JPS62283256A - Lubricating device for troidal-shaped continuously variable transmission - Google Patents

Lubricating device for troidal-shaped continuously variable transmission

Info

Publication number
JPS62283256A
JPS62283256A JP12404986A JP12404986A JPS62283256A JP S62283256 A JPS62283256 A JP S62283256A JP 12404986 A JP12404986 A JP 12404986A JP 12404986 A JP12404986 A JP 12404986A JP S62283256 A JPS62283256 A JP S62283256A
Authority
JP
Japan
Prior art keywords
input
oil
power
traction oil
continuously variable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12404986A
Other languages
Japanese (ja)
Inventor
Yasuyuki Yano
矢野 泰之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP12404986A priority Critical patent/JPS62283256A/en
Publication of JPS62283256A publication Critical patent/JPS62283256A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H15/00Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members
    • F16H15/02Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members without members having orbital motion
    • F16H15/04Gearings providing a continuous range of gear ratios
    • F16H15/06Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B
    • F16H15/32Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B in which the member B has a curved friction surface formed as a surface of a body of revolution generated by a curve which is neither a circular arc centered on its axis of revolution nor a straight line
    • F16H15/36Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B in which the member B has a curved friction surface formed as a surface of a body of revolution generated by a curve which is neither a circular arc centered on its axis of revolution nor a straight line with concave friction surface, e.g. a hollow toroid surface
    • F16H15/38Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B in which the member B has a curved friction surface formed as a surface of a body of revolution generated by a curve which is neither a circular arc centered on its axis of revolution nor a straight line with concave friction surface, e.g. a hollow toroid surface with two members B having hollow toroid surfaces opposite to each other, the member or members A being adjustably mounted between the surfaces

Landscapes

  • General Details Of Gearings (AREA)
  • Friction Gearing (AREA)

Abstract

PURPOSE:To eliminate the useless consumption of traction oil by turning a trunnion together with power rollers as the speed change ratio varies and lubricating the content part by the traction oil. CONSTITUTION:Traction oil is supplied to the contact part between a power roller 24 and input and output discs 21 and 22 from a lubrication hole 28b formed at the upper edge part of a trunnion 28. When the contact part between the power rollers 23 and 24 and the input and output discs 21 and 22 changes as the speed change ratio varies, the trunnions 27 and 28 turn integrally with the power rollers 23 and 24. Therefore, when traction oil is discharged from the lubrication holes 27c and 28b, a necessary quantity of traction oil can be supplied into the part where lubrication is necessary, and useless consumption of oil can be prevented.

Description

【発明の詳細な説明】 3、発明の詳細な説明 産業上の利用分野 本発明はトロイダル形無段変速機の潤滑装置、特にトラ
クション駆動面にトラクションオイルを供給するための
潤滑装置に関するものである。
Detailed Description of the Invention 3. Detailed Description of the Invention Field of Industrial Application The present invention relates to a lubricating device for a toroidal continuously variable transmission, particularly to a lubricating device for supplying traction oil to a traction drive surface. .

従来技術とその問題点 従来、対向配置された入、出力ディスク間に一対のパワ
ーローラを圧接状態で配置し、このパワーローラを回転
自在に支持するトラニオンをそれ自身の軸方向(パワー
ローラの支軸と直交方向)に作動させることにより、入
、出力ディスクからパワーローラに作用する。接線方向
の力の方向を変化させ、この接線方向の力の分力によっ
てパワーローラの傾きを変え、無段変速を行うようにし
たトロイダル形無段変速機が特開昭58−54262号
公報に示されている。
Conventional technology and its problems Conventionally, a pair of power rollers is placed in pressure contact between input and output disks arranged opposite each other, and a trunnion that rotatably supports the power roller is rotated in its own axial direction (supporting the power rollers). The input and output discs act on the power roller by operating the power roller in the direction perpendicular to the shaft. Japanese Unexamined Patent Publication No. 58-54262 discloses a toroidal continuously variable transmission that changes the direction of a tangential force and changes the inclination of a power roller by the component of this tangential force, thereby achieving continuously variable speed. It is shown.

上記のようなトロイダル形無段変速機の場合、潤滑油と
して一般の変速機に使用されているギヤオイルや自動変
速機用油(ATF)などの鉱物系油を使用すると、パワ
ーローラと入、出力ディスクとの間で十分な動力伝達が
行えないため、トラクション駆動に通したトラクション
係数を有するトラクションオイルが使用されている。
In the case of the above-mentioned toroidal continuously variable transmission, if mineral oil such as gear oil or automatic transmission fluid (ATF), which is used in general transmissions, is used as lubricant, the power roller, input and output Since sufficient power cannot be transmitted between the disc and the disc, traction oil with a traction coefficient suitable for traction drive is used.

上記パワーローラと入、出力ディスクとの接触部をトラ
クションオイルで/121滑する場合、通常はケーシン
グに固定されたポストと呼ばれる部品からトラクション
オイルを噴出させている。ところが、パワーローラと入
、出力ディスクとの接触部は変速比につれて変化するた
め、上記のように一定箇所に設けられたポストからトラ
クションオイルを噴出したのでは必ずしも上記接触部が
適正に/li滑されない。その結果、パワーローラと入
、出力ディスクとの接触部における油膜剥離が起こり、
動力伝達効率の低下や駆動面の損耗などを来すおそれが
あり、またトラクションオイルが無駄に使用されるとい
う問題があった。
When the contact portion between the power roller and the input and output disks is to be slid with traction oil, the traction oil is usually jetted out from a part called a post fixed to the casing. However, since the contact area between the power roller and the input and output discs changes depending on the gear ratio, spouting traction oil from a post installed at a fixed location as described above does not necessarily ensure that the contact area is properly gliding. Not done. As a result, an oil film peels off at the contact area between the power roller and the input and output disks.
There is a risk that the power transmission efficiency will be reduced and the drive surface will be worn out, and there is also the problem that traction oil is wasted.

発明の目的 本発明はかかる従来の問題点に鑑みてなされたもので、
その目的は、変速比が変化してもパワーローラと入、出
力ディスクとの接触部に効率良くトラクションオイルを
供給できるトロイダル形無段変速機の/rJI肩装置を
1是供することにある。
Purpose of the Invention The present invention has been made in view of such conventional problems.
The purpose is to provide a /rJI shoulder device for a toroidal continuously variable transmission that can efficiently supply traction oil to the contact area between the power roller and the input and output disks even when the gear ratio changes.

発明の構成 上記目的を達成するために、本発明は、対向配置された
入、出力ディスクと、入、出力ディスク間に圧接状態で
配置された一対のパワーローラと、パワーローラを支軸
を介して回転自在に支持し、軸方向に移動可能でかつ自
身の軸回りに回動可能な一対のトラニオンとを備え、ト
ラニオンを軸方向に作動させることにより変速比を可変
としたトロイダル形無段変速機において、上記トラニオ
ンの内部にパワーローラと入、出力ディスクとの接触部
にトラクションオイルを導く潤滑孔を形成したものであ
る。
Structure of the Invention In order to achieve the above object, the present invention includes input and output disks that are arranged opposite to each other, a pair of power rollers that are placed in pressure contact between the input and output disks, and a power roller that is connected to the input and output disks through a support shaft. A toroidal type continuously variable transmission that is rotatably supported by a trunnion, and a pair of trunnions that are movable in the axial direction and rotatable around its own axis, and that the gear ratio is variable by operating the trunnions in the axial direction. In the trunnion, a lubrication hole is formed inside the trunnion to guide traction oil to the contact area between the power roller and the output disk.

実施例の説明 第1面は本発明にかかるトロイダル形無段変速機の一例
を示す。この無段変速機は大略、人力軸10、トロイダ
ル変速部20、ローディングカム装置30、発進クラッ
チ40、出力軸50、前後進切換機構51、ディファレ
ンシャル装置60及び直結クラッチ70で構成され、こ
れら構成部品はケーシング1゜2.3によって覆われて
いる。
DESCRIPTION OF EMBODIMENTS The first page shows an example of a toroidal continuously variable transmission according to the present invention. This continuously variable transmission is roughly composed of a human power shaft 10, a toroidal transmission section 20, a loading cam device 30, a starting clutch 40, an output shaft 50, a forward/reverse switching mechanism 51, a differential device 60, and a direct coupling clutch 70. is covered by a casing 1°2.3.

エンジンのクランク軸4は、エンジンのトルク変動を吸
収するためのフライホイール5及びトーショナルダンパ
6を介して入力軸lOと連結されている。トーシヨナル
ダンパ6のボス部6aは鉱物系油を循環させるためのギ
ヤ式オイルポンプ7ともスプライン係合し、オイルポン
プ7を駆動している。オイルポンプ7の左側には2個の
軸受11,12が隣接して配置され、軸受11は入力軸
10に作用する図中左方向のスラスト荷重を支持し、軸
受12は後述するトロイダル変速部20の出力ディスク
22に作用する図中右方向のスラスト荷重を支持してい
る。
A crankshaft 4 of the engine is connected to an input shaft 1O via a flywheel 5 and a torsional damper 6 for absorbing engine torque fluctuations. The boss portion 6a of the torsional damper 6 is also spline engaged with a gear type oil pump 7 for circulating mineral oil, thereby driving the oil pump 7. Two bearings 11 and 12 are arranged adjacent to each other on the left side of the oil pump 7. The bearing 11 supports the thrust load acting on the input shaft 10 in the left direction in the figure, and the bearing 12 supports the toroidal transmission section 20, which will be described later. The thrust load acting on the output disk 22 in the right direction in the figure is supported.

トロイダル変速部20は、入力軸lO上に回転自在に配
置された入力ディスク21及び出力ディスク22と、両
ディスク21.22の対向する円環面21a、22a間
に圧接状態で配置された2111のパワーローラ23.
24とで構成され、パワーローラ23.24が転勤する
につれて入力ディスク21と出力ディスク22とは逆方
向に回転する。上記トロイダル変速部20の変速制御は
、パワーローラ23,24を支軸25.26を介して支
持したトラニオン27.28を入力軸lOの軸線と直角
方向に作動させることにより行われ、変速制御機構の具
体的構造は第2図に示されている。
The toroidal transmission section 20 includes an input disk 21 and an output disk 22 that are rotatably arranged on the input shaft 1O, and an input disk 2111 that is placed in pressure contact between the opposing annular surfaces 21a and 22a of both disks 21.22. Power roller 23.
The input disk 21 and the output disk 22 rotate in opposite directions as the power rollers 23 and 24 move. The speed change control of the toroidal transmission section 20 is performed by operating the trunnion 27.28, which supports the power rollers 23, 24 via the support shafts 25.26, in a direction perpendicular to the axis of the input shaft IO, and the speed change control mechanism The specific structure of is shown in FIG.

なお、第1図の入力軸IOの上半分は低速比状態、下半
分は高速比状態を示す。
Note that the upper half of the input shaft IO in FIG. 1 shows a low speed ratio state, and the lower half shows a high speed ratio state.

入力軸10の軸端部には、入力ディスク21に入力軸1
0の入力トルクに比例した推力(スラスト荷重)を付与
するローディングカム装置30が設けられている。ロー
ディングカム装置30は、入力ディスク21の背面に形
成されたカム面21bと、入力軸10にスプライン結合
されたカムディスク31の側面に形成されたカム面31
a と、両カム面21b、31aの間に転勤自在に配置
されたカムローラ32とで構成され、入力トルクの増大
につれてパワーローラ23゜24と円環面21a、22
a間の接触圧を増大させ、滑りの無い動力伝達を行って
いる。入力軸10の端末部にはナフト33が螺合してお
り、このナツト33は皿バネ34を介してカムディスク
31の背面を押圧支持している。上記lバネ34は、カ
ムローラ32とカム面21b、 31a間の接触圧を与
えるとともに、パワーローラ23.24と円環面21a
、22aとの初期接触圧を付与している。上記カムディ
スク31の外周には直結駆動ギヤ31bが一体形成され
ており、また入力軸10の左端にはトラクションオイル
を循環させるギヤ式オイルポンプ35が設けられている
The input shaft 1 is connected to the input disk 21 at the shaft end of the input shaft 10.
A loading cam device 30 is provided that applies a thrust force (thrust load) proportional to zero input torque. The loading cam device 30 includes a cam surface 21b formed on the back surface of the input disk 21 and a cam surface 31 formed on the side surface of the cam disk 31 spline-coupled to the input shaft 10.
a, and a cam roller 32 which is disposed removably between both cam surfaces 21b and 31a, and as the input torque increases, the power roller 23, 24 and the annular surfaces 21a, 22
By increasing the contact pressure between a and a, power is transmitted without slipping. A nut 33 is screwed onto the end of the input shaft 10, and this nut 33 presses and supports the back surface of the cam disc 31 via a disc spring 34. The L spring 34 applies contact pressure between the cam roller 32 and the cam surfaces 21b and 31a, and also provides contact pressure between the power roller 23, 24 and the annular surface 21a.
, 22a is applied. A direct drive gear 31b is integrally formed on the outer periphery of the cam disc 31, and a gear type oil pump 35 for circulating traction oil is provided at the left end of the input shaft 10.

トロイダル変速部20と軸受11.12との間には湿式
多板クラッチからなる発進クラッチ40が配置されてお
り、この発進クラッチ40のクラッチドラム41は、入
力軸10上に回転支持されかつ出力ディスク22と一体
回転するボス部材42にスプライン結合しており、この
ボス部材42の右端部が上記軸受12によって支持され
ている。上記クラッチドラム41とクラッチ坂43を介
して断続されるクラッチハブ44は、上記ボス部材42
上に回転自在に支持された駆動ギヤ45と結合されてい
る。
A starting clutch 40 consisting of a wet multi-disc clutch is arranged between the toroidal transmission section 20 and the bearings 11.12, and a clutch drum 41 of this starting clutch 40 is rotatably supported on the input shaft 10 and an output disc The right end portion of the boss member 42 is supported by the bearing 12. The clutch hub 44, which is connected and disconnected via the clutch drum 41 and the clutch slope 43, is connected to the boss member 42.
It is connected to a drive gear 45 rotatably supported above.

入力軸IOと平行に配置されたカウンタ軸46には、上
記駆動ギヤ45と噛み合う従動ギヤ47がスプライン結
合されている。また、カウンタ軸46には前進用駆動ギ
ヤ48と後進用駆動ギヤ49とが一体に形成されている
A driven gear 47 that meshes with the drive gear 45 is spline-coupled to a counter shaft 46 arranged parallel to the input shaft IO. Furthermore, a forward drive gear 48 and a reverse drive gear 49 are integrally formed on the counter shaft 46.

出力軸50も入力軸10と平行に配置されており、この
出力軸50上には前後進切換機構51が設けられている
。前後進切換機構51は、上記前進用駆動ギヤ48と噛
み合う前進用従動ギヤ52と、後進用駆動ギヤ49とア
イドラギヤ (図示せず)を介して噛み合う後進用従動
ギヤ54と、スプラインハブ55と、切換スリーブ56
とで構成され、切換スリーブ56を軸方向に作動させる
ことにより前後進切換を行う。出力軸50の右端部には
出力ギヤ57が一体に形成されており、この出力ギヤ5
7はディファレンシャル装置60のリングギヤ61と噛
み合い、動力を車軸62に伝達している。
The output shaft 50 is also arranged parallel to the input shaft 10, and a forward/reverse switching mechanism 51 is provided on the output shaft 50. The forward/reverse switching mechanism 51 includes a forward driven gear 52 that meshes with the forward drive gear 48, a reverse driven gear 54 that meshes with the reverse drive gear 49 via an idler gear (not shown), and a spline hub 55. Switching sleeve 56
By operating the switching sleeve 56 in the axial direction, forward and backward switching is performed. An output gear 57 is integrally formed on the right end of the output shaft 50.
7 meshes with a ring gear 61 of a differential device 60 and transmits power to an axle 62.

出力軸50の左端部は入力軸lOとほぼ同長だけ左方へ
延長されており、この延長部には、上記入力ディスク2
1と対応する位置に直結クラッチ70が配置されている
。直結クラッチ70のクラッチドラム71は出力軸50
とスプライン結合されており、このクラッチドラム71
とクラッチ坂72を介して断続されるクラッチハブ73
が直結従動ギヤ74に結合されている。直結従動ギヤ7
4は出力軸50に対して回転自在であり、上記カムディ
スク31に一体形成した直結駆動ギヤ31bと噛み合っ
ている。なお、第1図は展開断面図であるため両ギヤ3
1b、74が離れているが、実際には噛み合っている。
The left end of the output shaft 50 is extended to the left by approximately the same length as the input shaft 1O, and this extension includes the input disk 2.
A direct coupling clutch 70 is disposed at a position corresponding to 1. The clutch drum 71 of the direct coupling clutch 70 is connected to the output shaft 50
This clutch drum 71
and a clutch hub 73 that is connected and disconnected via a clutch slope 72
is coupled to a directly coupled driven gear 74. Directly connected driven gear 7
4 is rotatable with respect to the output shaft 50 and meshes with a direct drive gear 31b formed integrally with the cam disk 31. Note that since Figure 1 is a developed cross-sectional view, both gears 3
Although 1b and 74 are separated, they actually mesh.

また、トロイダル変速部20のパワーローラ23.24
 も実際には第1図二点鎖線で示すように出力軸50に
対し近接している。
In addition, the power rollers 23 and 24 of the toroidal transmission section 20
is actually close to the output shaft 50, as shown by the two-dot chain line in FIG.

上記トロイダル変速部20と直結クラフチ70を収容し
た室80と、軸受IL1’2や前後進切換機構51、デ
ィファレンシャル装置60などの部品を収容した室81
とは、ケーシング2に設けた隔壁2aによって区画され
ており、オイルシール82,83.84によって画室8
0.81間の油漏れが防止されている。そして、軸受1
1.12や前後進切換機構51などのギヤ機構はオイル
ポンプ7によって吐出される鉱物系油で潤滑され、トロ
イダル変速部20や直結クラッチ70はオイルポンプ3
5によって吐出されるトラクションオイルで/I21滑
される。つまり、摩擦損失を極力低減したい軸受11,
12やギヤ機構には/12I滑性に優れたギヤオイルや
ATFなどの鉱物系油を使用し、トラクション駆動を行
うトロイダル変速部20にはトラクション係数の高いト
ラクションオイルを使用しているので、軸受11,12
やギヤ機構の動力を員失を低減できるとともに、トロイ
ダル変速眺20の動力伝達効率を向上させることができ
る。
A chamber 80 that accommodates the toroidal transmission section 20 and the direct coupling cruft 70, and a chamber 81 that accommodates components such as the bearing IL1'2, the forward/reverse switching mechanism 51, and the differential device 60.
The compartment 8 is separated by a partition wall 2a provided in the casing 2, and the compartment 8 is separated by oil seals 82, 83, 84.
Oil leakage between 0.81 and 200 mm is prevented. And bearing 1
1.12 and the forward/reverse switching mechanism 51 are lubricated with mineral oil discharged by the oil pump 7, and the toroidal transmission section 20 and direct clutch 70 are lubricated by the oil pump 3.
/I21 is slipped by the traction oil discharged by 5. In other words, the bearing 11 whose friction loss is to be reduced as much as possible,
12 and the gear mechanism use mineral oil such as /12I gear oil with excellent lubricity and ATF, and traction oil with a high traction coefficient is used in the toroidal transmission section 20 that performs traction drive. ,12
It is possible to reduce loss of power of the gear mechanism and the gear mechanism, and to improve the power transmission efficiency of the toroidal shift mechanism 20.

上記構成のトロイダル形無段変速機の動作を説明する。The operation of the toroidal continuously variable transmission having the above configuration will be explained.

まず発進時には直結クラッチ70を遮断し、発進クラッ
チ40を徐々に結合して発進を行う。
First, when starting, the direct coupling clutch 70 is disconnected, and the starting clutch 40 is gradually engaged to start the vehicle.

これにより、入力軸10の動力はトロイダル変速部20
、発進クラッチ40、駆動ギヤ45、カウンタ軸46、
前後進切換機構51、出力ギヤ57からディファレンシ
ャル装置60へと伝達され、トロイダル変速部20で無
段変速しながら動力伝達される。トロイダル変速部20
の変速比が最高速比又はその近傍に達すると、発進クラ
ッチ40が遮断されて直結クラッチ70が結合され、入
力軸10の動力は、トロイダル変速部20を経由せずに
、カムディスク31、直結従動ギヤ74、直結クラッチ
70、出力ギヤ57からディファレンシャル装置60へ
と伝達され、一定伝達比で動力伝達される。したがって
、高速走行時の伝達効率を向上させることができる。
As a result, the power of the input shaft 10 is transferred to the toroidal transmission section 20.
, starting clutch 40, drive gear 45, counter shaft 46,
The power is transmitted from the forward/reverse switching mechanism 51 and the output gear 57 to the differential device 60, and is continuously variable through the toroidal transmission section 20. Toroidal transmission section 20
When the speed ratio reaches the maximum speed ratio or its vicinity, the starting clutch 40 is disengaged and the direct coupling clutch 70 is engaged, and the power of the input shaft 10 is transferred to the cam disc 31 and the direct coupling without passing through the toroidal transmission section 20. The power is transmitted from the driven gear 74, the direct coupling clutch 70, and the output gear 57 to the differential device 60, and the power is transmitted at a constant transmission ratio. Therefore, transmission efficiency during high-speed running can be improved.

第2図において、トロイダル変速部20のトラニオン2
7.28の上下両端部には油圧室80〜83と、油圧室
80〜83内を摺動自在なピストン84〜87が連設さ
れており、油圧室80〜83にオリフィス88〜91を
介して制御油圧P、、P2を供給することによってトラ
ニオン27.28は軸方向(図中上下方向)に移動可能
であり、また自身の軸回りに回動可能である。上記油圧
室のうち、入力軸10の回転方向(図中矢印で示す)と
対向する左下部と右上部が正駆動側油圧室81.82 
、これとは反対側の左上部と右下部が逆駆動側油圧室8
0.83となっている。また、正駆動側油圧室81.8
2に受容されたピストン85.86の軸心には連通孔8
5a 、 86aを有する軸部85b、86bが突設さ
れており、この軸部85b、 86bはケーシング2に
対して慴動自在である。上記連通孔85a 、 86a
にはia滑川トラクションオイルが導かれており、上記
油圧室80〜83に供給される制御/Ib(鉱物系油)
と分離されている。上記一方の連通孔85aに導かれた
トラクションオイルは、トラニオン27の内部に形成さ
れたKR滑孔27a、27bを介してパワ−ローラ23
内部、即ちクランク形状の支軸25、スラスト軸受92
、ボール93、ニードルベアリング94などを潤滑し、
さらにトラニオン27の上端部に形成された潤滑孔27
cからパワーローラ23の外周部、特に入、出力ディス
ク21 、22との接触部へトラクションオイルが供給
される。また、他方の連通孔86aに導かれたトラクシ
ョンオイルもトラニオン28の内部に形成された1lf
ll?に孔28aを介して支軸26、スラスト軸受95
、ボール96、ニードルヘアリング97などを潤滑する
とともに、トラニオン28の上端部に形成された潤滑孔
28bからパワーローラ24と入、出力ディスク21.
22との接触部へ供給される。これにより、パワーロー
ラ23.24内部の発熱や摩耗が防止されるとともに、
パワーローラ23,24と入、出力ディスク21.22
との接触部がトラクションオイルで41される。また、
変速比の変化につれてパワーローラ23,24と入、出
力ディスク21.22との接触部が変化しても、トラニ
オン27 、28はパワーローラ23,24と一体的に
旋回するので、上記潤滑孔27c、 28bからトラク
ションオイルを注出すれば、潤滑の必要な箇所に必要な
量のトラクションオイルを供給でき、オイルの無駄かな
い。特に、実施例のように上記a滑孔27c、 28b
をそれぞれトラニオン27.28の上端部に形成すれば
、大きな油圧を必要とせず最も効率的に接触部を潤滑で
きる。
In FIG. 2, the trunnion 2 of the toroidal transmission section 20
Hydraulic chambers 80 to 83 and pistons 84 to 87 that can freely slide within the hydraulic chambers 80 to 83 are connected to the upper and lower ends of 7.28, and the hydraulic chambers 80 to 83 are connected to the hydraulic chambers 80 to 83 through orifices 88 to 91. The trunnions 27 and 28 can be moved in the axial direction (in the vertical direction in the figure) and rotated about their own axes by supplying the control hydraulic pressures P, , P2. Among the hydraulic chambers, the lower left and upper right, which are opposite to the rotational direction of the input shaft 10 (indicated by the arrow in the figure), are the positive drive side hydraulic chambers 81.82.
, the upper left and lower right on the opposite side are the reverse drive side hydraulic chamber 8.
It is 0.83. In addition, the positive drive side hydraulic chamber 81.8
A communicating hole 8 is provided at the axis of the piston 85, 86 received in the piston 2.
Shaft portions 85b and 86b having shaft portions 5a and 86a are provided in a protruding manner, and these shaft portions 85b and 86b are slidable relative to the casing 2. The communication holes 85a and 86a
IA Namekawa traction oil is led to the control/Ib (mineral oil) supplied to the hydraulic chambers 80 to 83.
is separated from. The traction oil led to one of the communicating holes 85a passes through KR smooth holes 27a and 27b formed inside the trunnion 27 to the power roller 23.
Inside, that is, crank-shaped support shaft 25, thrust bearing 92
, balls 93, needle bearings 94, etc.,
Furthermore, a lubrication hole 27 formed at the upper end of the trunnion 27
Traction oil is supplied from c to the outer circumferential portion of the power roller 23, particularly to the contact portions with the input and output disks 21 and 22. In addition, the traction oil guided to the other communication hole 86a also flows through the 1lf formed inside the trunnion 28.
Ill? The support shaft 26 and the thrust bearing 95 are inserted through the hole 28a.
, the ball 96, the needle hair ring 97, etc., and the power roller 24 and the output disk 21.
22. This prevents heat generation and wear inside the power rollers 23 and 24, and
Power rollers 23 and 24 and input and output disks 21 and 22
The contact area is filled with traction oil. Also,
Even if the contact area between the power rollers 23, 24 and the input and output disks 21, 22 changes as the gear ratio changes, the trunnions 27, 28 rotate integrally with the power rollers 23, 24, so the lubrication hole 27c By pouring out traction oil from , 28b, the necessary amount of traction oil can be supplied to the parts that require lubrication, and no oil is wasted. In particular, as in the embodiment, the a-smooth holes 27c and 28b
If these are formed at the upper ends of the trunnions 27 and 28, respectively, the contact portions can be lubricated most efficiently without requiring large hydraulic pressure.

変速制御バルブ100は、ケーシング2の上面に固定さ
れたパルプボデー101 と、バルブポデーlO1内に
摺動自在に挿通されたスリーブ102と、スリーブ10
2内に摺動自在に挿入されたスプール120との3rf
J構造となっている。上記スリーブ102には4個のボ
ート103〜106が形成されており、中央のボート1
03には油圧源からライン圧PLが導かれ、右側のボー
目04は図示しない油路を介して正駆動側油圧室81.
82と接続され、左側のポート105は図示しない油路
を介してi!!駆動側油圧室80.83と接続され、ポ
ート106はドレンボートである。スリーブ102の右
端部にはピン107が直径方向に貫通固定されており、
スリーブ102はこのピン107を介してステッピング
モータ等からなる変速比制御用のアクチュエータ110
によって軸方向に作動される。すなわち、アクチュエー
タ11゛ 0の回転軸111にはネジ軸112が固定さ
れており、このネジ軸112と螺合するネジ筒113が
スリーブ102の内側に挿通され、このネジ筒113の
切欠113aが上記ピン107と嵌合して回転不能に係
止されている。また、上記ピン107の両端部はスリー
ブ102の外面に突出し、この突出端部ばバルブボデー
101の側面に当接して回り止めされている。
The speed change control valve 100 includes a pulp body 101 fixed to the upper surface of the casing 2, a sleeve 102 slidably inserted into the valve body lO1, and a sleeve 10.
3rf with spool 120 slidably inserted into 2
It has a J structure. Four boats 103 to 106 are formed in the sleeve 102, and a boat 1 in the center is formed.
03, line pressure PL is introduced from the hydraulic source, and the right-hand side bore 04 is connected to the positive drive side hydraulic chamber 81.03 via an oil passage (not shown).
82, and the port 105 on the left side is connected to i! via an oil passage (not shown). ! It is connected to the drive side hydraulic chambers 80, 83, and the port 106 is a drain boat. A pin 107 is fixed through the right end of the sleeve 102 in the diametrical direction.
The sleeve 102 is connected via this pin 107 to an actuator 110 for speed ratio control, which is made up of a stepping motor or the like.
axially actuated by. That is, a screw shaft 112 is fixed to the rotating shaft 111 of the actuator 11'0, a threaded cylinder 113 that is threadedly engaged with the screw shaft 112 is inserted into the inside of the sleeve 102, and the notch 113a of this screw cylinder 113 is inserted into the sleeve 102. It is fitted with the pin 107 and is locked in a non-rotatable manner. Further, both ends of the pin 107 protrude from the outer surface of the sleeve 102, and the protruding ends abut against the side surface of the valve body 101 and are prevented from rotating.

従って、アクチュエータ110の回転軸111がいずれ
かの方向に回転すると、スリーブ102及びネジ筒11
3はピン107を介してパルプボデー101に対して回
り止めされているので、ネジ軸112がネジ筒113内
を蜆進し、スリーブ102とネジ筒113とを一体に軸
方向へ作動させることができる。
Therefore, when the rotating shaft 111 of the actuator 110 rotates in either direction, the sleeve 102 and the threaded cylinder 11
3 is prevented from rotating with respect to the pulp body 101 via the pin 107, so that the screw shaft 112 can move forward inside the screw tube 113, and the sleeve 102 and the screw tube 113 can be moved together in the axial direction. .

上記とン107とスプール120との間には、スリーブ
102とスプール120とを相反方向に付勢するスプリ
ング121が介装されており、このスプリング121の
バネ力により、上記ネジ軸112とネジ筒113とのバ
ンクラッシによるガタを吸収するとともに、スプール1
20を揺動自在なベルクランク122を介してプリシス
カム123と常時当接させている。上記ブリシスカム1
23は左側のトラニオン27の上端部とロッド124に
よって連結されており、これによりブリシスカム123
はトラニオン27と一体に回転してスプール120を進
退させることができる。
A spring 121 is interposed between the shaft 107 and the spool 120, and the spring 121 biases the sleeve 102 and the spool 120 in opposite directions. In addition to absorbing the backlash caused by the bank crash with 113, the spool 1
20 is always brought into contact with a presis cam 123 via a swingable bell crank 122. Brisis cam 1 above
23 is connected to the upper end of the left trunnion 27 by a rod 124, so that the brisis cam 123
can rotate together with the trunnion 27 to move the spool 120 forward and backward.

上記トロイダル変速部20の変速比を変える場合には、
アクチュエータ110の回転軸111を正転又は逆転さ
せてスリーブ102を左右いずれかの方向に作動させれ
ばよい。例えばスリーブ102を図中右方へ作動させる
と、ポー目03.105が連通してライン圧は逆駆動側
油圧室80.83に導かれるとともに、正駆動(1す油
圧室81.82の油圧はポー目04からスプール120
の軸心に形成された連通孔120aを介してドレンボー
ト106よりドレンされる。したがって、逆駆動側油圧
室80.83の油圧が高くなり、左側のトラニオン27
は下方へ、右側のトラニオン28は上方へそれぞれ移動
し、それに伴ってパワーローラ23.24に加わる接線
方向の力の向きが変化するので、左側のパワーローラ2
3とトラニオン27は上方から見て左回り方向に回転し
、右側のパワーローラ24とトラニオン28は上方から
見て右回り方向に回転する。すなわち、トロイダル変速
部20は低速比側へ変速される。そして、左側のトラニ
オン27と一体回転するブリシスカム123 も左回り
方向に回転し、ベルクランク122を介してスプール1
20をポート105が閉しられるまで右方へ押すため、
トロイダル変速部20は所望の変速比で維持される。上
記のようにスリーブ102を右方へ作動させるとトロイ
ダル変速部20は低速比側へ変速され、スリーブ102
を左方へ作動させると高速比側へ変速される。
When changing the gear ratio of the toroidal transmission section 20,
The sleeve 102 may be operated in either the left or right direction by rotating the rotating shaft 111 of the actuator 110 in the normal or reverse direction. For example, when the sleeve 102 is moved to the right in the figure, the ports 03.105 are communicated and the line pressure is guided to the reverse drive side hydraulic chamber 80.83, and the forward drive (1st hydraulic pressure chamber 81.82 hydraulic pressure is spool 120 from po eye 04
The water is drained from the drain boat 106 through a communication hole 120a formed in the axis of the drain boat 106. Therefore, the hydraulic pressure in the reverse drive side hydraulic chamber 80.83 becomes high, and the left trunnion 27
moves downward, and the right trunnion 28 moves upward, and the direction of the tangential force applied to the power rollers 23 and 24 changes accordingly.
3 and the trunnion 27 rotate in a counterclockwise direction when viewed from above, and the power roller 24 and trunnion 28 on the right side rotate in a clockwise direction when viewed from above. That is, the toroidal transmission section 20 is shifted to the lower speed ratio side. The brisis cam 123, which rotates integrally with the left trunnion 27, also rotates counterclockwise, and the spool 1
20 to the right until port 105 is closed.
The toroidal transmission section 20 is maintained at a desired transmission ratio. When the sleeve 102 is operated to the right as described above, the toroidal transmission section 20 is shifted to the lower speed ratio side, and the sleeve 102 is moved to the right.
When operated to the left, the gear is shifted to the high speed ratio side.

発明の効果 以上の説明で明らかなように、本発明によればトラニオ
ンは変速比の変化につれてパワーローラと共に旋回する
ので、トラニオンの/rJ滑孔から注出されたトラクシ
ョンオイルはパワーローラと入、出力ディスクの接触部
を効率良<潤滑でき、トラクションオイルの無駄がない
。したがって、パワーローラと入、出力ディスクとの接
触部の油膜剥離といった不具合を解消でき、常に伝達効
率のよいトラクション駆動を行うことができる。
Effects of the Invention As is clear from the above explanation, according to the present invention, the trunnion rotates together with the power roller as the gear ratio changes, so the traction oil poured out from the /rJ slot of the trunnion enters the power roller. The contact parts of the output disc can be efficiently lubricated and there is no wastage of traction oil. Therefore, problems such as oil film peeling at the contact portions between the power roller and the input and output disks can be eliminated, and traction drive with good transmission efficiency can be performed at all times.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明にかかるトロイダル形無段fJ機の一例
の展開断面図、第2図は第1図のn−n線断面図、第3
図は第2図の[[[−1線断面図である。 10・・・入力軸、20・・・トロイダル変速部、21
・・・入力ディスク、22・・・出力ディスク、23.
24・・・パワーローラ、25.26・・・支軸、27
.28・・・トラニオン、27a。 27b、27c、28a、28b −Q滑孔。
FIG. 1 is a developed cross-sectional view of an example of a toroidal stepless fJ machine according to the present invention, FIG. 2 is a cross-sectional view taken along line nn in FIG. 1, and FIG.
The figure is a sectional view taken along the line [[[-1] of FIG. 10... Input shaft, 20... Toroidal transmission section, 21
...Input disk, 22...Output disk, 23.
24...Power roller, 25.26...Spindle, 27
.. 28... Trunnion, 27a. 27b, 27c, 28a, 28b -Q smooth hole.

Claims (1)

【特許請求の範囲】[Claims] (1)対向配置された入、出力ディスクと、入、出力デ
ィスク間に圧接状態で配置された一対のパワーローラと
、パワーローラを支軸を介して回転自在に支持し、軸方
向に移動可能でかつ自身の軸回りに回動可能な一対のト
ラニオンとを備え、トラニオンを軸方向に作動させるこ
とにより変速比を可変としたトロイダル形無段変速機に
おいて、上記トラニオンの内部にパワーローラと入、出
力ディスクとの接触部にトラクションオイルを導く潤滑
孔を形成したことを特徴とするトロイダル形無段変速機
の潤滑装置。
(1) Input and output disks are placed opposite each other, a pair of power rollers are placed in pressure contact between the input and output disks, and the power roller is rotatably supported via a support shaft and can be moved in the axial direction. In a toroidal continuously variable transmission that is equipped with a pair of trunnions that are large and can rotate around their own axis, and that changes the gear ratio by operating the trunnions in the axial direction, a power roller is inserted inside the trunnions. A lubricating device for a toroidal continuously variable transmission, characterized in that a lubricating hole for guiding traction oil is formed in a contact portion with an output disk.
JP12404986A 1986-05-29 1986-05-29 Lubricating device for troidal-shaped continuously variable transmission Pending JPS62283256A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12404986A JPS62283256A (en) 1986-05-29 1986-05-29 Lubricating device for troidal-shaped continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12404986A JPS62283256A (en) 1986-05-29 1986-05-29 Lubricating device for troidal-shaped continuously variable transmission

Publications (1)

Publication Number Publication Date
JPS62283256A true JPS62283256A (en) 1987-12-09

Family

ID=14875719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12404986A Pending JPS62283256A (en) 1986-05-29 1986-05-29 Lubricating device for troidal-shaped continuously variable transmission

Country Status (1)

Country Link
JP (1) JPS62283256A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4960004A (en) * 1988-05-17 1990-10-02 Nissan Motor Co., Ltd. Continuously variable traction roller transmission
US5048359A (en) * 1989-08-15 1991-09-17 Nissan Motor Co., Ltd. Toroidal continuously variable transmission
US6682457B1 (en) 1999-11-01 2004-01-27 Nsk Ltd. Toroidal type continuously variable transmission
JP2009236234A (en) * 2008-03-27 2009-10-15 Masahiro Okubo Multistage automatic transmission
JP2015001301A (en) * 2013-06-18 2015-01-05 本田技研工業株式会社 Vehicle power transmission device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4960004A (en) * 1988-05-17 1990-10-02 Nissan Motor Co., Ltd. Continuously variable traction roller transmission
US5048359A (en) * 1989-08-15 1991-09-17 Nissan Motor Co., Ltd. Toroidal continuously variable transmission
US6682457B1 (en) 1999-11-01 2004-01-27 Nsk Ltd. Toroidal type continuously variable transmission
US7001305B2 (en) 1999-11-01 2006-02-21 Nsk Ltd. Toroidal type continuously variable transmission
JP2009236234A (en) * 2008-03-27 2009-10-15 Masahiro Okubo Multistage automatic transmission
JP2015001301A (en) * 2013-06-18 2015-01-05 本田技研工業株式会社 Vehicle power transmission device

Similar Documents

Publication Publication Date Title
US4619630A (en) Belt type continuous reduction gear mechanism
CA1130112A (en) Variable pulley transmission
JPH02107859A (en) Planetary gear device
WO1995033147A1 (en) Friction type non-stage transmission
JP2790627B2 (en) Control method and control device for belt continuously variable transmission
US5032108A (en) Non-stage transmission for vehicle
JP4020240B2 (en) Lubrication structure in continuously variable transmission
JPS62283256A (en) Lubricating device for troidal-shaped continuously variable transmission
JPS58102827A (en) Device for adjusting amount of cooling oil for hydraulic pressure operating type friction clutch
JPH0539833A (en) Toroidal continuously variable transmission
JP3748680B2 (en) Lubricating structure of continuously variable transmission
JPS6081595A (en) Lubricating mechanism for outer periphery of rotary shaft
JPS6124753Y2 (en)
JP4026938B2 (en) Lubricator for continuously variable transmission
KR0144808B1 (en) Oil-pressure clutch of a ship
JPS60252870A (en) Speed changer equipping belt-type continuously variable transmission
JPH02134450A (en) Lubrication device of continuous variable transmission with belt
JP3785857B2 (en) Lubrication structure of power transmission device
JPH11101321A (en) Toroidal type continuously variable transmission
JPH0232924Y2 (en)
JPS6346754Y2 (en)
JPS61105345A (en) Pulley structure for belting type stepless transmission
JPH0238142A (en) Power distribution device of four-wheel drive vehicle
JP2788633B2 (en) Belt continuously variable transmission
JP2689641B2 (en) Auxiliary transmission of a vehicle power transmission device