JPS62283560A - Manufacture of negative electrode for nonaqueous electrolyte secondary cell - Google Patents

Manufacture of negative electrode for nonaqueous electrolyte secondary cell

Info

Publication number
JPS62283560A
JPS62283560A JP61127548A JP12754886A JPS62283560A JP S62283560 A JPS62283560 A JP S62283560A JP 61127548 A JP61127548 A JP 61127548A JP 12754886 A JP12754886 A JP 12754886A JP S62283560 A JPS62283560 A JP S62283560A
Authority
JP
Japan
Prior art keywords
alloy
electrode
sec
negative electrode
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61127548A
Other languages
Japanese (ja)
Other versions
JPH0770312B2 (en
Inventor
Junichi Yamaura
純一 山浦
Toru Matsui
徹 松井
Yoshinori Toyoguchi
▲吉▼徳 豊口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61127548A priority Critical patent/JPH0770312B2/en
Publication of JPS62283560A publication Critical patent/JPS62283560A/en
Publication of JPH0770312B2 publication Critical patent/JPH0770312B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0483Processes of manufacture in general by methods including the handling of a melt
    • H01M4/0488Alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To obtain high capacity and to prolong life by specifying the cooling rate in cooling process during the formation of an alloy electrode. CONSTITUTION:In the cooling process from molten alloy to an electrode plate, the cooling rate is made 100 deg.C/sec or above. Comparing alloy organization in case of natural cooling with that in case of cooling rate of 100 deg.C/sec, the metal particles of the second group are finer in the latter. Therefore, the structural durability of the alloy can be enhanced and high capacity and long life are obtainable by making fine the particles of the metal components of the second group, that is, metals carrying out a role like binder.

Description

【発明の詳細な説明】 3、発明の詳細な説明 産業上の利用分野 本発明は、非水電解質2次電池、特にその負極の製造法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION 3. Detailed Description of the Invention Field of Industrial Application The present invention relates to a non-aqueous electrolyte secondary battery, and particularly to a method for manufacturing its negative electrode.

従来の技術 現゛在、リチウム等のアルカリ金属を負極活物質とする
非水電解質2次電池の開発が活発に行なわれている。
BACKGROUND OF THE INVENTION Currently, non-aqueous electrolyte secondary batteries using an alkali metal such as lithium as a negative electrode active material are being actively developed.

しかし、現在のところまだ実用化には至っていない。そ
の主な理由は、充放電寿命が短く、また充放電の効率が
低いことである。この原因は負極によるところが大きい
。充放電を行なうこの種の電池は、1次電池に用いられ
ているのと同じように金属リチウムを負極に用いると、
放電によって電解質中へ溶解したリチウムを充電によっ
て元の板状のリチウムとして析出させることは困難であ
る。例えば、充電によってリチウムは不規則にデンドラ
イト状に析出し、これが極板より脱落したり、セパレー
タを貫通して正極と接して短絡したりする。
However, it has not yet been put into practical use. The main reason for this is that the charging/discharging life is short and the charging/discharging efficiency is low. This is largely due to the negative electrode. This type of battery, which charges and discharges, uses metallic lithium as the negative electrode in the same way as used in primary batteries.
It is difficult to deposit lithium dissolved into the electrolyte by discharging into the original plate-like lithium by charging. For example, upon charging, lithium is irregularly precipitated in the form of dendrites, which may fall off the electrode plate or penetrate the separator and come into contact with the positive electrode, causing a short circuit.

そのために充放電の効率が低く、寿命も短いものとなっ
てしまう。このようなリチウム負極の欠点を改良するた
めに、従来から様々な検討が行なわれてきた。
This results in low charge/discharge efficiency and short lifespan. In order to improve these drawbacks of lithium negative electrodes, various studies have been carried out in the past.

その中で、充電により電解質中のリチウムイオンを吸蔵
してリチウムとの合金を形成し、放電によってリチウム
をイオンとして電解質中へ放出する機能を有するある種
の金属または合金を負極材料に用いる方法が最も有望と
考えられる。この種の負極材料としてアルミニウム(米
国特許第3、607.413号)、銀(特開昭56−7
386号、米国特許第4.316.777号、同4.3
30.601号)、鉛(特開昭57−141869号)
、錫。
Among these methods, there is a method of using a certain type of metal or alloy as the negative electrode material, which has the function of occluding lithium ions in the electrolyte during charging to form an alloy with lithium, and releasing lithium as ions into the electrolyte during discharge. considered the most promising. Examples of this type of negative electrode material include aluminum (U.S. Pat.
No. 386, U.S. Pat. No. 4.316.777, U.S. Patent No. 4.3
30.601), lead (JP-A-57-141869)
,tin.

錫−鉛合金などが知られている。これらの材料は、充電
によりリチウムの吸蔵量を増すと、負極材料の微粉化が
起こり、電標の形状を維持できなくなる欠点がある。
Tin-lead alloys are known. These materials have the disadvantage that when the amount of lithium absorbed increases through charging, the negative electrode material becomes pulverized, making it impossible to maintain the shape of the electric sign.

一方、本発明者らが先に提案した合金、すなわち、カド
ミウム(Cd )及び/又は亜鉛(Zn)を必須成分と
し、さらにこれに鉛(pb)、錫(Sn)、インジウム
(In)及びビスマス(Bi)よりなる群から選んだ少
なくとも一種を含む合金は、リチウムの吸蔵量が比較的
大きく、しかも充放電の可逆性にもすぐれており、再充
電可能な負極として有望であることがわかった。以下、
本発明者らが提案した上記合金を可融合金と呼ぶ。
On the other hand, the alloy previously proposed by the present inventors has cadmium (Cd) and/or zinc (Zn) as essential components, and further contains lead (PB), tin (Sn), indium (In), and bismuth. It was found that alloys containing at least one selected from the group consisting of (Bi) have a relatively large lithium storage capacity and excellent charge/discharge reversibility, making them promising as rechargeable negative electrodes. . below,
The above alloy proposed by the present inventors is called a fusible alloy.

可融合金は、本発明者らが、既に報告しているように、
一般に300 ’C以下の比較的低い温度で溶融する。
As the present inventors have already reported, the fusible metal is
It melts at relatively low temperatures, generally below 300'C.

そして、目的の合金組成に相当する所定量比の原料金属
(通常、粉体または粒状体を用いる)を混合し、それを
加熱すると、300℃以下で容易に溶融し、溶融状態の
合金となる。溶融合金から合金極を製造する方法はいく
つか考えられ、例えば溶融している合金を自然冷却して
インプラ1を作り、これを圧延して極板にする方法、溶
融合金中にニッケル等のスクリーン状の集電体を浸漬し
、それを引き上げることによって集電体上に合金を付着
させる方法、又は溶融合金を極板型に流し込む方法等で
ある。
Then, when raw metals (usually powder or granules are used) in a predetermined ratio corresponding to the desired alloy composition are mixed and heated, they easily melt at 300°C or less, forming a molten alloy. . There are several methods of manufacturing alloy electrodes from molten alloy. For example, the molten alloy is naturally cooled to form implant 1, which is then rolled to form an electrode plate. These methods include a method in which a shaped current collector is immersed and pulled up to deposit the alloy on the current collector, or a method in which molten alloy is poured into an electrode plate mold.

発明が解決しようとする問題点 この合金極の負極としての性能は、主に合金中に含まれ
る成分金属とその組成比によって決まる。
Problems to be Solved by the Invention The performance of this alloy electrode as a negative electrode is mainly determined by the component metals contained in the alloy and their composition ratios.

そして、負極中における成分金属は、その役割りから2
つの群に分けることができる。1つは、前述の鉛(pb
) 、錫(Sn) 、インジウム(In)、及びビスマ
ス(Bi)からなる群(第1群)で、これらは主にリチ
ウム(Li)の吸蔵及び放出に寄与する金属で、それ自
身がLi  を吸蔵する母体となるものである。そして
他の1つは、前述のカドミウム(Cd )及び亜鉛(Z
n )からなる群(第2群)で、これらは、Li の吸
蔵及び放出にはほとんど寄与せず、主に負極の充放電の
くり返しくサイクル)に対する構造的な耐久性を維持す
るだめの結着剤的な役割りを果すものである。すなわち
、可融合金負極の特徴は、上記2つの群の役割りを組み
合わせて利用する所にある。しかし、その反面、互いの
役割りを相殺していることもわかった。例えば、Pb−
Cdの2成分系の合金の場合、通常、第1群のpbの含
有比率が高くなるとLi の吸蔵−放出容量は向上する
が、サイクルに対する耐久性が低下して寿命が短くなる
The component metals in the negative electrode have two different roles due to their roles.
It can be divided into two groups. One is the aforementioned lead (pb
), tin (Sn), indium (In), and bismuth (Bi) (group 1), these are metals that mainly contribute to occlusion and desorption of lithium (Li), and they themselves contain Li. It is the mother body that absorbs energy. The other one is the aforementioned cadmium (Cd) and zinc (Z
n) (group 2), which hardly contribute to occlusion and release of Li, but mainly serve as a bond to maintain structural durability against repeated cycles of charging and discharging the negative electrode. It plays the role of adhesive. That is, the feature of the fusible metal negative electrode is that it utilizes the functions of the above two groups in combination. However, on the other hand, it was also found that they offset each other's roles. For example, Pb-
In the case of a Cd binary alloy, as the content ratio of Pb in the first group increases, the Li 2 storage-release capacity usually improves, but the durability against cycles decreases and the life span becomes short.

また第2群のCcl含有比率が高くなるとサイクルに対
する耐久性は向上し、寿命は長くなるが、LL の吸蔵
−放出容量は低下する。これは、pb−cdの2成分系
の合金に限ったことではなく、上記第1群の金属と第2
群の金属のあらゆる組合わせにおいても言えることであ
った。
Furthermore, when the Ccl content ratio of the second group increases, the durability against cycles improves and the life span becomes longer, but the storage-release capacity of LL decreases. This is not limited to the two-component alloy of pb-cd.
This was true for all combinations of metals in the group.

すなわち、第1群の金属成分と第2群の金属成分の含有
比率をコントロールすることによって、高容量指向、又
は長寿命指向の負極を作りうるが、両方の特性を同時に
向上させる手段にはならない。
That is, by controlling the content ratio of the metal components of the first group and the metal components of the second group, it is possible to create a negative electrode oriented toward high capacity or long life, but this is not a means to improve both characteristics at the same time. .

従って、現行技術ではさらに高い性能要求には答えられ
ない。
Therefore, current technology cannot meet even higher performance requirements.

第1群の金属成分と第2群の金属成分を含む負極用合金
を作る場合、粉体又は粒状の金属原料を混合し、アルミ
ナルツボ又はステンレス鋼容器中で加熱溶融すると、容
易に融は合い合金化する。
When making a negative electrode alloy containing metal components of the first group and metal components of the second group, mixing powder or granular metal raw materials and heating and melting them in an alumina crucible or stainless steel container will facilitate the fusion. Alloy.

そしてこの合金を自然冷却して、凝固することによって
、負極用の合金極を製造してきた。
An alloy electrode for a negative electrode has been manufactured by naturally cooling and solidifying this alloy.

問題点を解決するための手段 本発明者らはさらに検討を進めてきた結果、溶融合金か
ら極板に至る冷却過程で、その冷却速度を上げると合金
の負(至)としてのサイクル寿命が変化することがわか
った。そして、冷却速度を上げてゆくと従来の自然冷却
(測定の結果10°C〜20℃/秒)によって製造して
いた合金に比べ、Liの吸蔵放出容量を変化させずにサ
イクル寿命を向上できることを見出した。特に、上記冷
却工程において、冷却速度を100°C/秒以上にする
とサイクル寿命向上の効果は著しかった。従って、冷却
速度を100℃/秒以上にして製造した合金負極を用い
ることによりすぐれた非水電解質2次電池が達成できる
Means to Solve the Problem The inventors have further investigated and found that increasing the cooling rate during the cooling process from the molten alloy to the electrode plate changes the negative cycle life of the alloy. I found out that it does. Furthermore, by increasing the cooling rate, the cycle life can be improved without changing the Li storage and desorption capacity compared to alloys produced by conventional natural cooling (measured at 10°C to 20°C/sec). I found out. Particularly, in the above cooling step, when the cooling rate was set to 100°C/sec or more, the effect of improving the cycle life was remarkable. Therefore, an excellent nonaqueous electrolyte secondary battery can be achieved by using an alloy negative electrode manufactured at a cooling rate of 100° C./second or higher.

作  用 溶融合金から冷却して製造した本発明の合金極が、リチ
ウム2次電池用の負極としてすぐれた充放電可逆性及び
サイクル寿命を示すのは、Li の吸蔵放出に対して、
構造的な耐久性を持っているためである。そして、この
耐久性は、上記第2群のCdやZnが合金中で結着剤的
効果を生み出していることによる。そこで、本発明者ら
が、合金極中の合金組織の状態を検討した結果、第6図
に示すように、第1群の金属(図中白色部分)で示すイ
の中にほとんど同じ大きさの第2群の金属粒(図中斜線
部分)で示す口が均一に分散していることがわかった。
The reason why the alloy electrode of the present invention produced by cooling the molten alloy exhibits excellent charge/discharge reversibility and cycle life as a negative electrode for lithium secondary batteries is due to the fact that the alloy electrode of the present invention is produced by cooling the molten alloy.
This is because it has structural durability. This durability is due to the fact that Cd and Zn in the second group have a binding effect in the alloy. Therefore, as a result of examining the state of the alloy structure in the alloy electrode, the present inventors found that, as shown in FIG. It was found that the openings indicated by the second group of metal particles (shaded area in the figure) were uniformly dispersed.

しかし、自然冷却の場合と冷却速度を100°C/秒に
した場合の合金組織を比較してみると、第7図のように
後者の方が第2群の金属粒(図中斜線部分)口が細かく
なっていた。
However, when we compare the alloy structures in the case of natural cooling and in the case of cooling at a cooling rate of 100°C/sec, as shown in Figure 7, the latter has more metal grains in the second group (hatched area in the figure). His mouth was thin.

さらに、第2群の金属粒は、冷却速度を上げるに従って
細かくなることがわかった。従って本発明の製造法を用
いることにより、サイクル寿命が向上した原因は、この
第2群の金属成分、つまり結着剤的役割を果す金属の粒
子が細かくなり、合金の構造的耐久性が向上したためで
あると考えられる。
Furthermore, it was found that the metal particles in the second group became finer as the cooling rate was increased. Therefore, by using the manufacturing method of the present invention, the reason why the cycle life is improved is that the particles of this second group of metal components, that is, the metal that plays the role of a binder, become finer, and the structural durability of the alloy is improved. This is thought to be because of this.

実施例 以下、本発明の実施例を示す。Example Examples of the present invention will be shown below.

可融合金極の組成は、上記第1群(Pb、Sn。The composition of the fusible metal electrode is the above-mentioned first group (Pb, Sn.

In、又はBi)と第2群(Cd又はZn )のそれぞ
れの群の少なくとも1種以上を含むもので、例えばPb
 −Cd 、 5n−Cd等の2成分系から、Pb −
3n −In−Bi −Cd−Zn のような6成分系
まで調製できる。検討の結果、成分の多少にかかわらず
、合金中の組織は、通常第6図に示したように、第1群
の金属中に、第2群の金属が粒状になって分散した形態
をもつことがわかった。そこで1例として、Pb−Cd
の2成分系についてその実施例を述べ゛る。
In or Bi) and the second group (Cd or Zn), for example, Pb
-Cd, 5n-Cd and other two-component systems, Pb-
Up to six component systems such as 3n-In-Bi-Cd-Zn can be prepared. As a result of the study, it was found that regardless of the amount of components, the structure of the alloy usually has a structure in which the metal of the second group is dispersed in the form of particles in the metal of the first group, as shown in Figure 6. I understand. Therefore, as an example, Pb-Cd
Examples of the two-component system will be described below.

まず、Pb−Cdの含有量比率を変化させ、いくつかの
Pb−Cd合金を調製した。所定量の粒状pb(粒径1
〜2IIs)と粒状Cd  (粒径1〜2鵡)を混合し
、ステンレス鋼の容器中に入れ、加熱すると両者は、互
いに融は合い、合金となった。そして十分に融は合った
合金を、予め加熱したステンレス鋼製の極板型に流し込
み、形を整えて、冷却を行なった。第3図A、Bは、合
金を流し込み、冷却をするだめの極板型の装置図の外観
ならびに断面図で、型上面の凹部1に合金を流し込み、
形を整えて、図中の矢印のように管内に水等の冷媒を流
し、冷却するものである。
First, several Pb-Cd alloys were prepared by changing the content ratio of Pb-Cd. A predetermined amount of granular PB (particle size 1
~2IIs) and granular Cd (particle size 1 to 2 mm) were mixed, placed in a stainless steel container, and heated, and the two fused with each other to form an alloy. The fully fused alloy was then poured into a preheated stainless steel plate mold, shaped, and cooled. Figures 3A and 3B are external views and cross-sectional views of a plate-type device for pouring and cooling the alloy.
The pipe is shaped and cooled by flowing a refrigerant such as water into the pipe as shown by the arrow in the figure.

また、温度変化を測定するために、熱電対を上記凹部1
の近傍に設けた穴2に設置した。従来のいわゆる自然冷
却は、上記冷媒を用いない場合に相当するもので、室温
下でその時の冷却速度を測定したところ、約10°C〜
20℃/秒であった。この極板型を用い、まず、自然冷
却の場合の面積1 X 1 ad 、重量0.1yの合
金極板を調製した。合金は、pbとCdの含有量比率が
90:10(A)。
In addition, in order to measure temperature changes, a thermocouple is placed in the recess 1.
It was installed in hole 2 prepared near the. Conventional so-called natural cooling corresponds to the case where the above refrigerant is not used, and when the cooling rate at that time was measured at room temperature, it was about 10 ° C ~
The temperature was 20°C/sec. Using this electrode plate type, first, an alloy electrode plate having an area of 1×1 ad and a weight of 0.1y in the case of natural cooling was prepared. The alloy has a content ratio of PB and Cd of 90:10 (A).

8o : 20 (B)、 70 :3o (C) 、
 eo : 4o(Il19゜50:50(E)、 4
o:5o(F)、3oニアo(Q。
8o: 20 (B), 70: 3o (C),
eo: 4o(Il19゜50:50(E), 4
o: 5o (F), 3o near o (Q.

20:80(H)、10:90(I)の9種類について
検討した。上記各種合金は0.1y用いて合金極(1x
 1cal )とするといずれも約0.1111の厚み
となった。これらの合金極は、充放電試験に用いるため
に、第4図のように、Ni  エキスバンドメタル3の
間に合金極4をはさみ、両側から圧着してNiエキスバ
ンドメタルの外周をスポット溶接し、Niリボン5から
なるリードをつけて集電体とした。この合金負極の充放
電は、第5図に示したガラスセル中で行なった。第5図
において、合金負極6と対極の金属Li 極7とはガラ
スフィルターのセパレータ8を介して対向させてあり、
参照極の金属L1 極9とともにガラスセル10中には
1モル/lのL I C1304を溶解したグロビレン
カーボネートからなる電解液11中に入れである。この
セルを用い充放電を続けた結果、対極のLi 極7の容
量を予め犬きく(合金極の充放電容量の1゜倍以上)し
ておいても、Li 極の能力はデンドライトの発生等で
サイクルとともに失なわれた。従って、定期的に対極と
電解液を交替しながら試験を行なった。また充放電は0
.5 mAの定電流で行ない、充電を金属L1 参照極
9に対して0.2 Vまで、放電を参照極に対してo、
sVまで行なう電圧制御法、すなわち参照極に対して、
0.2V−o、eV間でサイクルをくり返す方法を用い
た。
Nine types were studied: 20:80 (H) and 10:90 (I). The above various alloys are used for 0.1y alloy electrode (1x
1 cal), the thickness was approximately 0.1111 in each case. In order to use these alloy electrodes for charge/discharge tests, as shown in Figure 4, the alloy electrode 4 was sandwiched between Ni expanded metals 3, crimped from both sides, and the outer periphery of the Ni expanded metal was spot welded. , a lead made of Ni ribbon 5 was attached to serve as a current collector. This alloy negative electrode was charged and discharged in a glass cell shown in FIG. In FIG. 5, the alloy negative electrode 6 and the counter metal Li electrode 7 are opposed to each other with a separator 8 of a glass filter interposed therebetween.
A metal L1 serving as a reference electrode is placed in a glass cell 10 together with the electrode 9 in an electrolytic solution 11 made of globylene carbonate in which 1 mol/l of L I C1304 is dissolved. As a result of continued charging and discharging using this cell, even if the capacity of the opposite Li electrode 7 was increased in advance (more than 1° times the charge/discharge capacity of the alloy electrode), the capacity of the Li electrode remained low due to the formation of dendrites, etc. was lost with the cycle. Therefore, the test was conducted while periodically replacing the counter electrode and electrolyte. Also, charging and discharging is 0
.. Perform charging with a constant current of 5 mA, charge to 0.2 V with respect to metal L1 reference electrode 9, discharge with o,
Voltage control method up to sV, i.e. for reference pole,
A method of repeating cycles between 0.2V-o and eV was used.

第1図は、自然冷却(冷却速度1Q〜20°C41)に
相当)により先に調製したA−Iの各種Pb−Cc1合
金極(Q、1y)の平均充放電容量と、サイクル寿命(
初期の充放電容量の5o%容量に劣化するまでのサイク
ル数)との関係を示す図である。第1図をみてもわかる
ように、Pb−Cd含有量比率を変えた上記Pb −C
cl 2成分系の合金(A、I )において、Pb含有
量(wt%)が増加するにつれて、充放電容量は向上す
るが、サイクル寿命は低下した。
Figure 1 shows the average charge/discharge capacity and cycle life (
It is a figure showing the relationship between the number of cycles until the capacity deteriorates to 50% of the initial charge/discharge capacity. As can be seen from Figure 1, the above Pb-C with different Pb-Cd content ratios
In the cl binary alloy (A, I), as the Pb content (wt%) increased, the charge/discharge capacity improved, but the cycle life decreased.

次に、第3図の装置を用い、上記各種Pb−Cd合金の
冷却速度を変えた合金極を調製し、上記と同様の充放電
試験を行なった。冷却は、第3図の予め加熱した極板型
上の凹部1にpbとcdを所定量混合溶融した合金を流
しこみ、形を整えた後、冷媒を管内に流し込んで行なっ
た。そして、冷却速度は、冷媒の熱容量及び流速に依存
するため熱容量の異なる冷媒例えば、水、メタノール、
機械油等を用い、流速を変えて調整した。冷却速度は自
然冷却(10〜20°C/秒の(a)の他、40″C/
秒、60°C/秒、80°C/秒、1oo°c/秒。
Next, using the apparatus shown in FIG. 3, alloy electrodes of the various Pb-Cd alloys described above with different cooling rates were prepared, and the same charge-discharge tests as above were conducted. Cooling was carried out by pouring an alloy prepared by mixing and melting a predetermined amount of PB and CD into the recess 1 on the preheated electrode plate mold shown in FIG. 3, shaping it, and then pouring a refrigerant into the tube. Since the cooling rate depends on the heat capacity and flow rate of the refrigerant, refrigerants with different heat capacities, such as water, methanol,
Adjustments were made by changing the flow rate using machine oil, etc. The cooling rate is natural cooling (10-20°C/sec (a)), 40"C/sec
sec, 60°C/sec, 80°C/sec, 1oo°c/sec.

120″C/秒、150℃/秒、200℃/秒について
検討した。
120″C/sec, 150°C/sec, and 200°C/sec were investigated.

第2図は、上記と同様の平均充放電容量とサイクル寿命
との関係を示す図であり、図中aは、第1図の自然冷却
の場合の曲線に相当し、b 、 c 、 d。
FIG. 2 is a diagram showing the relationship between average charge/discharge capacity and cycle life similar to the above, where a corresponds to the curve in the case of natural cooling in FIG. 1, and b, c, d.

e+ ’ + qr h+はそれぞれその冷却速度が、
4Q’C/秒、eo°c/秒、ao゛c/秒、100″
C/秒。
The cooling rate of e+ ' + qr h+ is
4Q'C/sec, eo°c/sec, ao°c/sec, 100''
C/sec.

120″C/秒、160℃/秒、2oo°C/秒の合金
極のものである。第2図から明らかなように、冷却速度
を上げて調製した合金極はど、サイクル寿命が向上する
傾向があり、特に、充放電容量の大きい合金(pb含有
量比率の高い合金)はどその効果が顕著であった。
120″C/sec, 160°C/sec, and 2oo°C/sec alloy electrodes.As is clear from Figure 2, the cycle life of the alloy electrodes prepared by increasing the cooling rate is improved. In particular, alloys with large charge/discharge capacity (alloys with a high PB content ratio) had a remarkable effect.

また、冷却速度に対するサイクル寿命の向上は、100
℃/秒〜160℃/秒までが著しく、それ以上では、例
えば200℃/秒まで冷却速度を上げても向上は少なか
った。従って、冷却速度は少なくとも100″C/秒ま
では上げるべきであり、好しくは、ioo“07秒以上
である。
In addition, the improvement in cycle life with respect to cooling rate is 100%
C/sec to 160 C/sec, and above that, even if the cooling rate was increased to, for example, 200 C/sec, there was little improvement. Therefore, the cooling rate should be increased to at least 100"C/sec, preferably more than 100"07 seconds.

次に、他の合金系、例えばSn −Cd 、 Pb −
In −Cd 、 B1−Cd等についても同様の検討
を行なった結果、本発明における合金極については、い
ずれも冷却速度を上げることによる効果があることがわ
かった。そして、いずれの場合も、100℃/秒以上の
冷却速度で合金極を製造すると、その効果が大きいこと
がわかった。
Next, other alloy systems such as Sn-Cd, Pb-
As a result of conducting similar studies on In-Cd, B1-Cd, etc., it was found that the alloy electrodes of the present invention all have the effect of increasing the cooling rate. In both cases, it was found that manufacturing the alloy electrode at a cooling rate of 100° C./second or higher has a great effect.

発明の効果 本発明の製造法を用いると、負概のサイクル寿命が向上
するため、高エネルギー密度でかつ長寿命の非水電解2
次電池を提供できる。
Effects of the Invention When the production method of the present invention is used, the negative cycle life is improved, so non-aqueous electrolysis with high energy density and long life is possible.
We can provide the following batteries.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は本発明の効果を比較するための各種合
金極の平均放電容量とサイクル寿命との関係を示す図、
第3図は合金極を製造するための装置の概略図、第4図
は実施例で用いた合金極の集電形状を示した図、第5図
は充放電試験を行なうだめのガラスセルの構成略図、第
6図及び第7図は、可融合金中の成分の分散状態を示す
形態模式図である。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名ブイ
クル寿4暫 (町 丈イアノリ呼幸(り f−一一凹節 2−−−ヌヘ電文↑つr−ののべ 第3図 第4図 第5図 第6図
Figures 1 and 2 are diagrams showing the relationship between the average discharge capacity and cycle life of various alloy electrodes for comparing the effects of the present invention;
Figure 3 is a schematic diagram of the apparatus for manufacturing alloy electrodes, Figure 4 is a diagram showing the current collecting shape of the alloy electrode used in the examples, and Figure 5 is a diagram of the glass cell used for charge/discharge tests. The structural diagrams, FIGS. 6 and 7, are schematic diagrams showing the state of dispersion of components in the fusible metal. Name of agent: Patent attorney Toshio Nakao and one other person Figure 5 Figure 6

Claims (1)

【特許請求の範囲】[Claims] 正極と、アルカリイオン導電性の電解質と、充電時にア
ルカリ金属イオンを吸蔵し、放電時に前記アルカリ金属
イオンを放出する合金を用いた負極を構成要素とする非
水電解質2次電池の製造法であって、溶融した前記合金
を冷却し合金極を形成する工程において、その冷却速度
を100℃/秒以上にすることを特徴とする非水電解質
2次電池用負極の製造法。
A method for producing a non-aqueous electrolyte secondary battery, the components of which are a positive electrode, an alkali ion conductive electrolyte, and a negative electrode using an alloy that stores alkali metal ions during charging and releases the alkali metal ions during discharge. A method for producing a negative electrode for a nonaqueous electrolyte secondary battery, characterized in that in the step of cooling the molten alloy to form an alloy electrode, the cooling rate is 100° C./second or more.
JP61127548A 1986-06-02 1986-06-02 Non-aqueous electrolyte secondary battery manufacturing method Expired - Fee Related JPH0770312B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61127548A JPH0770312B2 (en) 1986-06-02 1986-06-02 Non-aqueous electrolyte secondary battery manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61127548A JPH0770312B2 (en) 1986-06-02 1986-06-02 Non-aqueous electrolyte secondary battery manufacturing method

Publications (2)

Publication Number Publication Date
JPS62283560A true JPS62283560A (en) 1987-12-09
JPH0770312B2 JPH0770312B2 (en) 1995-07-31

Family

ID=14962730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61127548A Expired - Fee Related JPH0770312B2 (en) 1986-06-02 1986-06-02 Non-aqueous electrolyte secondary battery manufacturing method

Country Status (1)

Country Link
JP (1) JPH0770312B2 (en)

Also Published As

Publication number Publication date
JPH0770312B2 (en) 1995-07-31

Similar Documents

Publication Publication Date Title
US11522190B2 (en) Lead-based alloy and related processes and products
JPS59186274A (en) Manufacture of nonaqueous electrolyte secondary battery
CN113540400B (en) Large-size cylindrical lithium ion secondary battery and positive and negative pole pieces thereof
JPH08124579A (en) Manufacture of metallic porous material and electrode for storage battery
JP2001250541A (en) Nonaqueous electrolyte secondary battery
JPS62283560A (en) Manufacture of negative electrode for nonaqueous electrolyte secondary cell
JP5861099B2 (en) Alloy powder for electrode, negative electrode for nickel metal hydride storage battery and nickel metal hydride storage battery using the same
JPS62283559A (en) Nonaqueous electrolyte secondary cell
JPS62283556A (en) Manufacture of nonaqueous electrolyte secondary cell
US20180034046A1 (en) Alloy powder for electrodes, negative electrode for nickel-metal hydride storage batteries using same, and nickel-metal hydride storage battery
JPH03245460A (en) Hydrogen storage alloy electrode, its manufacture and sealed alkaline storage battery using the electrode
KR100348954B1 (en) Hydrogen storage alloy electrode for alkaline secondary battery
JP2794889B2 (en) Non-aqueous electrolyte secondary battery
JPH0210656A (en) Nonaqueous electrolyte secondary battery
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery
JPS63146355A (en) Nonaqueous electrolytic secondary cell
JPH0441471B2 (en)
JPS60124357A (en) Negative electrode of nonaqueous electrolyte secondary battery
JPH0636763A (en) Lithium alloy negative electrode for secondary battery
JPS59163756A (en) Nonaqueous electrolyte secondary battery
JPS61239561A (en) Manufacture of metal electrode
JPS62145650A (en) Nonaqueous electrolyte secondary cell
JPS6396869A (en) Aluminum alloy for negative electrode material of lithium secondary battery
JPH03201364A (en) Hydrogen storage electrode and nickel-hydrogen battery
JPH04282559A (en) Hydrogen storage alloy electrode and manufacture thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees