JPS62282437A - Rapid heating and cooling device for semiconductor wafer treatment - Google Patents

Rapid heating and cooling device for semiconductor wafer treatment

Info

Publication number
JPS62282437A
JPS62282437A JP12472786A JP12472786A JPS62282437A JP S62282437 A JPS62282437 A JP S62282437A JP 12472786 A JP12472786 A JP 12472786A JP 12472786 A JP12472786 A JP 12472786A JP S62282437 A JPS62282437 A JP S62282437A
Authority
JP
Japan
Prior art keywords
wafer
chamber
infrared ray
nozzles
lamps
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12472786A
Other languages
Japanese (ja)
Inventor
Masahiko Ichihashi
正彦 市橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINKU RIKO KK
Original Assignee
SHINKU RIKO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINKU RIKO KK filed Critical SHINKU RIKO KK
Priority to JP12472786A priority Critical patent/JPS62282437A/en
Publication of JPS62282437A publication Critical patent/JPS62282437A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To rapidly heat up or cool down wafers as well as to maintain the wafers at a uniform temperature by a method wherein two infrared ray lamps, orthogonally intersecting with each other opposing to a pair of bell jars, are arranged and two nozzles to be used for blowing of cooling gas, crossing at right angle with each other, are provided on one surface and other surface of the wafer arranged in a chamber. CONSTITUTION:When infrared ray lamps 71 and 72 are lighted up, as a chamber 3 has a short distance between the upper and the lower sides and the infrared lamps 71 and 72 are arranged in close vicinity to the upper and the lower sides of a wafer 5, the wafer is heated up quickly. Also, as the infrared ray lamps 71 and 72 are arranged at right angle with each other, the wafer 5 can be heated up to a uniform temperature on the whole surface, and also the temperature distribution of the wafer 5 can be controlled two-dimensionally by regulating the power applied to the infrared ray lamps 71 and 72. When a cooling control device 14 is operated and the cooling gas such as helium and the like is blown against the upper and the lower surfaces of the wafer from nozzles 61 and 62, the whole surface of the wafer 5 can be cooled uniformly, because the nozzles 61 and 62 are crossed at right angle with each other.

Description

【発明の詳細な説明】 3、発明の詳細な説明 (産業上の利用分野) 本発明は、特に大口径のものに好適な半導体ウェハ処理
用急速加熱冷却装置に関する。
Detailed Description of the Invention 3. Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a rapid heating and cooling device for processing semiconductor wafers, which is particularly suitable for large-diameter devices.

((21E米の技術) 急速加熱冷却技術は、MO8LSIの有用なプロセス技
術として、ここ数年めざましい発展を遂げているが、そ
の方法の玉流として赤外線ランプ加熱が早くから注目さ
れている。
((21E US technology) Rapid heating and cooling technology has made remarkable progress in the past few years as a useful process technology for MO8LSI, and infrared lamp heating has been attracting attention from an early stage as one of the most advanced methods.

この赤外線ランプを用いた従来の急速加熱冷却装置とし
て1石英製丸管(高純度雰囲気下での処理の場合、真空
置換を行なうため1機械的強度の上から丸aであること
が望ましい。)から成るウェハ処理用チャンバ内に管軸
に沿ってウェハを配置し、丸管の外壁に沿い且つウェハ
の上下面に対向して赤外縁ランプを配設したものが矧ら
れている。
A conventional rapid heating and cooling device using this infrared lamp is a quartz round tube (in the case of processing in a high-purity atmosphere, it is preferable to use a round A from the top for mechanical strength to perform vacuum displacement). A wafer is arranged along the tube axis in a wafer processing chamber consisting of a round tube, and infrared edge lamps are arranged along the outer wall of the round tube and facing the upper and lower surfaces of the wafer.

(発明が解決しようとする問題点) しかしながら、最近の半導体ウエノ・は、61ンチ、8
インチのように大口径のものが玉流になりつつあるので
、上記の従来装置によれば。
(Problem to be solved by the invention) However, recent semiconductor wafers are 61 inches, 8
According to the above-mentioned conventional equipment, as large diameters such as inches are becoming popular.

上部ヒータと下部ヒータの間隔が犬きくなり、加熱能力
が低下する不都合?伴なう。また、ウェハ処理用チャン
バには、無駄なスペースが増えるため、その熱容1が増
加し、亀速加熱冷却が困難になると共に真空を始めとす
る各柚雰囲気生成の時間が低下しウェハの処理速妃が低
下する不都合を伴なう。
Is it inconvenient that the distance between the upper and lower heaters is too close and the heating capacity is reduced? Accompany. In addition, the wasted space in the wafer processing chamber increases, which increases its heat capacity, making it difficult to quickly heat and cool the chamber, and reducing the time required to create various atmospheres, including vacuum, for wafer processing. This is accompanied by the inconvenience of a decrease in speed.

< t’、i照点を解決するための手段)本発明は、従
来装置の上記のような不都合を解消することをその目的
とするもので、1対のベルジャを対向配置してウェハ処
理用チャンバを形成し、該1対のベルジャにそれぞれ対
向して互いに直交する赤外線ランプを配設し、該チャン
バ内に配置するウェハの一面及び他面に互いに直交する
冷却ガス吹付は用ノズルをそれぞれ配設したことを特徴
とする。
< Means for solving t', i illumination point) The present invention aims to solve the above-mentioned disadvantages of the conventional apparatus. A chamber is formed, infrared lamps are arranged facing each other and orthogonal to each other in the pair of bell jars, and cooling gas spray nozzles are arranged at right angles to one side and the other side of the wafer placed in the chamber, respectively. It is characterized by having been established.

(実施例) 以下本発明の実力例を図面につき説明する。(Example) Practical examples of the present invention will be explained below with reference to the drawings.

図中(1+)(b)は、同一形状の石英製ベルジャ、(
2ンは例えば5つの部材(2t)(2zl(2xl(2
J(2s)を積み重ねて形成さ、れt装置本体で、ベル
ジャ(11)(h)は該5つの部材<21)〜(26)
を績み重ねる時その縁部が該部材で挾まれて固足され、
部材(23)とともにウェハ処理用チャンバ(3)全形
成している。
In the figure, (1+) (b) is a quartz bell jar of the same shape, (
For example, 2 units are made up of 5 members (2t) (2zl (2xl (2xl)
The bell jar (11) (h) is formed by stacking J (2s), and the bell jar (11) (h) is formed by stacking the five members <21) to (26).
When it is repeated, its edges are clamped and fixed by the members,
The wafer processing chamber (3) is entirely formed together with the member (23).

該チャンバ(3)内のはy中央には、石英製ウェハホル
ダ(4)が配設され、また該ホルダ(4)に載置するウ
ェハ(5)に近接する上方及び下方の対称装置にそれぞ
れ例えば4本の冷却ガ/及び雰囲気ガス吹付は用ノズル
(6I)及び(62)が互いに直交して装着されている
。前記ベルジャ(1り及び(12)の上方及び下方には
、互いに平行な例えば9本の赤外線ランプ(71)及び
(72)とランプハウス(8I)及び(82)とがそれ
ぞれ配置され部材(25)及び(2I)にそれぞれ固着
されており、該赤外線ランプ(71)及びランプハウス
(81〕と赤外線ラン2″(7り及びランプハウス(8
2)とは互いに直交して配置されている。
A quartz wafer holder (4) is disposed in the center of the chamber (3), and upper and lower symmetrical devices close to the wafer (5) placed on the holder (4) are each provided with, for example, Four cooling gas/atmospheric gas nozzles (6I) and (62) are installed perpendicularly to each other. For example, nine infrared lamps (71) and (72) parallel to each other and lamp houses (8I) and (82) are arranged above and below the bell jar (1 and (12)), respectively. ) and (2I) respectively.
2) are arranged perpendicular to each other.

前記チャンバ(3)は、S材(23)にそれぞれ形成さ
れた孔(91)及び(9t)を介して高真空排気装置0
0及び廃ガス処理装aianに連なつ1おり、ノズル(
6I)及びノズル(62)は、これ等に連なる部材(2
3)の孔Q2″f、介して互いに切換え接続されるガス
混合器α3及び冷却制御装置α→に連結されている。
The chamber (3) is connected to a high vacuum exhaust device 0 through holes (91) and (9t) formed in the S material (23), respectively.
0 and 1 connected to the waste gas treatment equipment aian, and the nozzle (
6I) and the nozzle (62) are connected to the member (2I) and the nozzle (62).
3) is connected to the gas mixer α3 and the cooling control device α→, which are switch-connected to each other via the hole Q2″f.

ベルジャ(11)及び(12)の上方及び下方に配設さ
れた赤外線ランプ(7I)及び(72)は変圧器α9及
び出力109を弁して交流電源に接続され、該出力装置
帖は、PIDコントローラαη及ヒマヒマルチプログ2
7m2介システムコントローラ(L’Jに接続され、マ
ルチ2′ログラマ[相]にはウェハ(5)に配置した熱
電対鎖の出力が入力するようになっている。
The infrared lamps (7I) and (72) arranged above and below the bell jars (11) and (12) are connected to an AC power source by valving the transformer α9 and the output 109, and the output device is connected to the PID Controller αη and Himahi Multi-Program 2
It is connected to the 7m2 system controller (L'J), and the output of the thermocouple chain placed on the wafer (5) is input to the multi-2'lograma [phase].

図中(21+)(2h)は1部材(24)及び(22)
の孔(イ)を介して外部から導入した室温の空気を赤外
線ランプ(7+) (72)により生じた熱気と交換す
る熱気排気管で、該熱気排気管を介して熱気排気するこ
とにより加熱時ではベルジャ(11)(12)の耐熱性
等が高19、冷却時には冷却速度が高まって生産性が向
上するだけでなく、コールドウオールの条件に近くなる
In the figure (21+) (2h) is one member (24) and (22)
A hot air exhaust pipe that exchanges room temperature air introduced from the outside through the hole (A) with hot air generated by the infrared lamp (7+) (72). The heat resistance of Belljar (11) and (12) is high 19, which not only increases the cooling rate during cooling and improves productivity, but also brings it close to the cold wall conditions.

かくてこの実施例の赤外線ランプ(71)及び(h)t
”点灯すると、チャンバ(3)は上下間の距離が短く、
その結果赤外線ランプ(71)(72)がウェハ(5)
の上下に近僧して配置されているので、ウェハ(7)は
急速に加熱される。また、赤外線ランプ(71)と(7
t)は直交して配設されているので。
Thus, the infrared lamps (71) and (h)t of this example
``When lit, chamber (3) has a short distance between the top and bottom;
As a result, the infrared lamps (71) (72) are attached to the wafer (5).
Since the wafers (7) are placed close to each other above and below the wafer (7), the wafer (7) is rapidly heated. In addition, infrared lamp (71) and (7
t) are arranged orthogonally.

ウェハ(5)はその全面に亘って均一の温度に7JIl
熱され、また赤外線ランプ(71)と(72)への印加
電力を調節することによりウェハ(!11)の温度分布
を2次元について調節することができる6また、冷却制
m装va41’r作動さぜ、ノズ/’(6+)及び(6
,)からウェハ(5)の上下面にヘリウム等の冷却ガス
を吹付けると、ノズル(61)と(62)は互いに直交
するので、ウェハ(5)の全面は均一に冷却される。
The wafer (5) is heated to a uniform temperature of 7 JIl over its entire surface.
The temperature distribution of the wafer (!11) can be adjusted in two dimensions by adjusting the power applied to the infrared lamps (71) and (72). Saze, Nozu/'(6+) and (6
When a cooling gas such as helium is sprayed onto the upper and lower surfaces of the wafer (5) from the nozzles (61) and (62), which are perpendicular to each other, the entire surface of the wafer (5) is uniformly cooled.

またチャンバ(3)の容積が最小限になり熱害t?小さ
くできるので、ウェハ(5)は急速に冷却されるだけで
なく、指足の雰囲気を短時間に生成できる。
In addition, the volume of the chamber (3) is minimized, resulting in heat damage. Since it can be made small, not only can the wafer (5) be cooled rapidly, but also a finger-toe atmosphere can be generated in a short time.

尚、実施例では、冷却ガスと雰囲気ガスの吹付けにノズ
ルを共用しているが、別個のノズルを用いることができ
る。
In the embodiment, a nozzle is shared for spraying the cooling gas and the atmospheric gas, but separate nozzles may be used.

(発明の効果) 以上説明したように、本発明によるときは。(Effect of the invention) As explained above, according to the present invention.

クエへを急速に刀口熱及び冷却することができると共に
ウェハの温[−均一にすることができる等の効果を有す
る。
It has effects such as being able to rapidly heat and cool the wafer and also making the temperature of the wafer uniform.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の1実施例の側方断面図、第2図は、冷
却制御装置等に接続されfc第1図示の実施例のA−入
線断面図である。 (1000g)・・・ベルジャ (2)・・・装置不俸
(3)・・・チャンバ    (4)・・・ホルダ(5
)・・・ウェハ (61)(6z)・・・冷却ガス及び雰囲気ガス吹付は
用ノズル (7+)(7z)・・・赤外線ランプ 特許出願人  真空理工 株式会社 第1図
FIG. 1 is a side sectional view of one embodiment of the present invention, and FIG. 2 is a sectional view taken along line A--A of the embodiment shown in FIG. 1 connected to a cooling control device and the like. (1000g)...Bell jar (2)...Equipment defect (3)...Chamber (4)...Holder (5
)...Wafer (61) (6z)...Nozzle for spraying cooling gas and atmospheric gas (7+) (7z)...Infrared lamp patent applicant Shinku Riko Co., Ltd. Figure 1

Claims (1)

【特許請求の範囲】[Claims] 1対のベルジヤを対向配置してウェハ処理用チャンバを
形成し、該1対のベルジヤにそれぞれ対向して互いに直
交する赤外線ランプを配設し、該チャンバ内に配置する
ウェハの一面及び他面に互いに直交する冷却ガス吹付け
用ノズルをそれぞれ配設したことを特徴とする半導体ウ
ェハ処理用急速加熱冷却装置。
A wafer processing chamber is formed by arranging a pair of bell gears facing each other, and infrared lamps are disposed facing each other and orthogonal to each other in the pair of bell gears, and are arranged on one side and the other side of the wafer placed in the chamber. A rapid heating and cooling device for semiconductor wafer processing, characterized in that cooling gas spray nozzles are arranged orthogonally to each other.
JP12472786A 1986-05-31 1986-05-31 Rapid heating and cooling device for semiconductor wafer treatment Pending JPS62282437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12472786A JPS62282437A (en) 1986-05-31 1986-05-31 Rapid heating and cooling device for semiconductor wafer treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12472786A JPS62282437A (en) 1986-05-31 1986-05-31 Rapid heating and cooling device for semiconductor wafer treatment

Publications (1)

Publication Number Publication Date
JPS62282437A true JPS62282437A (en) 1987-12-08

Family

ID=14892609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12472786A Pending JPS62282437A (en) 1986-05-31 1986-05-31 Rapid heating and cooling device for semiconductor wafer treatment

Country Status (1)

Country Link
JP (1) JPS62282437A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0274081A (en) * 1988-09-09 1990-03-14 Katsuhiko Seki Thin film light emitting diode and manufacture thereof
JP2755369B2 (en) * 1992-02-25 1998-05-20 エージー.アソシェーツ、インコーポレイテッド Gas phase doping of semiconductor materials under reduced pressure in a radiantly heated cold wall reactor
WO1999003138A1 (en) * 1997-07-11 1999-01-21 Asm America, Inc. Substrate cooling system
US6108937A (en) * 1998-09-10 2000-08-29 Asm America, Inc. Method of cooling wafers
US6259062B1 (en) 1999-12-03 2001-07-10 Asm America, Inc. Process chamber cooling
US6461801B1 (en) 1999-05-27 2002-10-08 Matrix Integrated Systems, Inc. Rapid heating and cooling of workpiece chucks
JP2003526940A (en) * 2000-03-17 2003-09-09 マットソン サーマル プロダクツ インコーポレイテッド Local heating and local cooling of substrate
JP2004503108A (en) * 2000-07-06 2004-01-29 アプライド マテリアルズ インコーポレイテッド Heat treatment of semiconductor substrate
US6905333B2 (en) 2002-09-10 2005-06-14 Axcelis Technologies, Inc. Method of heating a substrate in a variable temperature process using a fixed temperature chuck
US6957690B1 (en) 1998-09-10 2005-10-25 Asm America, Inc. Apparatus for thermal treatment of substrates
JP2008166706A (en) * 2006-12-14 2008-07-17 Applied Materials Inc Rapid conduction cooling using sub-processing plane

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0274081A (en) * 1988-09-09 1990-03-14 Katsuhiko Seki Thin film light emitting diode and manufacture thereof
JP2755369B2 (en) * 1992-02-25 1998-05-20 エージー.アソシェーツ、インコーポレイテッド Gas phase doping of semiconductor materials under reduced pressure in a radiantly heated cold wall reactor
WO1999003138A1 (en) * 1997-07-11 1999-01-21 Asm America, Inc. Substrate cooling system
US6408537B1 (en) 1997-07-11 2002-06-25 Asm America, Inc. Substrate cooling system
US6578287B2 (en) 1997-07-11 2003-06-17 Asm America, Inc. Substrate cooling system and method
US6108937A (en) * 1998-09-10 2000-08-29 Asm America, Inc. Method of cooling wafers
US6209220B1 (en) 1998-09-10 2001-04-03 Asm America, Inc. Apparatus for cooling substrates
US6957690B1 (en) 1998-09-10 2005-10-25 Asm America, Inc. Apparatus for thermal treatment of substrates
US6461801B1 (en) 1999-05-27 2002-10-08 Matrix Integrated Systems, Inc. Rapid heating and cooling of workpiece chucks
US6410888B2 (en) 1999-12-03 2002-06-25 Asm America, Inc. Process chamber cooling
US6259062B1 (en) 1999-12-03 2001-07-10 Asm America, Inc. Process chamber cooling
JP2003526940A (en) * 2000-03-17 2003-09-09 マットソン サーマル プロダクツ インコーポレイテッド Local heating and local cooling of substrate
JP2004503108A (en) * 2000-07-06 2004-01-29 アプライド マテリアルズ インコーポレイテッド Heat treatment of semiconductor substrate
US6905333B2 (en) 2002-09-10 2005-06-14 Axcelis Technologies, Inc. Method of heating a substrate in a variable temperature process using a fixed temperature chuck
US7485190B2 (en) 2002-09-10 2009-02-03 Axcelis Technologies, Inc. Apparatus for heating a substrate in a variable temperature process using a fixed temperature chuck
JP2008166706A (en) * 2006-12-14 2008-07-17 Applied Materials Inc Rapid conduction cooling using sub-processing plane

Similar Documents

Publication Publication Date Title
JPS62282437A (en) Rapid heating and cooling device for semiconductor wafer treatment
DE69412420D1 (en) Quasi-infinite heat source / sink
HK1057130A1 (en) Methods and apparatus for thermally processing wafers.
JPS63108712A (en) Method and apparatus for heating semiconductor substrate and for inducing reaction
JPH0669027B2 (en) Method for forming thin film on semiconductor wafer
JPS5665937A (en) Continuous annealing unit for hoop
US4925473A (en) Process and furnace for heat application
TW377454B (en) Heat processing apparatus
CN204758472U (en) High -melting -point material granule phase transition process high temperature spectrum radiation characteristic measurement system
JPH02240923A (en) Method and apparatus for vacuum treatment
JP3961912B2 (en) Method and apparatus for forced cooling / heating of plate-like workpiece
JPS56124437A (en) Gas phase chemical reaction apparatus
JP2018179479A (en) Dryer
EP0370001A1 (en) Glass drawing process and furnace.
JPS63124424A (en) Heating method for sample
JPH05296655A (en) Device for drying quartz jig
JPS5766642A (en) Plasma etching device
CN107256841A (en) Rapid thermal annealing machine
JPS61271818A (en) Vapor growth apparatus
JPS60253212A (en) Vapor growth device
JP2001118803A (en) Semiconductor manufacturing device
JPS6216518A (en) Semiconductor device manufacturing equipment
JPH01161827A (en) Heat treating apparatus
JPS6339930U (en)
JPS60247934A (en) Heat treatment device