JPS62282604A - Composite semipermeable membrane for separating material and its production - Google Patents

Composite semipermeable membrane for separating material and its production

Info

Publication number
JPS62282604A
JPS62282604A JP12592886A JP12592886A JPS62282604A JP S62282604 A JPS62282604 A JP S62282604A JP 12592886 A JP12592886 A JP 12592886A JP 12592886 A JP12592886 A JP 12592886A JP S62282604 A JPS62282604 A JP S62282604A
Authority
JP
Japan
Prior art keywords
semipermeable membrane
membrane
polymer
composite semipermeable
substance separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12592886A
Other languages
Japanese (ja)
Inventor
Setsuo Baba
馬場 節雄
Satoshi Matsumoto
聰 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP12592886A priority Critical patent/JPS62282604A/en
Publication of JPS62282604A publication Critical patent/JPS62282604A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To obtain a composite semipermeable membrane which can maintain high sepn. performance for a long period of time by interposing metal near the surface of the semipermeable membrane and forming an ultra-thin film layer consisting of a high polymer having affinity to the semipermeable membrane and metal onto said semipermeable membrane. CONSTITUTION:The semipermeable membrane of the asymmetrical structure formed by casting a film forming soln. of cellulose acetate, etc., on a glass plate and immersing the same in cold water, etc., is heat-teated in a hot water bath cong. metallic ions of ferric sulfate, etc., and is washed; thereafter, the membrane is immersed into a high-polymer soln. of a PVA, etc. The composite semipermeable membrane which contains average >=100ppm metal near the surface of the membrane (active layer side) and has further the ultra-thin film layer of the high-polymer for immobilizing the metal onto the surface is thus obtd.

Description

【発明の詳細な説明】 3、発明の詳細な説明 [産業上の利用分野] 本発明は物質分離特性の優れた新規な半透膜、およびそ
の製造方法を提供するものである。さらに詳しくは半透
膜の表面付近に金属を存在させ、ざらに該半透膜上に超
薄膜層を有する複合半透膜、およびその新規な製造方法
を提供するものでおる。
Detailed Description of the Invention 3. Detailed Description of the Invention [Field of Industrial Application] The present invention provides a novel semipermeable membrane with excellent substance separation properties and a method for producing the same. More specifically, the present invention provides a composite semipermeable membrane in which a metal is present near the surface of the semipermeable membrane and an ultra-thin membrane layer on the semipermeable membrane, and a novel method for producing the same.

[従来技術1 分離膜は、物質の分離、濶縮必るいは精製など種々の分
野においてその重要性を増している。
[Prior Art 1 Separation membranes are becoming increasingly important in various fields such as substance separation, shrinkage, and purification.

代表的な例としては、逆浸透膜を利用した海水、かん水
の淡水化、超純水の製造、透析膜を利用した人口腎臓、
限外;濾過膜を利用したジュースの濃縮などがあり、ざ
らに酸素富化膜、酸素固定化膜などの開発も進んでいる
Typical examples include desalination of seawater and brine using reverse osmosis membranes, production of ultrapure water, artificial kidneys using dialysis membranes,
Extreme: Juice concentration using filtration membranes, etc., and the development of oxygen enrichment membranes, oxygen fixation membranes, etc. is also progressing.

一般に分1!If膜には、緻密層と多孔層からなる非対
称半透膜と多孔性基膜上に0.01〜0.1μ程度の超
薄層を形成させた複合半透膜とがあり、複合半透膜の方
が分離性能を支配する活性層を薄くできる点で有利とさ
れている。
Generally 1 minute! There are two types of If membranes: asymmetric semipermeable membranes consisting of a dense layer and a porous layer, and composite semipermeable membranes in which an ultra-thin layer of about 0.01 to 0.1μ is formed on a porous base membrane. Membranes are said to have an advantage in that the active layer, which governs separation performance, can be made thinner.

従来、複合半透膜を形性する方法としては次のような方
法が代表的である。
Conventionally, the following methods are typical as methods for shaping composite semipermeable membranes.

(1)多孔性基膜上に、ポリマーの希薄溶液をコーティ
ングし、溶媒を蒸発させて超薄膜を形成させる。
(1) A dilute solution of a polymer is coated on a porous base film, and the solvent is evaporated to form an ultra-thin film.

(2)多孔性基膜上にモノおよび/またはプロポリマー
をコーティングし、界面重合反応などにより超薄膜を形
成させる。
(2) Coating a mono- and/or propolymer onto a porous base film and forming an ultra-thin film by interfacial polymerization reaction or the like.

(3)水面展開法などにより形成させた超薄膜を多孔性
基膜上に積層する。
(3) An ultra-thin film formed by a water surface spreading method or the like is laminated on a porous base film.

しかしながら、(1)においては、欠点のない超薄膜を
1けるのは一般に困難であり、また(2)においては反
応条件のコントロールがむずかしく、再現性よく超薄膜
を1qるのが困難である。また(3)においては超薄膜
を他の基膜上に積層させる際に超薄膜を傷つける恐れが
おる。しかも現在提案されている複合膜はその支持膜と
超8膜層の素材組み合せが限られてあり、耐溶剤性、耐
溶存酸素性、耐塩素性が改善されるべき大きな問題とな
っている。
However, in (1), it is generally difficult to produce an ultra-thin film without defects, and in (2), it is difficult to control the reaction conditions, making it difficult to produce an ultra-thin film with good reproducibility. In addition, in (3), there is a risk of damaging the ultra-thin film when it is laminated on another base film. Moreover, the currently proposed composite membranes have limited combinations of materials for the support membrane and super 8 membrane layers, and this poses a major problem that requires improvement in solvent resistance, dissolved oxygen resistance, and chlorine resistance.

このような問題点を解決する方法の1つとして逆浸透膜
の分野では、製V後ざらに各種の半透膜処理剤で処理す
る方法が研究され提案されている(ディー、バーグマン
ラ、プロシイーディングオブ ザ セブンス インター
ナショナル シンポジウム オン フレッシュ ウォー
ター フロム ザ シー>(D、Bargeman  
et。
As one method to solve these problems, in the field of reverse osmosis membranes, methods have been researched and proposed in which the membrane is treated with various semipermeable membrane treatment agents after V membrane production (Dee, Bergmanra, Eating of the Seventh International Symposium on Fresh Water from the Sea> (D, Bargeman
etc.

al、、Proceeding  of  the7t
h  Tnternational  Sympusi
um  Orl  Fresh  waterfrom
  the  3ea、Vol、2.99〜104.1
980>。
al,,Proceeding of the7t
h International Sympusi
um Orl Fresh water from
the 3ea, Vol, 2.99-104.1
980>.

この方法は半透膜を適当な高分子溶液に浸漬処理して分
離性能を低下させている半透膜中の比較的径の大きい細
孔を高分子で孔うめすることにより膜性能を向上させる
ものであるが、この場合膜性能評価中に処理高分子の膜
からの脱離により膜i生能が急速に低下するという問題
がおる。この対策として著者らは処理高分子をざらに栗
絡することを提案している。しかし、架橋反応の場合、
反応を均一かつ十二分に完結さることは難しく、未反応
部分が欠点として残存し、性能の改善効果に限界がおり
、事実、塩排除率99%以上の高性能の膜を1qるには
至っていない。また、架橋反応の前後の処理工程が複雑
となり、製造ロス1〜上不利となる。
This method improves membrane performance by immersing a semipermeable membrane in a suitable polymer solution and filling the relatively large pores in the semipermeable membrane with polymer, which reduce separation performance. However, in this case, there is a problem that the membrane i performance rapidly decreases due to desorption of the treated polymer from the membrane during membrane performance evaluation. As a countermeasure to this problem, the authors propose to roughly coat the treated polymer. However, in the case of crosslinking reactions,
It is difficult to complete the reaction uniformly and sufficiently, unreacted parts remain as defects, and there is a limit to the effect of improving performance. Not yet reached. Moreover, the processing steps before and after the crosslinking reaction become complicated, resulting in a production loss of 1 or more.

また、非対称膜の透過性能を改良する方法として本発明
者らは、特願昭60−.21969号において、非対称
膜中に金属を含有させ、かつ金属が表面に温度高く分布
していることを特徴とする半透膜を提案した。特願昭6
0−21969号に記載の発明は、膜性能が顕著に向上
する方法に関するものc必る。しかし、この方法におい
ては長明間過皓な条件で使用した場合に、金属が徐々に
溶出し、初期の分離性能が次第に低下することがわかっ
た。
In addition, as a method for improving the permeation performance of an asymmetric membrane, the present inventors have proposed a method for improving the permeation performance of an asymmetric membrane. In No. 21969, they proposed a semipermeable membrane characterized by containing metal in an asymmetric membrane and distributing the metal at a high temperature on the surface. Special request 1976
The invention described in No. 0-21969 relates to a method for significantly improving membrane performance. However, it has been found that when this method is used under long exposure conditions, the metal gradually dissolves and the initial separation performance gradually deteriorates.

[発明が解決しようとする問題点] 本発明者らはこうした事情に鑑み、上)ホしたような従
来技術を改善し、高性能の膜を1qるべく鋭意検討した
結果、本発明に到達したものである。
[Problems to be solved by the invention] In view of these circumstances, the inventors of the present invention have improved the conventional technology as described in (a) above and conducted intensive studies to create a high-performance membrane of 1q, and as a result, they have arrived at the present invention. It is something.

すなわち本発明の目的は、膜の表面付近に金属を存在さ
せ、さらにこの金属層を固定化するため所定の高分子を
超薄膜状に形成させた高性能複合半透膜、およびその製
造方法を提供することにある。
That is, the object of the present invention is to provide a high-performance composite semipermeable membrane in which a metal is present near the surface of the membrane and a predetermined polymer is formed into an ultra-thin film to fix the metal layer, and a method for manufacturing the same. It is about providing.

[問題点を解決するための手段] 本発明は上記目的を達成するために、下記の構成からな
る。
[Means for Solving the Problems] In order to achieve the above object, the present invention has the following configuration.

[(1)物質分離能を有する半透膜において、護膜は、
平均値として10pμm以上の金属(A>を含有する半
透膜(B)であって、かつ、この上に半透膜(B)、お
よび金属(A>に対して親和性を有する高分子(C)の
7i4膜が設けられていることを特徴とする物質分離用
複合半透膜。
[(1) In a semipermeable membrane having substance separation ability, the protective membrane is
A semipermeable membrane (B) containing a metal (A> with an average value of 10 pμm or more, and a semipermeable membrane (B) containing a polymer (B) having an affinity for the metal (A>) on the semipermeable membrane (B) A composite semipermeable membrane for substance separation, characterized in that it is provided with the 7i4 membrane of C).

(2)  物質分離能を有する複合半透膜の製造におい
て、原料であるキャスト液を蒸発処理し、次に凝固処理
することによって非対称構造半透膜を作成し、その後に
熱処理するに際し、該熱!la理浴中に金属イオンを含
有させて処理し、ざらに高分子の希薄溶液で処理するこ
とを特徴とする物質分離用複合半透膜の製造方法。」 本発明でいう物質分離用半透膜とは、物質の透過性の差
を利用して特定の物質を分離、濃縮、あるいは精製する
ために用いられる半透性をもった膜をいい、逆浸透膜、
限外;濾過膜、透析膜などの液体分離用半透膜、ガス分
離用半透膜、イオン交換膜などをめげることができる。
(2) In the production of composite semipermeable membranes with substance separation ability, a semipermeable membrane with an asymmetric structure is created by evaporating the raw material casting liquid and then solidifying it, and then heat-treating it. ! 1. A method for producing a composite semipermeable membrane for substance separation, characterized in that the membrane is treated by containing metal ions in a bath and then treated with a dilute solution of a polymer. ” In the present invention, the semipermeable membrane for substance separation refers to a membrane with semipermeability that is used to separate, concentrate, or purify a specific substance by utilizing the difference in permeability of substances. permeable membrane,
Extreme: Semipermeable membranes for liquid separation such as filtration membranes and dialysis membranes, semipermeable membranes for gas separation, ion exchange membranes, etc. can be used.

これらの半透膜に形態については特に限定されることは
なく、平膜状、管状、中空糸状など各種のものに適用で
きる。
The shape of these semipermeable membranes is not particularly limited, and various shapes such as a flat membrane, a tubular shape, and a hollow fiber shape can be applied.

また膜素材、膜構造についても、酢酸セルロースの他に
ポリアクリロニトリル、ポリスルホン、ポリアミド、ポ
リベンズイミダゾールなどを膜素材とする非対称構造を
もった半透膜、および複合半透膜についても適用できる
Regarding membrane materials and membrane structures, semipermeable membranes with asymmetric structures and composite semipermeable membranes made of polyacrylonitrile, polysulfone, polyamide, polybenzimidazole, etc. in addition to cellulose acetate are also applicable.

本発明において金属とはいかなるものであってもよいが
、好ましくは比重が4.0以上であり、更に好ましくは
Fe、Ti、Pb、Crから選ばれる1種以上である。
In the present invention, the metal may be any metal, but preferably has a specific gravity of 4.0 or more, and more preferably one or more selected from Fe, Ti, Pb, and Cr.

この理由は定かでないが、実験事実より確められたもの
である。金属はイオンの形でもキレートでも元素の形で
もいかなるものであってもよい。
The reason for this is not clear, but it has been confirmed by experimental facts. The metal may be in any ionic, chelated, or elemental form.

本発明においては、膜の表層部の金属の′Q度が、膜の
中心部に比較して10倍以上でおることが分離能を向上
させる意味で好ましく、特には100倍以上である。
In the present invention, it is preferable that the 'Q degree of the metal in the surface layer of the membrane is 10 times or more as compared to the center of the membrane in order to improve the separation ability, particularly 100 times or more.

また、本発明における金属固定化用高分子としては、極
性および非極性部分を有し、半透膜および表層の金属に
吸着能を有するものが用いられる。
Further, as the metal immobilizing polymer in the present invention, a polymer having polar and non-polar parts and having adsorption ability to the semipermeable membrane and the surface metal is used.

上記の高分子は、処理溶液゛の形で希薄溶液として高分
子および溶媒とからなっているが、必要に応じて他の添
加剤を含有させることもできる。該高分子は、半透膜お
よび金属の種類に応じて選ばれるが、代表的な例として
は、ポリビニルアルコール、部分0ん化ポリ酢酸ビニル
、部分【プん化ポリ酢酸ビニルと無水マレイン酸のエス
テル化物、酢酸ビニルと無水マレイン酸必るいはビニル
ピロリドンの共重合体、ポリエチレンイミンなどが必げ
られるが、処理すべき膜、および膜中に含まれる金属に
対して親和性を有し、かつ適度の親和性を示す高分子で
あればここに挙げた高分子に限定されることはない。
The above-mentioned polymer is composed of the polymer and a solvent as a dilute solution in the form of a treatment solution, but other additives may be included as required. The polymer is selected depending on the semipermeable membrane and the type of metal, but typical examples include polyvinyl alcohol, partially carbonated polyvinyl acetate, partially carbonated polyvinyl acetate and maleic anhydride. Esterified products, copolymers of vinyl acetate and maleic anhydride or vinyl pyrrolidone, polyethyleneimine, etc. are required, but they have an affinity for the membrane to be treated and the metals contained in the membrane, and The polymers are not limited to those listed here as long as they exhibit appropriate affinity.

本発明方法における製膜方法としては、特に限定される
ことはないが、支持体上にキャスト後、溶媒の一部を蒸
発させたのち凝固浴に導く通常の湿式製脱法で1qだ膜
が本発明には好ましい。
The method for forming a film in the method of the present invention is not particularly limited, but a film of 1q can be formed by a normal wet-forming method in which after casting on a support, part of the solvent is evaporated and the film is introduced into a coagulation bath. Preferable for invention.

ざらに本発明の特徴である膜への金睨の吸着方法として
は、護膜を熱処理工程に導き処理を行なう前、後あるい
は熱!2!i理浴中でよいが、好ましくは熱処理工程で
行なうのがよい。処理浴に添加する金属の形としては、
具体例として例えば3価の鉄イオンでは、硫酸第2鉄、
塩化第2鉄、硝酸第2鉄などの無機塩、フェリシアン化
カリウム、フェリシアン化ナトリウムなどの精塩、水酸
化第2鉄などの塩基、アセチルアセトン第2鉄、チオシ
アン第2鉄などの有機金属塩を挙げることができる。な
かでも硫酸第2鉄、塩化第2鉄、硝酸第2鉄などの無機
塩が本発明には適している。
Roughly speaking, the method of adsorbing gold glaze onto the film, which is a feature of the present invention, is possible before or after the protective film is introduced into the heat treatment process, or after heat treatment. 2! Although it may be carried out in a bath, it is preferably carried out in a heat treatment step. The form of metal added to the treatment bath is
As a specific example, for trivalent iron ions, ferric sulfate,
Inorganic salts such as ferric chloride and ferric nitrate, purified salts such as potassium ferricyanide and sodium ferricyanide, bases such as ferric hydroxide, and organic metal salts such as ferric acetylacetone and ferric thiocyanate. can be mentioned. Among them, inorganic salts such as ferric sulfate, ferric chloride, and ferric nitrate are suitable for the present invention.

次に、上記金属の固定化処理のための薄膜形成の方法に
ついて説明する。処理液は、半透膜(B)および半透膜
中に含有される金属(A>に対して親和性を有する高分
子およびその溶液からなっている。高分子の溶媒として
は、水の他にメタノール、エタノールなどの脂肪族アル
コール、前記脂肪族アルコールと水との混合溶媒などが
各種の膜素材に対して汎用的に用いられるが、前記高分
子を溶解し、かつ処理される半透膜に対して実質的に影
響を及ぼさないものでおればと/すな溶媒でも使用可能
である。
Next, a method for forming a thin film for the metal immobilization process will be described. The treatment liquid consists of a semipermeable membrane (B) and a polymer that has an affinity for the metal (A>) contained in the semipermeable membrane, and a solution thereof. Aliphatic alcohols such as methanol and ethanol, mixed solvents of the aliphatic alcohol and water, etc. are commonly used for various membrane materials. Any other solvent can be used as long as it does not have a substantial effect on the solvent.

処理液の温度は5%以下、好ましくは2%以下が還ばれ
る。温度が5%を越えると形成される薄膜が厚くなりす
ぎて、透水性能が低下するので好ましくない。
The temperature of the treatment liquid is reduced to 5% or less, preferably 2% or less. If the temperature exceeds 5%, the thin film formed will become too thick and the water permeability will deteriorate, which is not preferable.

薄膜形成は、上記処理液に所定の金属を含有する半透膜
を接触させることによって行なわれる。
Thin film formation is performed by bringing a semipermeable membrane containing a predetermined metal into contact with the treatment liquid.

その方法には浸漬処理、前記浸漬処理方法と実質的に同
等の母および時間、処理溶液を半透膜表面に塗布して処
理する方法などが用いられる。
The method includes a dipping treatment, a method of applying a treatment solution to the surface of the semipermeable membrane using substantially the same conditions and times as the aforementioned dipping treatment method, and the like.

これらの処理により形成された薄膜は、半透膜および該
半透膜中に含有されている金属に対して親和性を有して
いるので使用中に剥離することはない。また、半透膜中
に含まれている金属も、半透膜上に設けられる薄膜の存
在のために使用中に脱離することはなく、初期の性能を
維持することができる。
The thin film formed by these treatments has an affinity for the semipermeable membrane and the metal contained in the semipermeable membrane, so it will not peel off during use. Moreover, the metal contained in the semipermeable membrane does not desorb during use due to the presence of the thin film provided on the semipermeable membrane, and the initial performance can be maintained.

次に本発明による複合半透膜について図により説明する
。第1図に本発明の複合半透膜の模式的な断面図を、第
2図には活性層付近を拡大した断面図を示す。この図に
示すように本発明による複合半透膜は、膜の表面付近近
く(活性層側)に金属を含有し、さらに表面に金属を固
定化するための超薄膜を有していることが¥f徴である
Next, the composite semipermeable membrane according to the present invention will be explained using figures. FIG. 1 shows a schematic cross-sectional view of the composite semipermeable membrane of the present invention, and FIG. 2 shows an enlarged cross-sectional view of the vicinity of the active layer. As shown in this figure, the composite semipermeable membrane according to the present invention contains metal near the surface of the membrane (on the active layer side) and further has an ultra-thin film on the surface for fixing the metal. It costs ¥f.

次に、半透膜に含有される金属と半透膜表面の薄膜層の
高分子の分析について述べる。
Next, we will discuss the analysis of the metals contained in the semipermeable membrane and the polymers in the thin film layer on the surface of the semipermeable membrane.

膜の断面方向における金属の存在量は、2次イオン質聞
分析装置SIMS (SecondaryJom  M
ass  3pectroscopV)。
The amount of metal present in the cross-sectional direction of the membrane was measured using a secondary ion spectrometer SIMS (SecondaryJom M
ass 3pectroscope V).

フランス国CAMECA社製、タイプIMS−3F、薄
膜の高分子の層は、X線光電子分光装置ESCA (E
 l ect ron  ’5pect roscOp
y for  Chemrca+  Analysis
)、島津製作所、タイプESCA750などで、具体的
には存在量を確認することができる。
Manufactured by CAMECA in France, type IMS-3F, the thin polymer layer is an X-ray photoelectron spectrometer ESCA (E
l ectron '5pect roscOp
y for ChemRCA+ Analysis
), Shimadzu Corporation, type ESCA750, etc., to specifically confirm the abundance.

し実施例] 以下に本発明を実施例により説明する。Examples] The present invention will be explained below using examples.

実施例において、逆浸透膜性能は1500pμmの食塩
を含む食塩水を30−/−で加圧して、流速10m/分
で膜面に流した場合の水分透過量と塩排除率によって示
す。
In the examples, the reverse osmosis membrane performance is shown by the water permeation amount and salt rejection rate when a saline solution containing 1500 pμm of salt is pressurized at 30 −/− and flowed over the membrane surface at a flow rate of 10 m/min.

逆浸透膜の性能は通常、水分透過量と塩排除率が相反し
て変化するが、膜固有の性能指標としてA2/Bあるい
はA3/B(Aは水分透過係数(Q/cnf −sec
 −atm > 、Bは塩分透過係数<cm/sec 
>である)はほぼ一定でおる。本実施例ではA3/Bを
膜性能と指標として用い、仁の値を比較することによっ
て複合半透膜形成による膜性能向上効果を確認した。膜
厚ははダイアルゲージで測定した。実施例としては逆浸
透膜を例示するにとどめるが、これによって本発明が逆
浸透膜に限定されることはない。
The performance of reverse osmosis membranes usually changes with the amount of water permeation and the salt rejection rate, but the performance index specific to the membrane is A2/B or A3/B (A is the water permeation coefficient (Q/cnf -sec
-atm>, B is the salt permeability coefficient<cm/sec
> remains almost constant. In this example, A3/B was used as an index of membrane performance, and the membrane performance improvement effect by forming a composite semipermeable membrane was confirmed by comparing the ratio values. The film thickness was measured using a dial gauge. Although a reverse osmosis membrane is only illustrated as an example, the present invention is not limited to reverse osmosis membranes.

実施例1 アセデル化度43,2%のセルローストリアセテートと
アセデル化度39.8%のセルロースジアセテートを4
二6の割合で混合したちの20部、ジオキサン40部、
アセトン27部、ブタンテトラカルボン酸3部、メタノ
ール10部からなる製膜溶液を作製した。装膜は30’
Cの雰囲気でガラス板上にアプリケーターを用いて厚さ
0.2mmに溶液を流延し、約1分間乾燥後、ガラス板
とともに約20分間10’Cの冷水中に浸漬し、ガラス
板から剥離させて行なった。
Example 1 Cellulose triacetate with acedylation degree of 43.2% and cellulose diacetate with acedylation degree of 39.8% were
20 parts of dioxane mixed in a ratio of 26 parts, 40 parts of dioxane,
A film-forming solution consisting of 27 parts of acetone, 3 parts of butanetetracarboxylic acid, and 10 parts of methanol was prepared. The coating is 30'
The solution was cast onto a glass plate to a thickness of 0.2 mm using an applicator in an atmosphere of C, and after drying for about 1 minute, it was immersed together with the glass plate in cold water at 10'C for about 20 minutes, and peeled off from the glass plate. I let him do it.

このようにして得られた未熟処理膜を硫酸第2鉄を5m
m%含む熱水浴(温度75°C)中で5分間熱処理し、
次いで冷水中で水洗後、更に重合度1000、け/ν化
度80%のポリビニルアルコール0.3%溶液(溶媒は
水)に1時間浸漬後、膜をとりだし、1時間水中に浸漬
、静置した。
The untreated membrane thus obtained was treated with 5 m of ferric sulfate.
Heat treated for 5 minutes in a hot water bath (temperature 75 °C) containing m%,
Next, after rinsing in cold water, the membrane was further immersed in a 0.3% polyvinyl alcohol solution (water as a solvent) with a degree of polymerization of 1000 and a degree of viscoelasticity of 80% for 1 hour, and then the membrane was taken out, immersed in water for 1 hour, and left to stand. did.

このようにして得られた膜の水分透過量は0゜70tn
’/m2・日、塩排除率は99.3%であった。
The amount of water permeated through the membrane thus obtained was 0°70tn.
'/m2·day, the salt rejection rate was 99.3%.

塩排除率が高いにもかかわらず水分透過量の大きい膜が
得られた。また、A3/Bの値は43X10−10g3
/cm 7.sec−atm 3であった。
A membrane with a high water permeation rate despite a high salt rejection rate was obtained. Also, the value of A3/B is 43X10-10g3
/cm 7. It was sec-atm 3.

この膜を1日9時間、延300時間断続的に評価して耐
久性の確認を行なった。300時間後の水分透過量は0
.71ml/m2.日、塩排除率は99.3%であり、
膜性能は初期のレベルを維持しており、耐久性のあるこ
とが確認できた。
This film was evaluated intermittently for 9 hours a day for a total of 300 hours to confirm its durability. Moisture permeation amount after 300 hours is 0
.. 71ml/m2. The salt rejection rate is 99.3%.
The membrane performance was maintained at the initial level, and it was confirmed that it was durable.

また、この膜の断面方向における金属の存在量を、2次
イオン質量分析装置SIMS (Sec。
In addition, the amount of metal present in the cross-sectional direction of this film was measured using a secondary ion mass spectrometer SIMS (Sec.

ndary  )on  Mass  3pectr。ndary ) on Mass 3pectr.

5copy)、フランス国CAMECA社製、タイプI
MS−3Fを用いて確認したところ、膜の表面から1μ
mにはFeが約11000pp存在し、膜の表面から1
〜10μmの部分のFeの存在量は約40 pμmであ
った。
5copy), manufactured by CAMECA in France, type I
When confirmed using MS-3F, it was found that 1μ from the surface of the membrane.
About 11,000 pp of Fe exists in m, and 1 from the surface of the film.
The amount of Fe present in the ~10 μm region was about 40 pμm.

更に半透膜上には、重合度1000.けん化度80%の
ポリビニルアルコールの層が形成されていることを、X
線光電子分光装置ESCA (E 1ectron  
5pectroscopy  f。
Further, on the semipermeable membrane, the degree of polymerization is 1000. X indicates that a layer of polyvinyl alcohol with a saponification degree of 80% is formed.
Line photoelectron spectrometer ESCA (E 1ectron)
5pectroscopy f.

r  Chemical  Analysis)、島津
製作所製、タイプESCA750.によって確認した。
r Chemical Analysis), manufactured by Shimadzu Corporation, type ESCA750. Confirmed by.

尚、ポリビニルアルコール溶液処理前、後の膜厚は共に
75μmと変わらなかった。従って上記使用のポリビニ
ルアルコールの超薄膜が形成されたことがわかる。
The film thickness before and after the polyvinyl alcohol solution treatment was 75 μm, which was the same. Therefore, it can be seen that an ultra-thin film of the polyvinyl alcohol used above was formed.

比較例1 実施例1と同じ方法で得られた未熟処理膜を鉄イオンを
添加していない熱水浴(温度75℃)中で5分間、熱処
理を処したのみの膜の水分透過量は0.95m3/m2
.日、塩排除率は97.3%であった。また、膜性能の
指標であるA3/Bの値は20X 10   g/cm
  、sec−atm 3テあった。
Comparative Example 1 An untreated membrane obtained by the same method as in Example 1 was heat-treated for 5 minutes in a hot water bath (temperature 75°C) to which iron ions were not added.The amount of water permeation of the membrane was 0. .95m3/m2
.. The salt rejection rate was 97.3%. In addition, the value of A3/B, which is an index of membrane performance, is 20X 10 g/cm
, there were 3 sec-atm.

比較例2 比較例2 実施例1と同じ方法で得られた未熱処理膜を、硫酸第2
鉄を5重量%含む熱水浴(温度75℃)中で5分間熱処
理しただけで、高分子溶液による薄膜化処理を処してい
ない膜の水分透過量は0゜81m!/m2.日、塩排除
率98.6%であった。
Comparative Example 2 Comparative Example 2 An unheated film obtained by the same method as in Example 1 was treated with sulfuric acid
After just 5 minutes of heat treatment in a hot water bath (temperature 75°C) containing 5% iron, the amount of water permeation through the membrane, which had not been thinned with a polymer solution, was 0°81m! /m2. The salt rejection rate was 98.6%.

また、A3/Bの値は29 X 10” Q3/cm7
sec −atm 3であった。更に、実施例1と同じ
方法による膜性能の耐久性評価では、100時間までは
ほとんど変化はないが、その後、徐々に膜性能が低下し
300時間後には、塩排除率が98゜2%まで低下した
Also, the value of A3/B is 29 x 10” Q3/cm7
It was sec-atm 3. Furthermore, in the durability evaluation of the membrane performance using the same method as in Example 1, there was almost no change up to 100 hours, but after that, the membrane performance gradually decreased and after 300 hours, the salt rejection rate reached 98.2%. decreased.

実施例2 実施例1と同じ方法で得た鉄イオン処理を処した半透膜
を用いて、この膜を重合度1700.けん化度40%の
部分け/υ化ポリ酢酸ビニルの0゜3%溶液(溶媒は水
:エタノール=1:1(重ω比)の混合系)に30秒間
浸漬後、膜をとりだして1時間水中に浸漬、静置した。
Example 2 Using a semipermeable membrane treated with iron ions obtained in the same manner as in Example 1, this membrane was heated to a degree of polymerization of 1700. After immersing for 30 seconds in a 0°3% solution of partial/vvated polyvinyl acetate with a degree of saponification of 40% (solvent is a mixed system of water:ethanol = 1:1 (gravity ω ratio)), the membrane was taken out and left for 1 hour. It was immersed in water and left standing.

このようにして(qられた膜の水分透過mは0.71m
!/Tr12・日、塩排除率は99.2%であった。ま
たA3/Bの値は39X 10   CJ  /cm 
 、sec−atm 3テあった。また実施例1と同じ
方法による100時間後の耐久性能は、水分透過量0.
72Tr13/Tr12・日、塩排除率99.1%と初
期の性能を維持していた。
In this way (the water permeation m of the q membrane is 0.71 m
! /Tr12·days, the salt rejection rate was 99.2%. Also, the value of A3/B is 39X 10 CJ/cm
, there were 3 sec-atm. In addition, the durability performance after 100 hours using the same method as in Example 1 showed that the amount of water permeation was 0.
The initial performance was maintained at 72Tr13/Tr12·day with a salt rejection rate of 99.1%.

比較例1.2に比べ高性能の膜を得ることができた。ま
たこの膜の金属の存在量を部分けん化ポリ酢酸ビニルの
薄膜の存在は、実施例1と同じ分析装置で分析し実施例
1と同様の分イ[が確認できた。
A membrane with higher performance than Comparative Example 1.2 could be obtained. Further, the presence of metal in the thin film of partially saponified polyvinyl acetate in this film was analyzed using the same analyzer as in Example 1, and the same distribution as in Example 1 was confirmed.

実施例3 実施例1と同じ方法で得た鉄イオン処理を処した半透膜
を用いて、この膜をポリエチレンイミンの0.3%溶液
(溶媒は水(重量化))に16時間浸漬後、膜をとりだ
して1時間水中に浸漬、静置した。このようにして得ら
れた膜の水分透過量は0.94m’/m2.日、塩排除
率は98.7%でアッタ。またA3/B(7)(142
X10−” CJ3/cm  、SeC,atm 3テ
アツタ。マタ、実施例1と同じ方法による100時間後
の耐久性能は、水分透過!ii0.94m’/m2・日
、塩排除率98.6%と初期の性能を維持していた。比
較例1,2に比べ高性能の膜を°(qることかできた。
Example 3 Using a semipermeable membrane treated with iron ions obtained in the same manner as in Example 1, this membrane was immersed in a 0.3% solution of polyethyleneimine (the solvent was water (by weight)) for 16 hours. Then, the membrane was taken out, immersed in water for 1 hour, and left to stand. The water permeation rate of the membrane thus obtained was 0.94 m'/m2. On Sunday, the salt rejection rate was 98.7%. Also A3/B(7)(142
X10-" CJ3/cm, SeC, atm 3 teats. The durability performance after 100 hours using the same method as in Example 1 was as follows: water permeation! ii 0.94 m'/m2 day, salt rejection rate 98.6%. The initial performance was maintained.Compared to Comparative Examples 1 and 2, it was possible to produce a membrane with higher performance.

またこの膜の金属の存在量とポリエチレンイミンの薄膜
の存在は、実施例1と同じ分析装置で分析し、実施例1
と同様の分布が確認できた。
In addition, the amount of metal present in this film and the presence of a polyethyleneimine thin film were analyzed using the same analyzer as in Example 1.
A similar distribution was confirmed.

実施例4 非対称性構造を有するセルロースジアセテート膜を用い
たUOP社製逆浸透モジュールROGA8800HRM
AGNUM@解体して得た膜(膜性能は水分透過量0.
84m’/Tr+2・日、塩排除率は98.0%、A3
 /B=21 X1O−10/C13/にg(、SeC
−atm 3)を用イテ実施例1と同じ方法で、硫酸第
2鉄を5重量%含む熱水浴(温度75℃)中で5分間熱
処理し、冷水中で水洗後、実施例2で用いた部分けん化
ポリ酢酸ビニルの溶液に30秒間浸漬処理を行なった。
Example 4 Reverse osmosis module ROGA8800HRM manufactured by UOP using a cellulose diacetate membrane having an asymmetric structure
AGNUM@Membrane obtained by disassembly (membrane performance is water permeation amount 0.
84m'/Tr+2・day, salt rejection rate 98.0%, A3
/B=21 X1O-10/C13/g(, SeC
-atm 3) was heat-treated in a hot water bath (temperature 75°C) containing 5% by weight of ferric sulfate for 5 minutes in the same manner as in Example 1, and after washing in cold water, it was used in Example 2. The sample was immersed in a partially saponified polyvinyl acetate solution for 30 seconds.

このようにして(qられた膜の水分透過量は0.68m
!/m2・日、塩排除率は99.2%であり、A3/B
の値は36X10−  g3/Cm7.sec−atm
3でi−+た。
In this way, the amount of water permeation through the q membrane was 0.68 m
! /m2・day, the salt rejection rate is 99.2%, and A3/B
The value is 36X10-g3/Cm7. sec-atm
I got i-+ at 3.

処理前の解体膜に比べて性能が著しく向上していること
かわかる。また実施例1と同じ方法による300時間後
の耐久性能は、水分透過@0.69T113/Tr12
・日、塩排除率99.1%と初期の性能を維持していた
。比較例1,2に比べ高性能の膜を1qることかできた
。またこの膜の金属の存在量を部分けん化ポリ酢酸ビニ
ルの薄膜の存在は、実施例1と同じ分析装置で分析し、
実施例1と同様の分布が確認できた。
It can be seen that the performance is significantly improved compared to the disassembled membrane before treatment. Furthermore, the durability performance after 300 hours using the same method as in Example 1 was as follows: moisture permeation @0.69T113/Tr12
・The salt rejection rate was 99.1%, maintaining the initial performance. Compared to Comparative Examples 1 and 2, we were able to produce 1 q of membranes with higher performance. In addition, the amount of metal present in this film and the presence of a thin film of partially saponified polyvinyl acetate were analyzed using the same analyzer as in Example 1.
The same distribution as in Example 1 was confirmed.

[発明の効果コ 本発明においては、膜の表面付近に金属が温度高く存在
しており、ざらに高分子の超薄膜を有している。このた
め液の分離性能が著しく高くなり、ざらに高い分離特性
を長期に渡って維持できるという従来にはない優れた分
離膜を)与ることができる。
[Effects of the Invention] In the present invention, the metal exists at a high temperature near the surface of the film, and the film has an ultra-thin film of rough polymer. As a result, the liquid separation performance is significantly improved, and an unprecedentedly excellent separation membrane that can maintain extremely high separation characteristics over a long period of time can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図に本発明の複合半透膜の模式的な断面図を、第2
図には活性層付近を拡大した断面図を示す。
FIG. 1 shows a schematic cross-sectional view of the composite semipermeable membrane of the present invention, and FIG.
The figure shows an enlarged cross-sectional view of the vicinity of the active layer.

Claims (8)

【特許請求の範囲】[Claims] (1)物質分離能を有する半透膜において、該膜は、平
均値として10pμm以上の金属(A)を含有する半透
膜(B)であって、かつ、この上に半透膜(B)、およ
び金属(A)に対して親和性を有する高分子(C)の薄
膜層が設けられていることを特徴とする物質分離用複合
半透膜。
(1) In a semipermeable membrane having substance separation ability, the membrane is a semipermeable membrane (B) containing metal (A) with an average value of 10 pμm or more, and the semipermeable membrane (B) ) and a thin film layer of a polymer (C) having an affinity for metals (A).
(2)半透膜(B)が非対称構造を有する酢酸セルロー
スであることを特徴とする特許請求範囲第(1)記載の
物質分離用複合半透膜。
(2) The composite semipermeable membrane for substance separation according to claim 1, wherein the semipermeable membrane (B) is cellulose acetate having an asymmetric structure.
(3)半透膜(B)に含有される金属(A)が、Fe、
Ti、Pb、Crから選ばれる1種以上であることを特
徴とする特許請求範囲第(1)項記載の物質分離用複合
膜半透膜。
(3) The metal (A) contained in the semipermeable membrane (B) is Fe,
The composite semipermeable membrane for substance separation according to claim (1), characterized in that the semipermeable membrane is one or more selected from Ti, Pb, and Cr.
(4)高分子(C)が、ポリビニルアルコール、部分け
ん化ポリ酢酸ビニル、部分けん化ポリ酢酸ビニルと無水
マレイン酸のエステル化物、酢酸ビニルと無水マレイン
酸あるいはビニルピロリドンの共重合体、ポリエチレン
イミンから選ばれる1種以上であることを特徴とする特
許請求範囲第(1)項記載の物質分離用複合半透膜。
(4) The polymer (C) is selected from polyvinyl alcohol, partially saponified polyvinyl acetate, esterified product of partially saponified polyvinyl acetate and maleic anhydride, copolymer of vinyl acetate and maleic anhydride or vinyl pyrrolidone, and polyethyleneimine. The composite semipermeable membrane for substance separation according to claim (1), characterized in that the membrane is one or more of:
(5)物質分離能を有する複合半透膜の製造において、
原料であるキャスト液を蒸発処理し、次に凝固処理する
ことによつて非対称構造半透膜を作成し、その後に熱処
理するに際し、該熱処理浴中に金属イオンを含有させて
処理し、さらに高分子の希薄溶液で処理することを特徴
とする物質分離用複合半透膜の製造方法。
(5) In manufacturing a composite semipermeable membrane with substance separation ability,
A semipermeable membrane with an asymmetric structure is created by evaporating the raw material casting liquid and then solidifying it, and then heat-treating it by incorporating metal ions into the heat-treating bath. A method for producing a composite semipermeable membrane for substance separation, characterized by treatment with a dilute solution of molecules.
(6)金属イオンが硫酸塩、酢酸塩、水酸塩、塩酸塩、
硝酸塩、シュウ酸塩、アンモニウム塩から選ばれる1種
以上であることを特徴とする特許請求範囲第(5)項記
載の物質分離用複合半透膜の製造方法。
(6) The metal ion is sulfate, acetate, hydrate, hydrochloride,
The method for producing a composite semipermeable membrane for substance separation according to claim (5), characterized in that the membrane is one or more selected from nitrates, oxalates, and ammonium salts.
(7)高分子の希薄溶液が、ポリビニルアルコール、部
分けん化ポリ酢酸ビニル、部分けん化ポリ酢酸ビニルと
無水マレイン酸のエステル化物、酢酸ビニルと無水マレ
イン酸あるいはビニルピロリドンの共重合体、ポリエチ
レンイミンから選ばれる1種以上の溶液であることを特
徴とする特許請求範囲第(5)項記載の物質分離用複合
半透膜の製造方法。
(7) The dilute polymer solution is selected from polyvinyl alcohol, partially saponified polyvinyl acetate, an ester of partially saponified polyvinyl acetate and maleic anhydride, a copolymer of vinyl acetate and maleic anhydride or vinylpyrrolidone, and polyethyleneimine. The method for producing a composite semipermeable membrane for substance separation according to claim (5), characterized in that the method is one or more kinds of solutions.
(8)高分子の温度が5重量%以下である特許請求範囲
第(5)項記載の物質分離用複合半透膜の製造方法。
(8) A method for producing a composite semipermeable membrane for substance separation according to claim (5), wherein the temperature of the polymer is 5% by weight or less.
JP12592886A 1986-06-02 1986-06-02 Composite semipermeable membrane for separating material and its production Pending JPS62282604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12592886A JPS62282604A (en) 1986-06-02 1986-06-02 Composite semipermeable membrane for separating material and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12592886A JPS62282604A (en) 1986-06-02 1986-06-02 Composite semipermeable membrane for separating material and its production

Publications (1)

Publication Number Publication Date
JPS62282604A true JPS62282604A (en) 1987-12-08

Family

ID=14922422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12592886A Pending JPS62282604A (en) 1986-06-02 1986-06-02 Composite semipermeable membrane for separating material and its production

Country Status (1)

Country Link
JP (1) JPS62282604A (en)

Similar Documents

Publication Publication Date Title
US5342521A (en) Reverse osmosis or nanofiltration membrane and its production process
US4765897A (en) Polyamide membranes useful for water softening
US4812270A (en) Novel water softening membranes
US4824574A (en) Novel water softening process using membranes
WO1999020378A1 (en) A manufacturing method of composite membrane having hydrophilic coating layer on hydrophobic support membrane
EP0566097B1 (en) Process for forming porous polymeric product from a nonporous polymeric composition and product
JPS5824447B2 (en) Manufacturing method of reverse osmosis membrane
JPH0268102A (en) Production and use of polyamide film effective for softening water
US4659590A (en) Pervaporation separation of ethanol-water mixtures using polyethylenimine composite membranes
JPH05317664A (en) Porous hollow fiber membrane
JPS62282604A (en) Composite semipermeable membrane for separating material and its production
GB2174619A (en) Composite separation membranes
JPH0122008B2 (en)
JPH1128466A (en) Reverse osmosis treatment of water with reverse osmosis composite membrane
JPH03109930A (en) Filter membrane for ultrafiltration
JPS6230509A (en) Production of semipermeable membrane for isolating substance
JPH05293345A (en) Semipermeable dual membrane
JPS6146203A (en) Composite semipermeable membrane and its manufacture
JPH0232009B2 (en)
KR0123279B1 (en) Method for semipermeable composite membrane
JPS6041503A (en) Polyether sulfone microporous membrane and its manufacture
JPS60183009A (en) Preparation of semi-permeable composite membrane having high permeability
JPH11179175A (en) Production of composite separation membrane
JPH09239248A (en) Method for treatment of pervaporation membrane
JPS61181502A (en) Reverse osmosis membrane and its production