JPS62282214A - Contact inspection apparatus of moving body - Google Patents

Contact inspection apparatus of moving body

Info

Publication number
JPS62282214A
JPS62282214A JP12375586A JP12375586A JPS62282214A JP S62282214 A JPS62282214 A JP S62282214A JP 12375586 A JP12375586 A JP 12375586A JP 12375586 A JP12375586 A JP 12375586A JP S62282214 A JPS62282214 A JP S62282214A
Authority
JP
Japan
Prior art keywords
cylinder
contact
detection unit
movable body
stylus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12375586A
Other languages
Japanese (ja)
Inventor
Toshiichi Tsugawa
都川 歳一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP12375586A priority Critical patent/JPS62282214A/en
Publication of JPS62282214A publication Critical patent/JPS62282214A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To attempt contact inspection without liquid contacting medium, elimination of contamination of a specimen and miniaturization of an apparatus, by allowing a detecting unit to shift for deviation in the conveying direction of a moving body and holding tightly a stylus on a surface of the moving body. CONSTITUTION:When a detecting unit 20 approaches a cylinder 10, a friction plate 24 of a synchronizer 22 is brought to contact with the cylinder, a body subject to flaw detection, and next, a spring 25 is compressed and a stylus 21 is brought to tight contact with cylinder 10 through a rubber contact medium 23. Here, the synchronizer 22 is brought to contact with a surface of the cylinder 10 by the increase of compressing force and starts to move in the peripheral direction in synchronization with this. Next, upon further advance of a slider 42, a spring 27 is deformed to absorb this movement. Next, when a crank mechanism rotates further by a half revolution, the slider 42 begins retreat to firstly separate the stylus 21 and then, the entire detecting unit 20 is separated from the cylinder 10 to end a cycle. And, a measuring operation by the stylus 21 is conducted with the timing with which the stylus 21 is brought to contact with the cylinder 10 and is moving.

Description

【発明の詳細な説明】 3、発明の詳細な説明 [発明の目的] (産業上の利用分野) 本発明は移動体の接触検査装置に関する。[Detailed description of the invention] 3. Detailed description of the invention [Purpose of the invention] (Industrial application field) The present invention relates to a contact inspection device for a moving object.

(従来の技術) 例えば、ドラム缶等の円筒の表面線量率、表面汚染!度
、寸法形状、表面のさず、へこみ、汚れなどを検査する
ための超音波検査装置は、上記の検査項目以外にも内部
充填物の分布状況、密度分布等を検査、測定づるために
有効である。
(Prior art) For example, surface dose rate and surface contamination of cylinders such as drums! In addition to the above inspection items, ultrasonic inspection equipment is also effective for inspecting and measuring the distribution of internal fillings, density distribution, etc. It is.

ところで、このような超音波検査装置においては、被検
査物と測定子との間に空気の唐や気泡が存在すると、超
音波の伝導効率が低下し、1ll11定感度が低下する
ことが知られている。
By the way, in such an ultrasonic inspection device, it is known that if there are air bubbles or bubbles between the object to be inspected and the probe, the ultrasonic conduction efficiency decreases and the constant sensitivity decreases. ing.

また、1ll11定精度を上げるためには円筒を回転さ
せつつ多数点での測定を行う必要があるが、空気層を避
けるために回転している円筒に測定子を直接接触させた
のでは居動摩隙によりili!I定子が摩耗する等の不
都合を生じる。したがって従来では円筒とiul+定子
の間に、水、浦、グリースおよびゴム状弾性体等の接触
!質を介在させて、すき間を無くす方式が採用されてい
た。
In addition, in order to increase the constant accuracy, it is necessary to measure at multiple points while rotating the cylinder, but it is difficult to directly contact the measuring head with the rotating cylinder to avoid an air layer. Due to friction! This causes problems such as wear of the I constant. Therefore, in the past, water, ura, grease, rubber-like elastic bodies, etc. came into contact between the cylinder and the IUL+constant! A method was adopted to eliminate gaps by intervening quality.

第7図〜第9図は従来の超音波検査装置を示している。7 to 9 show a conventional ultrasonic inspection apparatus.

すなわち、第7図(a)は超音波検査装置の第1従来例
を示ず側端面説明図、第7図(b)は′M7図(a)の
平面説明図、第8図は第2従来例を示す側断面説明図、
第9図は第3従来例を示す側断面説明図である。
That is, FIG. 7(a) is an explanatory side end view of the first conventional example of an ultrasonic inspection apparatus, FIG. 7(b) is a plan view of FIG. A side cross-sectional explanatory diagram showing a conventional example,
FIG. 9 is a side sectional explanatory view showing a third conventional example.

第7図に示した第1従来例は、被検査物である円筒1と
測定子2の門に、グリースまたはゴム弾性体等の接触媒
質3を直接介在さびることにより、すき間を解洲した態
様である。
The first conventional example shown in FIG. 7 is an embodiment in which the gap is cleared by directly interposing couplant material 3 such as grease or rubber elastic material between the gate of cylinder 1 and probe 2, which are the objects to be inspected. It is.

第8図に示した第2従来例は、円筒1を全周にわたり検
査するため、これを回転台4に載置して回転させ、円筒
1と測定子2との間に水、油等の接触媒質3を流しなが
ら、超音波よ11定を行なう態様である。この第2従来
例にJ3ける接触媒質3は、チt・ンバ5に注入され、
下部のトレイ6から排出されるようになっている。
In the second conventional example shown in FIG. 8, in order to inspect the entire circumference of the cylinder 1, the cylinder 1 is placed on a rotary table 4 and rotated, and there is no water, oil, etc. between the cylinder 1 and the probe 2. This is an embodiment in which ultrasonic waves are irradiated while the couplant 3 is flowing. In this second conventional example, the couplant 3 in J3 is injected into the chamber 5,
It is designed to be discharged from the lower tray 6.

第9図に示した第3従来例は、水などの接触媒質3を満
たした検査槽8に円筒1を浸漬し、この検査槽8内で測
定子2を円筒1に対向さ眩て、回転台4により回転させ
ながら、円筒1の全周を超音波測定覆る態様である。
In the third conventional example shown in FIG. 9, a cylinder 1 is immersed in an inspection tank 8 filled with a couplant 3 such as water, and a measuring tip 2 is rotated in the test tank 8 while facing the cylinder 1. This is an embodiment in which the entire circumference of the cylinder 1 is covered by ultrasonic measurement while being rotated by the table 4.

(発明が解決しようとする問題点) しかしながら、上述の第1従来例において(ユ、円筒1
の全周にわたって検査を行なおうとする場合に、測定子
2を円筒1に接触したままで円筒1を回転させると、接
触媒質3としてのグリースの飛散やゴムの摩耗を生ずる
ため、測定後、一旦測定子2を後退さげてから、円筒1
を1ピッチ回転せしめ、さらに測定子2を探1カ物体1
に密着さ1て超音波測定するというステップを操り返す
必要がある。
(Problems to be Solved by the Invention) However, in the above-mentioned first conventional example (Y, cylinder 1
If you want to perform an inspection over the entire circumference of the cylinder, rotating the cylinder 1 with the probe 2 in contact with the cylinder 1 will cause the grease as the couplant 3 to scatter and the rubber to wear out. Once the measuring head 2 is moved backward, the cylinder 1 is
Rotate the probe 1 pitch, and then move the probe 2 to find the object 1.
It is necessary to repeat the step of taking ultrasonic measurements in close contact with the patient.

したがってこの@1従来例にJ:す、たとえばドラム缶
のような大型円筒を検査する際には、倹互手順が繁雑で
効率が悪く、完全自動化を達成できない。
Therefore, when inspecting a large cylinder such as a drum, the conventional procedure is complicated and inefficient, and complete automation cannot be achieved.

これに対し、上述の第2および第3従来例は、円筒1を
連続回転させながら、その全周にわたる探傷検査を自動
的に行なおうとするものであるが、上記第2従来例では
、ヂトンバ5に流入する接触媒質3に気泡の巻込み等を
生じやすく、検査の信頼性が低いばかりか、接触媒質3
の回収、再循環のための設備が大がかりになるという欠
点がある。
On the other hand, the above-mentioned second and third conventional examples attempt to automatically perform flaw detection over the entire circumference of the cylinder 1 while continuously rotating it. The couplant 3 that flows into the couplant 5 is likely to cause bubbles to be trapped, which not only makes the inspection less reliable, but also makes the couplant 3
The disadvantage is that the equipment for recovery and recirculation is large-scale.

さらに上述の第2および第3従来例に共通する問題点と
して、接触媒質3として木登使用する場合には検査物等
に精を生じやすく、またグリース等の油を使用する場合
には検査物体の表面が汚染されることが挙げられる。
Furthermore, as a problem common to the above-mentioned second and third conventional examples, when using a wooden climbing material as the couplant 3, the test object tends to be contaminated, and when oil such as grease is used, the test object The surface of the product may become contaminated.

また、以上の問題点はi′lG記回転体の測定のみでな
く、被検査物が連続して移動し、かつ、接触式に測定を
行なわなければならない測定方式に共通の問題でもあっ
た。
Furthermore, the above-mentioned problems are common not only to the measurement of the rotating body i'lG, but also to measurement methods in which the object to be inspected moves continuously and measurement must be carried out in a contact manner.

本発明は以上の従来技術の問題点を解決するもので、前
記円筒の如き回転体を含む移動体の移動を停止すること
なく、移動体に測定子を密着さtつつ胴側を行なうこと
、および水、グリース等の液状接触媒質を不要にしてこ
れを原因とする汚染の除去と装置の小型化を図ることを
目的とする。
The present invention solves the above-mentioned problems of the prior art, and includes: carrying out measurement on the body side while keeping a measuring element in close contact with the moving body without stopping the movement of the moving body including a rotating body such as the cylinder; Another object of the present invention is to eliminate the need for liquid couplants such as water and grease, eliminate contamination caused by these substances, and downsize the device.

[発明の構成] (問題点を解決するための手段) 前記目的を達成するため本発明は、移動体表面に接触す
る測定子を設けた検出部と、移動体の移動速度に同期し
て検出部を移動体に向けて前後進させる往復駆動機構と
、前記検出部とffi復駆仙橢構との間に介在され、か
つ前記測定子が移動体表面に接触している間に検出部を
移動体の移送方向に移動−位させて測定子を移動体表面
に密着(^持するリンク機構を備えたことを特徴とする
[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above-mentioned object, the present invention includes a detecting section provided with a probe that contacts the surface of a moving body, and a detecting section that is provided with a probe that contacts the surface of a moving body, and a detecting unit that detects in synchronization with the moving speed of the moving body. a reciprocating drive mechanism that moves the section back and forth toward the moving body, and a reciprocating drive mechanism that is interposed between the detecting section and the ffi return mechanism, and that moves the detecting section while the measuring element is in contact with the surface of the moving body. It is characterized by having a link mechanism that moves the probe in the transport direction of the moving body and holds the probe in close contact with the surface of the moving body.

(作用) 測定子は’fAQ定タイミングに応じて移動体とともに
移動しつつ移動体に密着し、その後溶量ηろ。
(Function) The probe moves with the moving body according to the 'fAQ fixed timing and comes into close contact with the moving body, and then the dissolved amount η is measured.

(実施例) 以下、本発明を回転型の超音波測定装動に適用した場合
について図面を用いて詳細に説明する。
(Example) Hereinafter, a case in which the present invention is applied to a rotary ultrasonic measurement device will be described in detail using the drawings.

第1図は本発明の超音波検査装置の第1実施例を示す戦
略平面説明図、第2図は第1図の要部に切回、第3図は
リンク機構と検出部の動きを示す説明図、第4図はスラ
イダーの動作と検出部の同期移動の関係を示す説明図、
第5図は測定ピッチの説明図である。
Fig. 1 is a strategic plan explanatory diagram showing the first embodiment of the ultrasonic inspection device of the present invention, Fig. 2 is a cutaway to the main part of Fig. 1, and Fig. 3 shows the movement of the link mechanism and the detection section. An explanatory diagram, FIG. 4 is an explanatory diagram showing the relationship between the movement of the slider and the synchronous movement of the detection unit,
FIG. 5 is an explanatory diagram of the measurement pitch.

第1図において、本発明の超音波探(口検査装置は、矢
印方向に回転する円筒10を111II定対象としてこ
れの外周に対向配置された検出部20と、この検出部2
0を常に円筒10の中心に向かせるリンク機構30およ
び前記検出部20とリンク機構30を円筒10の外周に
向けて前進、後退させる往復駆on構40から大略構成
されている。
In FIG. 1, the ultrasonic probe (oral inspection device) of the present invention has a cylinder 10 rotating in the direction of the arrow as a fixed object, and a detection unit 20 disposed opposite to the outer periphery of the cylinder 10.
It is generally composed of a link mechanism 30 that always directs the sensor 0 toward the center of the cylinder 10, and a reciprocating mechanism 40 that moves the detection section 20 and the link mechanism 30 forward and backward toward the outer circumference of the cylinder 10.

次に第2図にしたがって、本第1実施例の要部の詳細構
造について説明する。
Next, the detailed structure of the main parts of the first embodiment will be explained with reference to FIG.

まず検出部20は超音波の発振J3よび受振部を兼ねた
超音波Jl定子21、この測定子21に取付けられたゴ
ム弾性体製の接触媒質23、先端に前記測定子21を取
付け、ばね27を介してリンク機構30の検出部取付板
28と係合しているホルダー26と、このホルダー26
にばね25を介して係合している接触子すなわちシンク
ロナイザ−22およびこのシンクロナイザ−22の先端
に取付【プられ、円筒10との摩擦力を高めるゴム製の
摩擦板24から構成されている。
First, the detecting section 20 includes an ultrasonic Jl constantor 21 that also serves as an ultrasonic oscillation J3 and a receiving section, a couplant material 23 made of rubber elastic material attached to this probe 21, the probe 21 attached to the tip, and a spring 27. The holder 26 is engaged with the detection unit mounting plate 28 of the link mechanism 30 via the holder 26.
It consists of a contact element or synchronizer 22 engaged through a spring 25, and a rubber friction plate 24 attached to the tip of the synchronizer 22 to increase the frictional force with the cylinder 10.

シンクロナイザ〜22は円筒10の外周に対向し、これ
が円筒10に押し付けられるとばね25の付勢圧に抗し
てシンクロナイザ−22はホルダー26内に没入し、相
対的に測定子21が突出し、円筒10に接触する。
The synchronizer 22 faces the outer periphery of the cylinder 10, and when it is pressed against the cylinder 10, the synchronizer 22 sinks into the holder 26 against the biasing pressure of the spring 25, and the probe 21 relatively protrudes, causing the cylinder to close. Contact 10.

次にリンク機構30は、前記検出部20のホルダー26
とばね27を介して係合された検出部取付板28、等長
リンク3L 32、固定リンク33からなる略台形の平
行リンク部と上記等長リンク32と固定リンク33との
間に設けられた復帰ばね34およびストッパー35から
構成されている。
Next, the link mechanism 30 connects the holder 26 of the detection section 20
A substantially trapezoidal parallel link portion consisting of a detection unit mounting plate 28, an equal length link 3L 32, and a fixed link 33 engaged via a spring 27, and the equal length link 32 and fixed link 33 are provided between It is composed of a return spring 34 and a stopper 35.

等長リンク31.32は、検出部数(」板28上でのヒ
ンジ間隔が、固定リンク33上でのじンジ間隔よりも小
さく設定されており、リンク機構30が変形しても、検
出部が常に探傷物体10の中心を向くように考慮されて
いる。
For the equal length links 31 and 32, the hinge interval on the plate 28 is set smaller than the hinge interval on the fixed link 33, so that even if the link mechanism 30 is deformed, the detection unit It is designed to always face the center of the flaw detection object 10.

前記復帰バネ34は、前記平行リンク部を円筒10の矢
印に示す回転方向とは逆側に偏倚させる方向に付勢する
。この状態で検出部20が円筒10に接すると、その/
!3iII力がバネ圧に抗し平行リンク部を回転方向に
沿って変形させる。次いで検出部20が円筒10から離
れると、平行リンク部は初期の形状に復帰する。この初
期形状はストッパー35により設定される。
The return spring 34 biases the parallel link portion in a direction opposite to the direction of rotation of the cylinder 10 shown by the arrow. When the detection unit 20 comes into contact with the cylinder 10 in this state, the /
! The 3iII force resists the spring pressure and deforms the parallel link portion along the direction of rotation. Next, when the detection part 20 is separated from the cylinder 10, the parallel link part returns to its initial shape. This initial shape is set by the stopper 35.

往復駆動曙構40は、円筒10の回転に同期して回転す
るモーター41、駆動軸45、クランク躍構44、前記
固定リンク33と結合されたスライダー42およびこの
スライダー42を案内するガイド43から構成されてい
る。
The reciprocating drive mechanism 40 includes a motor 41 that rotates in synchronization with the rotation of the cylinder 10, a drive shaft 45, a crank mechanism 44, a slider 42 coupled to the fixed link 33, and a guide 43 that guides the slider 42. has been done.

ここでクランク機構44は、モーター4]の回転を直接
往復運動に変換してスライダー42に伝達し、スライダ
ー42は前記リンク機構30を介して、前記検出部20
を、円fFi10に向けて前進、後退させる。
Here, the crank mechanism 44 directly converts the rotation of the motor 4 into a reciprocating motion and transmits it to the slider 42, and the slider 42 connects the detection unit 20 to the detection unit 20 via the link mechanism 30.
is moved forward and backward toward circle fFi10.

次に水袋■の作用を説明する。円筒10が図示していな
い駆動装置上に載置され矢印方向に回転している状態で
駆a i m40のクランク機構44が1回転すると、
スライダー42が1往復し、検出部20がリンク機構3
0を介して円筒101.:対し、接近・密着・分離・後
退の1づイクルを行なまず検出部20が円筒10に接近
すると、シンクロナイザ−22の摩擦板24が探傷物体
10に接触し、次いでばね25が圧縮されて、測定子2
1が接触媒質23を介して円筒10に密性する。
Next, the function of the water bag ■ will be explained. When the crank mechanism 44 of the drive ai m 40 rotates once while the cylinder 10 is placed on a drive device (not shown) and rotates in the direction of the arrow,
The slider 42 reciprocates once, and the detection unit 20 detects the link mechanism 3.
0 through the cylinder 101. On the other hand, when the detection unit 20 approaches the cylinder 10 without performing the cycle of approach, close contact, separation, and retreat, the friction plate 24 of the synchronizer 22 comes into contact with the flaw detection object 10, and then the spring 25 is compressed. Measuring head 2
1 is tightly attached to the cylinder 10 via the couplant 23.

ここでシンクロナイ!、I’−22は、円筒10との接
触当初に若干のスリップを伴なうが、押伺力の増加によ
り円筒10の表面に密着し、これに同期して円周方向に
移動を始める。
Synchronize here! , I'-22 is accompanied by some slip at the beginning of contact with the cylinder 10, but due to an increase in pushing force, it comes into close contact with the surface of the cylinder 10, and in synchronization with this, starts to move in the circumferential direction.

スライダー42がさらに前進すると、ばね27がたわみ
、このすJきを吸収する。
As the slider 42 moves further forward, the spring 27 deflects and absorbs this slack.

次に、クランク機構44が更に半回転すると、スライダ
ー42が後退を始め、萌述の工程を逆にたどって、まず
測定子21が地間して、次いで検出部20全体が円筒1
0から離脱し、1サイクルが終了する。測定子21によ
る測定動作は、Mす定子21が円筒10に密着し、移動
している状態のタイミングを取って行なわれる。
Next, when the crank mechanism 44 makes another half turn, the slider 42 begins to retreat, retracing the process described above, first the probe 21 touches the ground, and then the entire detection part 20 moves to the cylinder 1.
It departs from 0 and one cycle ends. The measurement operation by the measuring element 21 is performed at a timing when the M stator 21 is in close contact with the cylinder 10 and is moving.

この測定期間中に、リンク機構30は検出部20が常に
円筒10の中心に向くよう作動する。このリンク機構3
0と検出部10の動きについて、第3図を参照して説明
する。
During this measurement period, the link mechanism 30 operates so that the detection section 20 always faces the center of the cylinder 10. This link mechanism 3
0 and the movement of the detection unit 10 will be explained with reference to FIG.

第3図において、(イ)は初期位置で検出部20の円筒
1oに対吏るIsが始まり、(ロ)は中間位協、(ハ)
は終端位dで検出部20が探傷物体10から離脱する寸
前の状態を示す。
In FIG. 3, (a) shows the beginning of Is that opposes the cylinder 1o of the detection unit 20 at the initial position, (b) shows the intermediate position, and (c)
shows a state where the detection unit 20 is about to separate from the flaw detection object 10 at the terminal position d.

この(イ)〜(ハ)の期間中、検出部20の移動は円筒
10の回転に同期して行なわれ、測定子21は常に円筒
の中心Oを向くことになる。
During the periods (a) to (c), the detection unit 20 moves in synchronization with the rotation of the cylinder 10, and the probe 21 always faces the center O of the cylinder.

上述の動きは、前述したようにリンク機構30の等艮リ
ンク31.32の検出部取付板28上でのヒンジ間隔が
、固定リンク33上でのヒンジ間隔より小さくなるよう
に構成したことにより達成される。
The above-mentioned movement is achieved by configuring the hinge spacing of the equal links 31 and 32 of the link mechanism 30 on the detection unit mounting plate 28 to be smaller than the hinge spacing on the fixed link 33, as described above. be done.

なお」二層(イ)→(ハ)の1サイクルを終了した後の
復帰動作は、前述の如くリンクlR30に設けた復帰ば
ね34により行なわれ、初期立2くイ)はストッパー3
5により保たれる。
Note that the return operation after completing one cycle from the second layer (a) to (c) is performed by the return spring 34 provided in the link lR30 as described above, and the initial rise (2) is performed by the stopper 3.
5 is maintained.

また駆動部のスライダーの動作と検出部の同期移動関係
は第4図に示したとおりであり、クランク機構が等速回
転する場合に、スライダーの彷ぎは正弦波を画くことに
なる。
The relationship between the movement of the slider of the drive section and the synchronous movement of the detection section is as shown in FIG. 4, and when the crank mechanism rotates at a constant speed, the movement of the slider forms a sine wave.

第5図は上述のirJ音波音波深査検査なう場合の測定
ピッチ説明図である。
FIG. 5 is an explanatory diagram of the measurement pitch in the case of the above-mentioned IRJ sonic sound depth inspection.

第5図に示したように、円筒10の円周をn分PI シ
て測定する場合には、円筒10が1回転する間に、クラ
ンク機構をn回転させればよく、その場合の測定ピッチ
Oは360’/nとなる。したがって、円筒100回転
1度に応じたクランク機構の開明回転速度を変更するこ
とにより、測定ピッチを任意に設定することができる。
As shown in FIG. 5, when measuring the circumference of the cylinder 10 by n minutes PI, it is sufficient to rotate the crank mechanism n times while the cylinder 10 rotates once, and the measurement pitch in that case is O is 360'/n. Therefore, by changing the opening rotation speed of the crank mechanism in accordance with 1 degree of 100 revolutions of the cylinder, the measurement pitch can be arbitrarily set.

次に本発明の第2実施例を第6図にしたがって説明する
Next, a second embodiment of the present invention will be described with reference to FIG.

第6図に示した第2実施例は、測定子を光1辰子21A
と受振子21Bに分割し、これらを円筒状探1見物体1
0の両側に対向させて一夕JF!i装置した点が上述の
第1実施例と相違してし〜る。
In the second embodiment shown in FIG.
and a receiver 21B, and these are divided into a cylindrical probe 1 and a receiver 21B.
Itoyo JF facing both sides of 0! This embodiment differs from the first embodiment described above in that it uses an i-device.

したがって本第2実施例においては、発振子21A側に
検出部2OA、リンク機構30Aおよび駆仙四構40A
を、また受振子21B側に検出部20B、リンク1構3
0Bおよび駆動機構40Bを夫々設けているが、これら
の構造および作用は上述の第1実施例と全く同様である
Therefore, in the second embodiment, the detection unit 2OA, the link mechanism 30A, and the driving mechanism 40A are provided on the oscillator 21A side.
In addition, a detection unit 20B and a link 1 structure 3 are installed on the receiver 21B side.
0B and a drive mechanism 40B are provided, but their structures and operations are completely the same as in the first embodiment described above.

なお、各実施例では回転する円筒の測定にこの発明を適
用した場合を示したが、直線運動その池の移動体に対す
る妾触式測定方式一般に適用できる。
In each of the embodiments, the present invention is applied to the measurement of a rotating cylinder, but the present invention can be applied to general measurement methods for moving bodies in linear motion or ponds.

また測定子として用いられる測定媒体として実施例の如
く超音波光振子、受振子または兼用のものだけでなくX
線、敢用線等の測定媒体であって、被検査物に対し接触
式に測定を行なうことが必要な方式一般に適用できる。
In addition, as a measuring medium used as a measuring element, not only an ultrasonic optical pendulum, a receiver, or a dual-purpose one as in the embodiment, but also an X
The present invention can be generally applied to methods that require contact measurement of an object to be inspected using a measurement medium such as a wire or a wire.

し発明の効果1 以]ニ説明したように、本発明では次のような効果を奏
する。
Effects of the Invention 1 As described above, the present invention has the following effects.

(1)  移動体を連続移動さけつつW11定を行なう
ことができ、自動化が可能である。
(1) W11 determination can be performed while avoiding continuous movement of the moving object, and automation is possible.

(2)接触媒質として水や油を使用しないため、検査物
体や装置に錆や汚染を発生じず、装置自体も小型化し、
前後処理のわずられしさがない。
(2) Since water and oil are not used as couplants, there is no rust or contamination of the test object or equipment, and the equipment itself is smaller.
There is no need to worry about pre-processing or post-processing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第5図は、本発明の超音波検査装置の第1実施
例を示し、第1図は概略平面図、第2図は第1図の要部
説明図、第3図(a) (b) (C) (d)はそれ
ぞれリンク機構と検出部の動きを示す説明図、第4図は
スライダーの動作と検出部の動きを示す説明図、第5図
は測定ピッチの説明図であり、第6図は本発明の超音波
検査装置の第2実施例を示す概略平面図であり、第7〜
第9図は従来の超音波検査装置を示し、第7図(a)は
第1従来例の側断面説明図、第7図<b>は第7図(a
)の平面説明図、第8図は第2従来例の側断面説明図、
第9図は第3従来例の側断面説明図である。 10・・・円筒(移動体) 2o・・・検出部 21・・・測定子 22・・・シンクロナイザ−(接触子)23・・・接触
媒質 24・・・IIJ漂板 25・・・ばね 2G・・・ホルダー 27・・−ばね 28・・・検出部取付板 30・・・リンク 37・・・等長リンク 32・・・等長リンク 33・・・固定リンク 34・・・復帰ばね 35・・・ストッパー 40・・−1T復駆@PM構 41・・・モーター 42・・・スライダー 43・・・ガイド 44・・・クランク機構 45・・・駆動軸
1 to 5 show a first embodiment of the ultrasonic inspection apparatus of the present invention, in which FIG. 1 is a schematic plan view, FIG. 2 is an explanatory view of the main parts of FIG. 1, and FIG. ) (b) (C) (d) are explanatory diagrams showing the movement of the link mechanism and the detection unit, respectively. Fig. 4 is an explanatory diagram showing the movement of the slider and the movement of the detection unit. Fig. 5 is an explanatory diagram of the measurement pitch. FIG. 6 is a schematic plan view showing the second embodiment of the ultrasonic inspection apparatus of the present invention, and FIG.
FIG. 9 shows a conventional ultrasonic inspection apparatus, FIG. 7(a) is a side cross-sectional explanatory view of the first conventional example, and FIG.
), FIG. 8 is a side sectional view of the second conventional example,
FIG. 9 is a side cross-sectional explanatory view of the third conventional example. 10... Cylinder (moving body) 2o... Detection unit 21... Measuring element 22... Synchronizer (contact element) 23... Couple material 24... IIJ drifting plate 25... Spring 2G ...Holder 27...-Spring 28...Detection unit mounting plate 30...Link 37...Equal length link 32...Equal length link 33...Fixed link 34...Return spring 35 ... Stopper 40 ... -1T redrive @ PM structure 41 ... Motor 42 ... Slider 43 ... Guide 44 ... Crank mechanism 45 ... Drive shaft

Claims (2)

【特許請求の範囲】[Claims] (1)移動体表面に接触する測定子を設けた検出部と、
移動体の移動速度に同期して検出部を移動体に向けて前
後進させる往復駆動機構と、前記検出部と往復駆動機構
との間に介在され、かつ前記測定子が移動体表面に接触
している間に検出部を移動体の移送方向に移動偏位させ
て測定子を移動体表面に密着保持するリンク機構を備え
たことを特徴とする移動体の接触検査装置。
(1) A detection unit equipped with a probe that contacts the surface of the moving body;
A reciprocating drive mechanism that moves a detection unit back and forth toward the movable body in synchronization with the moving speed of the movable body, and a reciprocating drive mechanism that is interposed between the detection unit and the reciprocating drive mechanism, and in which the measuring tip contacts the surface of the movable body. 1. A contact inspection device for a movable body, comprising a link mechanism that moves and deviates the detection unit in the moving direction of the movable body to hold the probe in close contact with the surface of the movable body.
(2)前記検出部は、ホルダーと、ホルダー内に出没可
能に配置され、かつばねにより常時突出状態に保持され
た接触子を備え、この接触子の内奥部に前記測定子を固
定してなり、接触子の移動体に対する接触圧による後退
により測定子が相対的に前進して移動体表面に当接する
ようにしたことを特徴とする特許請求の範囲第1項に記
載の移動体の接触検査装置。
(2) The detection unit includes a holder and a contact that is disposed so as to be retractable in the holder and is always held in a protruding state by a spring, and the measuring probe is fixed to the deep inside of the contact. The contact of the movable body according to claim 1, wherein the measuring probe moves relatively forward and comes into contact with the surface of the movable body by retreating due to the contact pressure of the contact against the movable body. Inspection equipment.
JP12375586A 1986-05-30 1986-05-30 Contact inspection apparatus of moving body Pending JPS62282214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12375586A JPS62282214A (en) 1986-05-30 1986-05-30 Contact inspection apparatus of moving body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12375586A JPS62282214A (en) 1986-05-30 1986-05-30 Contact inspection apparatus of moving body

Publications (1)

Publication Number Publication Date
JPS62282214A true JPS62282214A (en) 1987-12-08

Family

ID=14868500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12375586A Pending JPS62282214A (en) 1986-05-30 1986-05-30 Contact inspection apparatus of moving body

Country Status (1)

Country Link
JP (1) JPS62282214A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009265107A (en) * 2008-04-25 2009-11-12 Muller Martini Holding Ag Apparatus for measuring thickness of printed products
CN111412818A (en) * 2020-06-01 2020-07-14 虞结全 Automobile synchronizer gear ring outer groove diameter inspection equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009265107A (en) * 2008-04-25 2009-11-12 Muller Martini Holding Ag Apparatus for measuring thickness of printed products
CN111412818A (en) * 2020-06-01 2020-07-14 虞结全 Automobile synchronizer gear ring outer groove diameter inspection equipment

Similar Documents

Publication Publication Date Title
JP2642370B2 (en) Method and apparatus for detecting a feature of a defect in a tubular member
JP5121531B2 (en) Rail flaw detection method and apparatus
US3554014A (en) Apparatus for measuring the thickness of a workpiece in a liquid temperature compensation means
CN109909172A (en) A kind of metal circular Workpiece detecting device and its application method
FR2861176B1 (en) METHOD AND DEVICE FOR CHARACTERIZING A FLUID
JPS62282214A (en) Contact inspection apparatus of moving body
US3789656A (en) Rectilinear acoustical transducer inspection apparatus
US5476011A (en) Method and apparatus for ultrasonically testing sheet materials using rotating test heads
JP2009186423A (en) Inspection method and inspection unit
CN1167950C (en) Nondestructive inspection method for electric insulator steel foot and cast zinc ring combined face
RU2179313C2 (en) Ultrasonic process of test of articles and materials
JPH0545973Y2 (en)
JPH0377056A (en) Ultrasonic inspection device
SU697918A1 (en) Method of automatic registering of the data at inspection of articles with prismatic flaw-detecting head
JPH10115605A (en) Scanner for ultrasonic flaw detection
JPS5915967U (en) Ultrasonic angle flaw detection device for square test materials
Mirkhani Characterization of interfacial degradation in adhesive joints using EMAT's
Rose et al. Ultrasonic computed tomography considerations in the NDE of solid materials
JPH11190725A (en) Method and apparatus for ultrasonically detecting of flaw metal strip
JPH0364833B2 (en)
JPH082611Y2 (en) Rotary ultrasonic flaw detection head
McGonnagle International Advances in Nondestructive Testing, Vol. 6
JPH0458151A (en) Rotary probe
JPH0545974Y2 (en)
SU538289A1 (en) Echo method of ultrasonic control