JPS61181502A - Reverse osmosis membrane and its production - Google Patents

Reverse osmosis membrane and its production

Info

Publication number
JPS61181502A
JPS61181502A JP60021969A JP2196985A JPS61181502A JP S61181502 A JPS61181502 A JP S61181502A JP 60021969 A JP60021969 A JP 60021969A JP 2196985 A JP2196985 A JP 2196985A JP S61181502 A JPS61181502 A JP S61181502A
Authority
JP
Japan
Prior art keywords
membrane
reverse osmosis
metal
osmosis membrane
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60021969A
Other languages
Japanese (ja)
Inventor
Satoshi Matsumoto
聰 松本
Setsuo Baba
馬場 節雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP60021969A priority Critical patent/JPS61181502A/en
Publication of JPS61181502A publication Critical patent/JPS61181502A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/08Polysaccharides
    • B01D71/12Cellulose derivatives
    • B01D71/14Esters of organic acids
    • B01D71/16Cellulose acetate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

PURPOSE:To obtain the title reverse osmosis membrane capable of separating a soln. of salts in remarkably high degree by allowing a metal to exist locally in the vicinity of the surface of a cellulose derivative membrane in high concn. CONSTITUTION:A polymer consisting of a cellulose derivative and org. additives such as maleic acid and butane tetracarboxylate are dissolved in a solvent consisting essentially of dioxane, and a film is formed from the soln. When the obtained reverse osmosis membrane is then heat-treated, metals such as Fe, Ti, Pb and Cr having >=4sp.gr. are added to a heat treating bath in the form of ions, chelates and elements. Concretely, inorg. salts such as ferric sulfate, ferric chloride and ferric nitrate are preferably used. The heat treating temp. is preferably controlled in the temp. range 30-95 deg.C. Consequently, a reverse osmosis membrane on the surface layer part of which metals are distributed in high concn. can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は液体分離能に優れたセルロース系誘導体からな
る逆浸透膜およびその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a reverse osmosis membrane made of a cellulose derivative having excellent liquid separation ability and a method for manufacturing the same.

ざらに詳しくは、膜の表面付近に金属を存在させた新規
な構造の分離膜を提供し、また熱処理方法の改良技術を
提供するものである。
More specifically, the present invention provides a separation membrane with a novel structure in which metal is present near the surface of the membrane, and also provides an improved technique for heat treatment.

〔従来技術〕[Prior art]

逆浸透膜は海水、かん水などの淡水化のみならず、最近
は超純粋の製造、排水処理などにも応用され、ますます
その用途を拡大している。
Reverse osmosis membranes are being used not only for desalination of seawater and brackish water, but also for the production of ultra-pure water and wastewater treatment, and their applications are expanding more and more.

なかでもセルロース系逆浸透膜は、1961年ロブ氏等
により非対称製膜法が発明され、1966年マンジキア
ン氏等により実用化され以来、種々の分野で着実に実績
をあげてきている。膜性能の改善も積極的に進められ、
現在までに多くの改善されたセルロース系逆浸透膜が提
案されている。
Among these, cellulose-based reverse osmosis membranes have been steadily gaining success in various fields since the asymmetric membrane forming method was invented by Mr. Robb et al. in 1961 and put into practical use by Mr. Manjikian et al. in 1966. Improvements in membrane performance are also being actively pursued.
Many improved cellulose-based reverse osmosis membranes have been proposed to date.

これらの多くは製膜溶液の改良であり、かかる例として
はセルロースアセテートに代表されるセルロース系誘導
体を有機酸等(特公昭45−20483号公報)、マレ
イン酸モノメチルエステル(特公昭50−35074号
公報)などの添加剤とともに溶媒に溶解させた製膜溶液
から製膜したものを挙げることができる。
Many of these are improvements to film-forming solutions, such as using cellulose derivatives such as cellulose acetate with organic acids (Japanese Patent Publication No. 45-20483), maleic acid monomethyl ester (Japanese Patent Publication No. 50-35074). For example, a film formed from a film forming solution prepared by dissolving a film forming solution in a solvent together with additives such as those disclosed in Japanese Patent Publication (Kokai).

一般にセルロース系誘導体からなる逆浸透膜の製膜は湿
式製膜によって行なわれ、製膜液を支持体の上に適当な
厚さにキャストし、溶媒を適当量蒸発させてから(キャ
スト工程)、そのキャスト膜を凝固浴に入れ、残った溶
剤と添加剤を溶出させるとともにポリマーを凝結させる
(凝固工程)ことによって行なわれる。こうして得られ
た多孔構造をもつ膜は表面に分離機能を有する活性層、
内部に支持層となるスポンジ層を有しているが、このま
までは通常ルーズで充分な塩排除率を示さないことが多
く、ざらに熱処理工程を経てはじめて実用的な逆浸透膜
となる。
Generally, reverse osmosis membranes made of cellulose derivatives are formed by wet membrane forming, in which the membrane forming solution is cast onto a support to an appropriate thickness, an appropriate amount of solvent is evaporated (casting step), This is carried out by placing the cast film in a coagulation bath, eluting the remaining solvent and additives, and coagulating the polymer (coagulation step). The membrane with the porous structure obtained in this way has an active layer with a separation function on the surface,
Although it has a sponge layer that serves as a support layer inside, it is usually loose and does not exhibit a sufficient salt rejection rate if it is left as is, so it cannot become a practical reverse osmosis membrane until it undergoes a rough heat treatment process.

しかしながらこの熱処理工程においては塩排除特性は向
上するものの、それにともなって水透過性が低下するの
が一般的であり、高い塩排除率でかつ高い木蓮過量をも
った逆浸透膜を得るのが雑しいのが現状である。
However, although this heat treatment process improves salt rejection properties, it generally reduces water permeability, making it difficult to obtain a reverse osmosis membrane with a high salt rejection rate and a high magnolia excess. The current situation is difficult.

そして従来技術にあっては、上記熱処理工程の改善は&
よとんどなされておらず、従って分離能の真に優れた膜
は未だ実現されていないのが現状である。
In the conventional technology, the improvement in the heat treatment process is &
At present, very little research has been done on this, and therefore a membrane with truly excellent separation ability has not yet been realized.

(発明が解決しようとする問題点) 本発明者らはこうした事情に鑑み、セルロース系誘導体
からなる逆浸透膜の高性能化を目的として、膜の構造、
及びその製造工程にわたって種々鋭意検討した結果本発
明に到達した。すなわち本発明の目的は、膜の表面付近
に金属を存在させた新規な構造の分離膜を提供し、また
熱処理時に金属イオンを存在させて処理する方法を提供
する。
(Problems to be Solved by the Invention) In view of these circumstances, the present inventors aimed to improve the performance of reverse osmosis membranes made of cellulose derivatives by
The present invention was arrived at as a result of various intensive studies regarding the manufacturing process. That is, an object of the present invention is to provide a separation membrane with a novel structure in which metal is present near the surface of the membrane, and also to provide a method of treatment in which metal ions are present during heat treatment.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記目的を達成するため下記の構成からなる。 In order to achieve the above object, the present invention has the following configuration.

[(1)  セルロース系誘導体からなる液体分離能を
有する逆浸透膜において、該膜は平均値として10pp
m以上の金属を含有し、かつ該金属は膜の表面にその濃
度を高く分布していることを特徴とする逆浸透膜。
[(1) In a reverse osmosis membrane having a liquid separation ability made of a cellulose derivative, the average value of the membrane is 10 pp
A reverse osmosis membrane, characterized in that it contains a metal of m or more, and the metal is distributed at a high concentration on the surface of the membrane.

(2)  セルロース系誘導体からなる液体分離能を有
する逆浸透膜の製造において、キャスト液を蒸発処理し
、次いで凝固処理し、しかる後熱処理するに際し、該熱
処理浴中に金属イオンを含有させることを特徴とする逆
浸透膜の製造方法。」本発明でいうセルロース系誘導体
からなる逆浸透膜とは、セルロースアセテート、セルロ
ースアセテートブチレート、メチルセルロース、エチル
セルロースなどを主要なポリマー成分として製膜される
ものをいう。この中で特にセルロースアセテートが好ま
しい。ここにセルロースアセテートとは、セルロースジ
アセテート、セルローストリアセテート、もしくはその
中間の置換度のアセテート、またはセルロースアセテー
トおよびセルローストリアセテートをブレンドしたもの
などである。セルロースアセテート中の実用的なアセチ
ル基濃度は、通常39.8〜43.2%であるが、塩排
除率、水通過量のバランスした膜を得るためには、40
〜42.5%のアセチル基濃度を有するものが好ましい
(2) In the production of a reverse osmosis membrane having a liquid separation ability made of a cellulose derivative, when the casting liquid is evaporated, then solidified, and then heat treated, metal ions are not included in the heat treatment bath. Characteristic method for producing reverse osmosis membranes. A reverse osmosis membrane made of a cellulose derivative as used in the present invention refers to a membrane formed using cellulose acetate, cellulose acetate butyrate, methyl cellulose, ethyl cellulose, or the like as a main polymer component. Among these, cellulose acetate is particularly preferred. Cellulose acetate herein refers to cellulose diacetate, cellulose triacetate, acetate with an intermediate degree of substitution, or a blend of cellulose acetate and cellulose triacetate. The practical acetyl group concentration in cellulose acetate is usually 39.8 to 43.2%, but in order to obtain a membrane with a balanced salt rejection rate and water passing rate, it is necessary to
Those having an acetyl group concentration of ˜42.5% are preferred.

次(本発明の分離膜について図面を用いて説明する。Next, the separation membrane of the present invention will be explained using the drawings.

第1図は本発明の膜の活性層部分の断面方向の金属の濃
度を表わしたものである。縦軸に金属の濃度、横軸に表
面からの膜の深さを示している。
FIG. 1 shows the metal concentration in the cross-sectional direction of the active layer portion of the film of the present invention. The vertical axis shows the metal concentration, and the horizontal axis shows the depth of the film from the surface.

第1図からあきらかなとおり、膜の表層部分に金属の濃
度が高く分布していることが特徴である。
As is clear from FIG. 1, the film is characterized by a high concentration of metal distributed in the surface layer.

膜の表層部分とは、膜を水平に置いた場合、上面または
下面のすくなくとも一方の面をいい、勿論両方の面であ
ってもよい。また表層部分とは、ミクロンオーダーの厚
さをいう。そして膜は、非対称性膜でも複合膜であって
もよい。
The surface layer portion of the membrane refers to at least one of the upper surface or the lower surface when the membrane is placed horizontally, and may of course be both surfaces. Further, the surface layer portion refers to a thickness on the order of microns. The membrane may then be an asymmetric membrane or a composite membrane.

本発明において金属とはいかなるものであってもよいが
、好ましくは比重が4.0以上であり、更に好ましくは
l”elTi、Pb、Orから選ばれる1種以上である
。この理由は定かでないが、実験事実より確かめられた
ものである。金属はイオンの形でもキレートでも元素の
形でもいかなるものであってもよい。
In the present invention, the metal may be any metal, but preferably has a specific gravity of 4.0 or more, and more preferably one or more selected from l''elTi, Pb, and Or.The reason for this is unclear. This has been confirmed by experimental facts.Metals can be in any form, including ions, chelates, and elemental forms.

本発明においては、膜の表層部の金属の濃度が、膜の中
心部に比較して10倍以上であることが分離能を向上さ
せる意味で好ましく、特には100倍以上である。
In the present invention, the concentration of metal in the surface layer of the membrane is preferably 10 times or more as compared to the center of the membrane in order to improve the separation ability, particularly 100 times or more.

また本発明の逆浸透膜の形状は、平膜、中空糸膜、管状
膜など膜形状には限定されない。
Further, the shape of the reverse osmosis membrane of the present invention is not limited to a flat membrane, a hollow fiber membrane, a tubular membrane, or the like.

次に本発明方法について説明する。Next, the method of the present invention will be explained.

本発明方法における製膜溶液としては、ポリマー、添加
剤、および溶媒からなる各種の製膜溶液が適用され、そ
の種類、および組成には限定されない。しかし、好まし
くは、溶媒としてジオキサンを主成分とし、添加剤とし
てマレイン酸、ブタンテトラカルボン酸などの有機酸を
含む製膜溶液が望ましい。
As the film-forming solution in the method of the present invention, various film-forming solutions consisting of polymers, additives, and solvents are applicable, and the type and composition thereof are not limited. However, it is preferable to use a film-forming solution containing dioxane as a main component as a solvent and an organic acid such as maleic acid or butanetetracarboxylic acid as an additive.

また製膜方法についても特に限定されることはないが、
支持体上にキャスト後、溶媒の一部を蒸発させたのち凝
固浴に導く通常の湿式製膜法で得た膜が本発明には好ま
しい。
There are also no particular limitations on the film forming method;
A film obtained by a conventional wet film forming method in which the film is cast onto a support, evaporated part of the solvent, and then introduced into a coagulation bath is preferred for the present invention.

本発明の特徴である熱処理浴中に添加される金属イオン
としては、上記したものであればいかなるものであって
もよい。すなわち熱処理工程で膜に金属を吸着できるも
のであればよい。具体例として例えば3価の鉄イオンを
挙げると、WL酸第2鉄、塩化第2鉄、硝酸第2鉄など
の無機塩、フェリシアン化カリウム、フェリシアン化ナ
トリウムなどの錯塩、水酸化第2鉄などの塩基、アセチ
ルアセトン第2鉄、チオシアン第2鉄などの有機金属塩
を挙げることができる。なかでも硫酸第2鉄、塩化第2
鉄、硝酸第2鉄などの無機塩が本発明には適している。
The metal ions added to the heat treatment bath, which is a feature of the present invention, may be any of the metal ions mentioned above. That is, any material may be used as long as it can adsorb metal onto the film during the heat treatment process. Specific examples of trivalent iron ions include inorganic salts such as ferric WL acid, ferric chloride, and ferric nitrate, complex salts such as potassium ferricyanide and sodium ferricyanide, and ferric hydroxide. bases, organic metal salts such as ferric acetylacetone and ferric thiocyanate. Among them, ferric sulfate and ferric chloride
Inorganic salts such as iron and ferric nitrate are suitable for the present invention.

 また本発明による場合の熱処理温度は、添加する金属
化合物の種類、濃度によって最適温度が異なる。通常3
0〜95°Cの範囲、好ましくは60〜85℃の範囲で
行なうが、最終的には必要とされる逆浸透膜の性能に応
じて熱処理温度は決定される。
Further, the optimum temperature for the heat treatment according to the present invention varies depending on the type and concentration of the metal compound added. Usually 3
The heat treatment temperature is carried out in the range of 0 to 95°C, preferably in the range of 60 to 85°C, but the temperature of the heat treatment is ultimately determined depending on the required performance of the reverse osmosis membrane.

〔実施例〕〔Example〕

以下に本発明を実施例および比較例によって説明する。 The present invention will be explained below with reference to Examples and Comparative Examples.

一般に逆浸透膜の性能を塩排除率と透過水量で表わされ
るが、塩排除率が異なると透過水量では膜性能を比較で
きない。本実施例および比較例では熱処理温度を変えて
両者の塩排除率をそろえであるので、透過水量で膜性能
を比較できる。
Generally, the performance of reverse osmosis membranes is expressed by the salt rejection rate and the amount of permeated water, but if the salt rejection rate is different, the membrane performance cannot be compared based on the amount of permeated water. In this example and comparative example, the heat treatment temperature was changed to make the salt rejection rates of both the same, so the membrane performance can be compared based on the amount of permeated water.

膜性能はisooppmの食塩を含む食塩水を30−/
−で加圧して、秒速10 m/分で膜面に流して測定し
た。
The membrane performance is 30-/30% of saline solution containing isooppm salt
Measurements were made by applying pressure at - and flowing it onto the membrane surface at a speed of 10 m/min.

実施例1 アセチル化度43.2%のセルローストリアセテートと
アセチル化度39.8%のセルロースジアセテートを重
量比で2=3の割合で混合したもの20部に、ジすキサ
ン40部、アセトン27部を加えて溶解した液に、ブタ
ンテトラカルボン酸3部をメタノール10部に溶解した
ものを加えて製膜溶液を得た。製膜を30℃の雰囲気で
アプリケーターでガラス板上に厚さ0.21部1mに溶
液を流延し、約1分間乾燥後、ガラス板とともに約20
分間10℃の冷水中に浸漬し、ガラス板から膜を剥離さ
せる方法で行った。得られた膜を硫酸第2鉄を5重量%
含む熱水浴(温度75℃)中で5分間熱処理した。
Example 1 To 20 parts of a mixture of cellulose triacetate with a degree of acetylation of 43.2% and cellulose diacetate with a degree of acetylation of 39.8% in a weight ratio of 2=3, 40 parts of disuxane and 27 parts of acetone were added. A membrane-forming solution was obtained by adding 3 parts of butanetetracarboxylic acid dissolved in 10 parts of methanol to the solution. To form a film, use an applicator to cast the solution onto a glass plate to a thickness of 0.21 parts and 1 m in an atmosphere of 30°C, and after drying for about 1 minute, about 2
The film was peeled off from the glass plate by immersing it in cold water at 10°C for minutes. The obtained membrane was mixed with 5% by weight of ferric sulfate.
The sample was heat-treated for 5 minutes in a hot water bath (temperature 75°C).

このようにして(qられた膜の塩排除率は98%、水通
過量は0.75./−m2・日であった。
The membrane thus prepared had a salt rejection rate of 98% and a water throughput of 0.75./-m2.day.

また膜の断面方向における金属の存在量は下記の方法に
よって分析した。
Further, the amount of metal present in the cross-sectional direction of the film was analyzed by the following method.

分析装置;2次イオン質量分析装置SIMS(Seco
ndary Ion Mass 5pectrosco
py ) 、フランス国CAMECA社製、タイプIM
S−3F、  (原理・・・・・・5〜15KeV程度
のエネルギーのイオンビームを試料表面に当て、スパッ
タリングによって試料から発生する2次イオンを質量分
析する方法である。〉測定条件; 1次イオン種:02 1次イオン加速電圧:10.5KV 1次イオン加速電流二〜5μA 分析領域150μmφ/ラスター500μm口真空度:
 2 X 10 ’Torr off−set電圧:Ov なお絶縁材料のため、表面にAu蒸着を行い、Au表面
から測定することによってチャージアップを防いだ。
Analyzer: Secondary ion mass spectrometer SIMS (Seco
ndary Ion Mass 5pectrosco
py ), manufactured by CAMECA in France, type IM
S-3F, (Principle: A method in which an ion beam with an energy of about 5 to 15 KeV is applied to the sample surface, and secondary ions generated from the sample by sputtering are mass analyzed.) Measurement conditions: 1st Ion species: 02 Primary ion acceleration voltage: 10.5KV Primary ion acceleration current 2~5μA Analysis area 150μmφ/Raster 500μm Mouth vacuum:
2×10' Torr off-set voltage: Ov Since the material was an insulating material, Au was deposited on the surface, and charge-up was prevented by measuring from the Au surface.

この結果を第2図に示す。なお第2図の縦軸は活性層付
近における膜の断面方向の鉄の濃度分布を示す。
The results are shown in FIG. Note that the vertical axis in FIG. 2 indicates the iron concentration distribution in the cross-sectional direction of the film in the vicinity of the active layer.

第2図のチャートより解析した結果、膜の表面から1μ
mにはFeは約11000pp存在し、膜の表面から1
〜10μmの部分のFeの存在量は約40ppmであっ
た。
As a result of analysis from the chart in Figure 2, 1μ from the surface of the membrane.
Approximately 11,000 pp of Fe exists in m, and 1
The amount of Fe present in the ~10 μm region was approximately 40 ppm.

比較例1 実施例1において冷水中に浸漬して得られた未熱処理膜
を、鉄イオンを添加していない熱水浴(温度80℃)で
5分間熱処理した膜の塩排除率は98%、水速過量は0
.6Trl!/Tr12・日であった。
Comparative Example 1 The unheat-treated membrane obtained by immersing in cold water in Example 1 was heat-treated for 5 minutes in a hot water bath (temperature 80°C) to which no iron ions were added, and the salt rejection rate of the membrane was 98%. Water velocity excess is 0
.. 6Trl! /Tr12.day.

なお得られた膜のFe金属存在量は5ppmであった。Note that the amount of Fe metal present in the obtained film was 5 ppm.

実施例2 実施例1においてブタンテトラカルボン酸の代りにマレ
イン酸3部を用い、他の条件は同じにして得た膜の塩排
除率は98.1%、水速過量は0.70m! / m2
・日であった。また得られた膜の金属の分布曲線は実施
例1と同様であった。
Example 2 A membrane obtained by using 3 parts of maleic acid in place of butanetetracarboxylic acid in Example 1 and keeping the other conditions the same had a salt rejection rate of 98.1% and a water velocity excess of 0.70 m! / m2
・It was day. Further, the metal distribution curve of the obtained film was similar to that of Example 1.

比較例2 実施例2において冷水中に浸漬して得られた未熱処理膜
を、鉄イオンを添加していない熱水浴中(温度80℃)
で熱処理した膜の塩排除率は98.1%、水速過量は0
.57 m’/m2・日であった。
Comparative Example 2 The unheated membrane obtained by immersing in cold water in Example 2 was placed in a hot water bath (temperature 80°C) to which iron ions were not added.
The salt rejection rate of the heat-treated membrane was 98.1%, and the water rate excess was 0.
.. It was 57 m'/m2・day.

実施例3 実施例1と同じセルロースアセテートを用い、同じ溶媒
に溶解してブタンテトラカルボン酸2部、マレイン酸1
部、メタノール10部を加えて得た製膜溶液を用いて実
施例1と同様な方法で製膜した。
Example 3 Using the same cellulose acetate as in Example 1, 2 parts of butanetetracarboxylic acid and 1 part of maleic acid were dissolved in the same solvent.
A membrane was formed in the same manner as in Example 1 using a membrane forming solution obtained by adding 10 parts of methanol.

得られた未熱処理膜を硫酸第2鉄を5重量%含む熱水浴
(温度70’C)中で5分間熱処理した。
The resulting unheated membrane was heat treated for 5 minutes in a hot water bath (temperature 70'C) containing 5% by weight of ferric sulfate.

このようにして得られた膜の塩排除率は97%、水速過
量は0.95 Tr157.2・日であった。また得ら
れた膜の金属の分布曲線は実施例1と同様であった。
The membrane thus obtained had a salt rejection rate of 97% and a water rate excess of 0.95 Tr157.2·day. Further, the metal distribution curve of the obtained film was similar to that of Example 1.

比較例3 実施例3において冷水中に浸漬して得られた未熟処理膜
を、鉄イオンを添加していない熱水浴(温度75°C)
中で5分間熱処理した膜の塩排除率は97%、水速過量
は0.8m’ / m2・日であった。
Comparative Example 3 The immature treated membrane obtained by immersing in cold water in Example 3 was placed in a hot water bath (temperature 75°C) to which iron ions were not added.
The salt rejection rate of the membrane heat-treated for 5 minutes in the chamber was 97%, and the water velocity excess was 0.8 m'/m2·day.

実施例4 実施例3においてマレイン酸の代りにグリコール酸1部
を用い、他の条件は同じにして得た膜の塩排除率は97
%、水速過量は0.82711’/m2・日であった。
Example 4 A membrane obtained by using 1 part of glycolic acid in place of maleic acid in Example 3 and keeping the other conditions the same had a salt rejection rate of 97.
%, water velocity excess was 0.82711'/m2·day.

また得られた膜の金属の分布曲線は実施例1と同様であ
った。
Further, the metal distribution curve of the obtained film was similar to that of Example 1.

比較例4 実施例4において冷水中に浸漬して得られた未熟処理膜
を、鉄イオンを添加していない熱水浴(温度75°C)
中で5分間熱処理した膜の塩排除率は97%、水速過量
は0.75T11!/Tr12・日であった。
Comparative Example 4 The immature treated membrane obtained by immersing in cold water in Example 4 was placed in a hot water bath (temperature 75°C) to which iron ions were not added.
The salt rejection rate of the membrane heat-treated for 5 minutes in the interior is 97%, and the water velocity excess is 0.75T11! /Tr12.day.

実施例5 アセチル化度39.2%のセルロースジアセテート20
部に、アセトン40部、ジオキサン第15部、アセトニ
トリル12部を加えて溶解し、これにブタンテトラカル
ボン酸3部、メタノール10部を加えて得た製膜溶液で
、実施例1と同様な条件で製膜した。
Example 5 Cellulose diacetate 20 with acetylation degree of 39.2%
40 parts of acetone, 15 parts of dioxane, and 12 parts of acetonitrile were added to the solution, and 3 parts of butanetetracarboxylic acid and 10 parts of methanol were added thereto. The film was formed using

得られた未熱処理膜を硫酸第2鉄を5重量%含む熱水浴
(75℃)中で熱処理して得られた膜の塩排除率は93
%、水速過量は1 、3tn’ / m2・日であった
The resulting unheated membrane was heat-treated in a hot water bath (75°C) containing 5% by weight of ferric sulfate, and the resulting membrane had a salt rejection rate of 93.
%, and the water velocity excess was 1.3 tn'/m2·day.

また得られた膜の金属の分布曲線は実施例1と同様であ
った。
Further, the metal distribution curve of the obtained film was similar to that of Example 1.

比較例5 実施例5で得られた未熟処理膜を鉄イオンを添加してい
ない熱水浴(温度80℃)中で5分間熱処理した膜の塩
排除率は93%、水速過量は1.0m!/Tr12・日
であった。
Comparative Example 5 The untreated membrane obtained in Example 5 was heat-treated for 5 minutes in a hot water bath (temperature 80°C) to which no iron ions were added.The membrane had a salt rejection rate of 93% and a water velocity excess of 1. 0m! /Tr12.day.

実施例6 アセチル化度43.2%のセルローストリアセテートと
アセチル化度39.8%のセルロースジアセテートを重
量比で1:1の割合で混合したもの8部に、ジオキサン
55部、アセトン15部を加えて溶解した液に、乳酸エ
チル10部、メタノール12部を加えて製膜溶液を得た
。製膜は20℃の雰囲気でアプリケーターでガラス板上
に厚さ0.2mmに溶液を流延し、約2分間乾燥後、ガ
ラス板とともに約一時間15℃の水中に浸漬し、ガラス
板から膜を剥離させる方法で行った。得られた半透膜を
@酸第2鉄を5重量%含む熱水浴(温度70℃)中で約
5分間熱処理した。
Example 6 To 8 parts of a mixture of cellulose triacetate with a degree of acetylation of 43.2% and cellulose diacetate with a degree of acetylation of 39.8% in a ratio of 1:1 by weight, 55 parts of dioxane and 15 parts of acetone were added. 10 parts of ethyl lactate and 12 parts of methanol were added to the dissolved solution to obtain a membrane forming solution. To form a film, the solution is cast onto a glass plate to a thickness of 0.2 mm using an applicator in an atmosphere of 20°C, and after drying for about 2 minutes, the film is immersed together with the glass plate in water at 15°C for about an hour to remove the film from the glass plate. This was done by peeling off the The obtained semipermeable membrane was heat-treated for about 5 minutes in a hot water bath (temperature 70° C.) containing 5% by weight of ferric acid.

このようにして得られた膜の塩排除率は90.4%、水
速過量は2.6tn’/m2・日であった。また得られ
た膜の金属の分布曲線は実施例1と同様であった。
The membrane thus obtained had a salt rejection rate of 90.4% and a water rate excess of 2.6 tn'/m2·day. Further, the metal distribution curve of the obtained film was similar to that of Example 1.

比較例6 実施例6において水中に浸漬して得られた未熱処理膜を
、鉄イオンを含まない熱水浴(温度75°C)中で5分
間熱処理した膜の塩排除率は90.4%、水速過量は2
,4Trl!/Tr12・日であった。
Comparative Example 6 The unheated membrane obtained by immersing in water in Example 6 was heat-treated for 5 minutes in a hot water bath (temperature 75°C) not containing iron ions, and the salt rejection rate of the membrane was 90.4%. , the water velocity excess is 2
,4Trl! /Tr12.day.

実施例7 アセチル化度40.3%のセルロースジアセテート25
部に、アセトン45部、ホルムアミド30部を加えて溶
解し製膜溶液を得た。
Example 7 Cellulose diacetate 25 with degree of acetylation 40.3%
45 parts of acetone and 30 parts of formamide were added and dissolved to obtain a membrane forming solution.

製膜は25℃の雰囲気でアプリケーターでガラス板上に
厚さ0.2面に溶液を流延し、約30秒間乾燥後、ガラ
ス板とともに約20分間氷水中に浸漬し、ガラス板から
膜を剥離させる方法で行った。得られた膜を硫酸第2鉄
を5重量%含む熱水浴(温度70℃)中で熱処理した。
To form a film, use an applicator to cast the solution onto a glass plate to a thickness of 0.2 mm in an atmosphere of 25°C, dry it for about 30 seconds, and then immerse it together with the glass plate in ice water for about 20 minutes to remove the film from the glass plate. This was done by peeling it off. The obtained membrane was heat-treated in a hot water bath (temperature: 70°C) containing 5% by weight of ferric sulfate.

このようにして得られた膜の塩の排除率は92.5%、
水速過量は1 、5 m! / m2・日であった。ま
た得られた膜の金属の分布曲線は実施例1と同様であっ
た。
The salt rejection rate of the membrane thus obtained was 92.5%.
Water speed excess is 1.5 m! / m2・day. Further, the metal distribution curve of the obtained film was similar to that of Example 1.

比較例7 実施例3において氷水中に浸漬して得られた未熟処理膜
を鉄イオンを含まない熱水浴(温度75℃)中で5分間
熱処理した膜の塩排除率は92.5/%、水速過量は1
.3m’/m2・日であった。
Comparative Example 7 The untreated membrane obtained by immersing in ice water in Example 3 was heat-treated for 5 minutes in a hot water bath (temperature 75°C) not containing iron ions, and the salt rejection rate of the membrane was 92.5/%. , water velocity excess is 1
.. It was 3m'/m2・day.

実施例8 実施例1において、冷水中に浸漬してjqられた未熱処
理膜を、硫酸第2チタンを5重量%含む熱水浴(温度7
5℃)中で5分間熱処理して膜を得た。得られた膜の塩
排除率は98%、水速過量は0.68m3/m2・日で
あった。
Example 8 In Example 1, the unheated membrane that had been immersed in cold water and subjected to jq was soaked in a hot water bath (temperature 7) containing 5% by weight of titanium sulfate.
A film was obtained by heat treatment at 5° C. for 5 minutes. The obtained membrane had a salt rejection rate of 98% and a water rate excess of 0.68 m3/m2·day.

また得られた膜のチタンの分布曲線は実施例1と同様で
あった。
Further, the titanium distribution curve of the obtained film was similar to that of Example 1.

〔発明の効果〕〔Effect of the invention〕

本発明においては、膜の表面付近に金属が部分的に濃度
高く存在しているので、液の分離性能が著しく高くなり
、また高性能な品位を耐久性よく維持できるので、従来
にはない優れた分離膜とすることができる。また本発明
の分離膜は熱処理工程で金属イオンを存在させて処理す
ることにより効率よく製造することができるという顕著
な効果を奏する。
In the present invention, since the metal is partially present in high concentration near the surface of the membrane, the liquid separation performance is significantly improved, and high-performance quality can be maintained with good durability. It can be used as a separation membrane. Further, the separation membrane of the present invention has the remarkable effect that it can be efficiently manufactured by treating it in the presence of metal ions in the heat treatment step.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の分離膜の厚さ方向の金属の存在量を示
す1つの分布図である。 第2図は本発明の実施例1の分離膜の2次イオン質量分
析装置による実測チャートを示す。 特許出願人  東 し 株 式 会 社兄1日 ソ2日 1、事件の表示 昭和60年特許願第21969号 2、発明の名称 逆浸透膜およびその製造方法 3、補正をする者 事件との関係  特許出願人 住所 東京都中央区日本橋室町2丁目2番地名称 (3
15)東し株式会社 5、補正により増加する発明の数  なし6、補正の対
象 明細書中 (1)  第9頁第1行目の「決定される。」を「決定
される。 なお本発明の逆浸透膜は、前記のとおり熱処理槽中で金
属イオンを吸着などの手段で含有させることにより得る
ことができるが、そのほか熱処理前、熱処理後の工程で
あっても金属イオンを含む溶液と接触処理することによ
り得ることができる。 ざらに膜の再生処理によっても得ることができる。 」と補正します。
FIG. 1 is a distribution diagram showing the amount of metal present in the thickness direction of the separation membrane of the present invention. FIG. 2 shows an actual measurement chart of the separation membrane of Example 1 of the present invention using a secondary ion mass spectrometer. Patent Applicant Toshi Co., Ltd. Company Brother 1st, 2nd 1st, Case Description 1985 Patent Application No. 21969 2, Name of Invention Reverse Osmosis Membrane and Method for Manufacturing the Same 3, Person Making Amendment Relationship with the Case Patent applicant address: 2-2 Nihonbashi Muromachi, Chuo-ku, Tokyo Name (3
15) Toshi Co., Ltd. 5. Number of inventions increased by amendment None 6. In the specification subject to amendment (1) In the first line of page 9, "Determined." was replaced with "Determined." The present invention The reverse osmosis membrane can be obtained by incorporating metal ions by means such as adsorption in a heat treatment tank as described above, but it is also possible to obtain a reverse osmosis membrane by incorporating metal ions by adsorption or other means in a heat treatment tank. It can be obtained by processing.It can also be obtained by regenerating Zaraani membrane.''

Claims (6)

【特許請求の範囲】[Claims] (1)セルロース系誘導体からなる液体分離能を有する
逆浸透膜において、該膜は平均値として10ppm以上
の金属を含有し、かつ該金属は膜の表面にその濃度を高
く分布していることを特徴とする逆浸透膜。
(1) In a reverse osmosis membrane having a liquid separation ability made of a cellulose derivative, the membrane contains an average value of 10 ppm or more of metal, and the metal is distributed at a high concentration on the surface of the membrane. Characteristic reverse osmosis membrane.
(2)金属が純金属として比重4.0以上であることを
特徴とする特許請求の範囲第(1)項記載の逆浸透膜。
(2) The reverse osmosis membrane according to claim (1), wherein the metal has a specific gravity of 4.0 or more as a pure metal.
(3)金属がFe、Ti、、Pb、Crから選ばれる1
種以上であることを特徴とする特許請求の範囲第(1)
項記載の逆浸透膜。
(3) 1 where the metal is selected from Fe, Ti, Pb, and Cr
Claim No. (1) characterized in that it is more than one species.
Reverse osmosis membrane as described in section.
(4)膜の表層部の金属の濃度が、膜の中心部に比較し
て10倍以上であることを特徴とする特許請求の範囲第
(1)項記載の逆浸透膜。
(4) The reverse osmosis membrane according to claim (1), wherein the concentration of metal in the surface layer of the membrane is 10 times or more as compared to the center of the membrane.
(5)セルロース系誘導体からなる液体分離能を有する
逆浸透膜の製造において、キャスト液を蒸発処理し、次
いで凝固処理し、しかる後熱処理するに際し、該熱処理
浴中に金属イオンを含有させることを特徴とする逆浸透
膜の製造方法。
(5) In the production of a reverse osmosis membrane having a liquid separation ability made of a cellulose derivative, when the casting liquid is evaporated, then solidified, and then heat treated, metal ions are not included in the heat treatment bath. Characteristic method for producing reverse osmosis membranes.
(6)金属イオンが硫酸塩、酢酸塩、水酸塩、硝酸塩、
シュウ酸塩、アンモニウム塩から選ばれる1種以上であ
ることを特徴とする特許請求の範囲第(5)項記載の逆
浸透膜の製造方法。
(6) The metal ion is sulfate, acetate, hydrate, nitrate,
The method for producing a reverse osmosis membrane according to claim (5), characterized in that the membrane is one or more selected from oxalates and ammonium salts.
JP60021969A 1985-02-08 1985-02-08 Reverse osmosis membrane and its production Pending JPS61181502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60021969A JPS61181502A (en) 1985-02-08 1985-02-08 Reverse osmosis membrane and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60021969A JPS61181502A (en) 1985-02-08 1985-02-08 Reverse osmosis membrane and its production

Publications (1)

Publication Number Publication Date
JPS61181502A true JPS61181502A (en) 1986-08-14

Family

ID=12069872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60021969A Pending JPS61181502A (en) 1985-02-08 1985-02-08 Reverse osmosis membrane and its production

Country Status (1)

Country Link
JP (1) JPS61181502A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1283068A1 (en) * 2001-07-30 2003-02-12 Saehan Industries, Inc. Reverse osmosis membrane having excellent anti-fouling property and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1283068A1 (en) * 2001-07-30 2003-02-12 Saehan Industries, Inc. Reverse osmosis membrane having excellent anti-fouling property and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US5342521A (en) Reverse osmosis or nanofiltration membrane and its production process
US4520044A (en) Production of composite membranes
DE2703587A1 (en) METHOD OF MANUFACTURING SEMIPERMEABLES MEMBRANES
CN106861465A (en) A kind of antipollution combined oxidation Graphene NF membrane and preparation method thereof
US4804475A (en) Metallized membrane systems
CA1078117A (en) Process for asymmetrical selectively permeable cellulose triacetate membranes
CN112717706A (en) Metal organic framework ZIF-8 film, preparation method and application thereof
JPH02149698A (en) Improving method for chemical resistance of anodic oxide film
US4026978A (en) Method of making asymmetric cellulose triacetate membranes
JPS5891732A (en) Porous polyvinylidene fluoride resin membrane and preparation thereof
JPS61181502A (en) Reverse osmosis membrane and its production
JPS63294925A (en) Film for separating hydrogen and production thereof
US3439074A (en) Method for preparing desalination membranes
JPS62129111A (en) Production of film having partial permeability
Mashentseva et al. Determination of Optimal Conditions for Electoless Synthesis of Copper Nanotubes in the Polymer Matrix
CN112755822B (en) Application of metal ion coordination crosslinked polyimide porous membrane
JP3399694B2 (en) Method for producing gas separator
US3743595A (en) Dual-layer hyperfiltration membrane and process for using same
JPH01164419A (en) Production of hydrogen separating membrane
JPH03109930A (en) Filter membrane for ultrafiltration
JPH0232009B2 (en)
JPS63123406A (en) Manufacture of semipermeable composite membrane
JPS62282604A (en) Composite semipermeable membrane for separating material and its production
JPS61204011A (en) Production of reverse osmosis membrane
JPS614513A (en) Manufacture of porous glass membrane