible to create a DC EL device that emits light stably over a long period of time.

またこの材料は黒褐色を呈し、約1 X 105(m−
1の大きい光吸収係数を有するので、外光を効果的に吸
収し、パネルの外光反射率を低減してコントラストの高
い素子を形成することができる。
This material also exhibits a blackish brown color and has a thickness of about 1 x 105 (m-
Since it has a large light absorption coefficient of 1, it can effectively absorb external light, reduce the external light reflectance of the panel, and form an element with high contrast.

実施例 第1図に本発明の薄膜EL素子の断面図を示す。Example FIG. 1 shows a cross-sectional view of the thin film EL device of the present invention.

コーニングア059ガラスからなるガラス基板1に、ス
パッタリング法により厚さ200OAの錫添加駿化イン
ジウム博膜(IrO2膜と駁後略記)を形成し、ホトリ
ングラフィ技術によりストライプ状に加工し透明電極2
とした。その上にマンガンと硫化亜鉛との共蒸着性によ
り、基板温度200゛Cで厚さ4o00人のマンガン添
加硫化亜鉛薄膜から成るEL発光体層3を形成した。そ
の後真空中、450’Cで1時間熱処理を行い、EL発
光体層3の活性化を行った。
A tin-doped indium nitride film (abbreviated as IrO2 film) with a thickness of 200 OA is formed on a glass substrate 1 made of Corning A059 glass by a sputtering method, and is processed into a stripe shape by a photolithography technique to form a transparent electrode 2.
And so. Thereon, due to co-evaporation of manganese and zinc sulfide, an EL phosphor layer 3 consisting of a manganese-added zinc sulfide thin film having a thickness of 4000 was formed at a substrate temperature of 200°C. Thereafter, heat treatment was performed in vacuum at 450'C for 1 hour to activate the EL light emitting layer 3.

その上にM n 203の酸化物薄膜からなる電流制御
層4を形成した。以下その作成法や特性に一ついて説明
する。
A current control layer 4 made of a M n 203 oxide thin film was formed thereon. The method for making it and its characteristics will be explained below.

出発原料としてMn2O3を使用すればよいが、より入
手し易いMnCO3を用いて、これを空気中、1100
〜1250’Cで加熱してMn2O3ターゲ、71−を
作成した。池に出発原料としてMnC2O4やM n 
(OH)2も用い得る。RFマガネトロンス・<ツタ装
置を用い、前記ターゲットを基板温度200゛CAr 
ガス圧3 X 10−2Torrでスパノタレ、厚さ2
O00人の薄膜を形成した。薄膜は黒褐色を呈し、約3
X1Q8Ω・菌の比抵抗を持つ、従って2000Åの膜
厚で、1.5X10 !η勺となる。また光吸収係数は
EL素子のコントラストをあげるために望まれる約10
50I+=の値が光波長6000人で得られた。スパッ
タリング条件の基板温度、ガス圧は上記のたうに通常よ
く用いられる2Oo″G、  ′3X10  Torr
前後でよく、抵抗率や光吸収係数に大きな影響がないの
で適当に選び得る。Arガス中に酸素を混入してもよい
が、M n 203がP型の半導性を示すので抵抗率が
下るが、本発明の電荷制御層として抵抗率範囲が広いの
でさしつかえない。しかし下地の螢光体層へのスパッタ
リング時の酸素プラズマによる悪影響があるので酸素混
入は行わない方がよい。更にArのみのガスの方が酸素
を混合した場合よりもスパッタリングレートが高いので
、薄膜作成上効率的であるし、同じ特性のM n 20
3薄膜を再現性良く作成できる。薄膜はX線回折で調べ
ると微粒子の多結晶体からなっておシ、ASTMカード
10−69および24−508にパターンが一致し、ガ
ンマタイプのMn2O3とは異る。
Mn2O3 may be used as a starting material, but MnCO3, which is easier to obtain, is used and heated in air at 1100 °C.
The Mn2O3 target, 71-, was created by heating at ~1250'C. MnC2O4 and Mn are used as starting materials in the pond.
(OH)2 may also be used. The target was heated to a substrate temperature of 200° CAr using an RF magnetron
Spano sauce at gas pressure 3 x 10-2 Torr, thickness 2
A thin film of 000 people was formed. The thin film is blackish brown and about 3
It has a specific resistance of X1Q8Ω・bacteria, so with a film thickness of 2000Å, it is 1.5X10! It becomes η. In addition, the light absorption coefficient is about 10, which is desired to increase the contrast of the EL element.
A value of 50I+= was obtained at a light wavelength of 6000 people. The substrate temperature and gas pressure of the sputtering conditions are 2Oo''G, '3X10 Torr, which are commonly used as mentioned above.
It can be selected as desired since it does not have a large effect on resistivity or light absorption coefficient. Oxygen may be mixed into the Ar gas, but since M n 203 exhibits P-type semiconductivity, the resistivity decreases, but this is not a problem because the charge control layer of the present invention has a wide resistivity range. However, since oxygen plasma during sputtering has an adverse effect on the underlying phosphor layer, it is better not to mix oxygen. Furthermore, since the sputtering rate is higher when using Ar only gas than when oxygen is mixed, it is more efficient in terms of forming a thin film, and M n 20 with the same characteristics.
3 Thin films can be created with good reproducibility. When examined by X-ray diffraction, the thin film was found to be composed of polycrystalline particles with a pattern matching ASTM cards 10-69 and 24-508 and different from gamma type Mn2O3.

以上のようにして電流制御層を形成した後、最後に厚さ
2000人のアルミニウムを真空蒸着し、ホトリソグラ
フィ技術によ5ITO透明電極とは直交する方向のスト
ライプ状の背面電極5を形成し、薄膜EL素子を完成し
た。
After forming the current control layer as described above, finally, aluminum is vacuum-deposited to a thickness of 2,000 yen, and a striped back electrode 5 in a direction perpendicular to the 5ITO transparent electrode is formed by photolithography. A thin film EL device was completed.

全く同じ構成で、ただし電流制御層のみ従来からよく知
られている2000人の厚さのT a 2 Os薄は変
えたEL素子も比較のため作成した。T a、、05薄
膜はTa金属ターゲットを用いAr+02雰囲気中で活
性スパッタリング法によ多形成し、直流EL素子用とし
て作成条件を最適化したものである。
For comparison, an EL element was also fabricated with exactly the same configuration, except that the current control layer was made of a thin Ta 2 Os with a thickness of 2000 mm, which is well known in the art. The Ta,.05 thin film was formed by active sputtering using a Ta metal target in an Ar+02 atmosphere, and the manufacturing conditions were optimized for use in a DC EL device.

本発明のEL素子を背面電極6をプラスとして第2図に
示すようなデユティ11520 、周波数60円、パル
ス巾32μsのパルスで線順次駆動を行ったところ第3
図に示すような輝度電圧特性が得られた。EL素子の発
光部分は全面積の64多に相当し、発光、非発光部分を
含んだ平均輝度を示しである。5sVより立上り76V
で50Cd/m2+7)実用的輝度を得た。、75Vで
1000時間駆動した後の輝度変化特性を破線で示した
。図に示されたようにその変化は小さく76■で輝度が
12%低くなるのみで、1000時間の駆動中安定に動
作し、何ら絶縁破壊による電極断線を示さなかった。ま
た本発明のEL素子では電流制御層を螢光体とアルミニ
ラ・ム背面電楓との間に設けたが黒色なので、特にアル
ミニウム電極による外光反射が効果的に防止され、外光
反射率が7%と低かった。従って高コントラス)EL素
子が得られる。
When the EL element of the present invention was driven line-sequentially with pulses with a duty of 11520, a frequency of 60 yen, and a pulse width of 32 μs as shown in FIG.
The brightness voltage characteristics shown in the figure were obtained. The light-emitting portion of the EL element corresponds to 64% of the total area, and the figure shows the average brightness including the light-emitting and non-light-emitting portions. 76V rising from 5sV
A practical luminance of 50 Cd/m2+7) was obtained. The brightness change characteristic after driving at 75V for 1000 hours is shown by a broken line. As shown in the figure, the change was small, with only a 12% decrease in brightness at 76 cm, and the device operated stably for 1,000 hours without exhibiting any electrode breakage due to dielectric breakdown. In addition, in the EL element of the present invention, the current control layer is provided between the phosphor and the aluminum backside electrode, and since it is black, the reflection of external light by the aluminum electrode is effectively prevented, and the external light reflectance is reduced. It was as low as 7%. Therefore, a high contrast EL element can be obtained.

一方T a 205薄膜を用いた従来型のEI、素子は
etsVより発光が立上υ、本発明の黒褐色電流制御層
の場合と異り、透明でかつアルミニウム背面電極での発
光の反射も効いているため85vで80cd/rr12
の輝度が得られるが、同様に1000時間、asVで駆
動を行ったところ60%に輝度が低下し、部分的に断線
も生じた。また外光反射率は67係と高い。もし20Q
cd/m2の外光光源が素子の表面で正反射したとした
ら、本発明の素子は50cdAの輝度で3.6:1のコ
ントラストが得られる。一方上記従来型EL素子は輝度
が80c d/m’でも0.6:1と非常に小さい。
On the other hand, in the conventional EI device using the T a 205 thin film, the light emission rises from etsV, and unlike the case of the black-brown current control layer of the present invention, it is transparent and the reflection of the light emission by the aluminum back electrode is also effective. 80cd/rr12 at 85v due to
However, when similarly driven at asV for 1000 hours, the brightness decreased to 60% and some wire breakage occurred. Also, the external light reflectance is as high as 67. If 20Q
If an external light source of cd/m 2 is specularly reflected on the surface of the device, the device of the present invention provides a contrast of 3.6:1 at a luminance of 50 cdA. On the other hand, the conventional EL element has a luminance of 0.6:1, which is extremely low even when the luminance is 80 c d/m'.

以上説明したように本発明の直流薄膜EL素子は従来例
に比較し、より安定な輝度電圧特性、駆動安定性および
よシ優れたコントラスト特性を持つ。
As explained above, the DC thin film EL element of the present invention has more stable brightness voltage characteristics, drive stability, and better contrast characteristics than the conventional example.

更にEL発光層としては上記マンガン添加盪化亜鉛以外
に、テルビウム、サマリウムはどの希土類元素を添加し
た硫化亜鉛や、同じく希土類元素を添加した硫化カルシ
ウムや硫化ストロンチウムを用いても安定に動作する高
コントラストの直流駆動薄膜EL素子を作成することが
できた。
Furthermore, for the EL emitting layer, in addition to the manganese-doped zinc oxide mentioned above, terbium and samarium can be used, as well as zinc sulfide added with any rare earth element, calcium sulfide or strontium sulfide also added with rare earth elements, and it has a high contrast that operates stably. We were able to create a DC-driven thin film EL device.

発明の効果 本発明によれば、コントラストが高<、&M間に渡り安
定に駆動できる直流駆動薄膜EL素子を形成することが
できる。直流駆動型であるため、輝度階調制御が容易で
、駆動回路も低コストで構成でき、素子の構成も単純で
あるので、廉価な視認性が優れた薄型ディスプレイとし
て実用が可能がある。
Effects of the Invention According to the present invention, it is possible to form a DC-driven thin film EL element that can be stably driven over the range of high contrast and &M. Since it is a DC drive type, brightness gradation control is easy, the drive circuit can be configured at low cost, and the element configuration is simple, so it can be put to practical use as an inexpensive thin display with excellent visibility.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における直流、嘔動博膜EL
素子の断面図、第2図は素子の駆動に用いた直流パルス
を示す波形図、第3図は本発明の素子の輝度電圧特性を
示すグラフである。 1・・・・・・ガラス基板、2・・・・・・透明電極、
3 ・・EL発光体層、4・・・・・・電流制御層、5
・・背面電画。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 第3図 亀ミ(V)
FIG. 1 shows a direct current, oscillating membrane EL in one embodiment of the present invention.
FIG. 2 is a sectional view of the device, FIG. 2 is a waveform diagram showing DC pulses used to drive the device, and FIG. 3 is a graph showing the brightness voltage characteristics of the device of the present invention. 1...Glass substrate, 2...Transparent electrode,
3...EL light emitter layer, 4...Current control layer, 5
・・Back electrographic image. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 3 Kamemi (V)

Claims (2)

【特許請求の範囲】[Claims]  (1)透明電極と、EL発光体層と、Mn_2O_3
酸化物薄膜からなる電流制御層と、背面電極とを順次配
置して構成されたことを特徴とする直流駆動薄膜EL素
子。
(1) Transparent electrode, EL emitter layer, Mn_2O_3
A direct current driven thin film EL device characterized in that it is constructed by sequentially arranging a current control layer made of an oxide thin film and a back electrode.
 (2)熱分解により酸化物になるMn化合物を空気中
で熱処理をしてMn_2O_3に変え、それをターゲッ
トにしてAr雰囲気中でスパッタリング法にて作成した
Mn_2O_3酸化物薄膜を用いたことを特徴とする特
許請求の範囲第1項記載の直流駆動薄膜EL素子。
(2) A Mn_2O_3 oxide thin film was used, which was created by heat-treating a Mn compound that becomes an oxide through thermal decomposition in air to change it into Mn_2O_3, and using this as a target by sputtering in an Ar atmosphere. A DC-driven thin film EL device according to claim 1.
JP61127564A 1986-06-02 1986-06-02 Dc driven thin film el device Pending JPS62285395A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61127564A JPS62285395A (en) 1986-06-02 1986-06-02 Dc driven thin film el device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61127564A JPS62285395A (en) 1986-06-02 1986-06-02 Dc driven thin film el device

Publications (1)

Publication Number Publication Date
JPS62285395A true JPS62285395A (en) 1987-12-11

Family

ID=14963153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61127564A Pending JPS62285395A (en) 1986-06-02 1986-06-02 Dc driven thin film el device

Country Status (1)

Country Link
JP (1) JPS62285395A (en)

Similar Documents

Publication Publication Date Title
US4814668A (en) Electroluminescent display device
RU2131174C1 (en) Color electric luminescence indication board
JPS6353892A (en) Electric field light emission device
US6403204B1 (en) Oxide phosphor electroluminescent laminate
JPS62285395A (en) Dc driven thin film el device
JPS62285396A (en) Dc driven thin film el device
JP2621057B2 (en) Thin film EL element
JPS62285397A (en) Dc driven thin film el device
JPS62285398A (en) Dc driven thin film el device
JPS63279597A (en) Thin film electroluminescent element and manufacture thereof
JP2502560B2 (en) Method for forming dielectric film
JPS6323640B2 (en)
JPS6124192A (en) Thin film electroluminescent element
JPS59175593A (en) Electroluminescent display unit
JPH07118389B2 (en) Thin film EL device
JPH07118388B2 (en) Thin film EL device and method of manufacturing the same
JPS6366897A (en) Thin film el device and manufacture of the same
JPS62147693A (en) Thin film el device
JPS6366895A (en) Method of aging thin film el device
JPH05234679A (en) Thin film luminescent element
JPS6151797A (en) Thin film el element
JPS6180793A (en) Thin film el element
JPS6089098A (en) Electrode structure of thin film el element
JPS6213798B2 (en)
JPS62285394A (en) Dc driven thin film el device and manufacture of the same