JPS62281332A - Etching method - Google Patents

Etching method

Info

Publication number
JPS62281332A
JPS62281332A JP12412486A JP12412486A JPS62281332A JP S62281332 A JPS62281332 A JP S62281332A JP 12412486 A JP12412486 A JP 12412486A JP 12412486 A JP12412486 A JP 12412486A JP S62281332 A JPS62281332 A JP S62281332A
Authority
JP
Japan
Prior art keywords
substrate
resist pattern
aluminium alloy
alloy layer
choline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12412486A
Other languages
Japanese (ja)
Other versions
JPH0513534B2 (en
Inventor
Moritaka Nakamura
守孝 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP12412486A priority Critical patent/JPS62281332A/en
Publication of JPS62281332A publication Critical patent/JPS62281332A/en
Publication of JPH0513534B2 publication Critical patent/JPH0513534B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)
  • Weting (AREA)

Abstract

PURPOSE:To prevent corrosion, by etching an aluminium alloy layer with a resist pattern used as a mask to form an aluminium alloy pattern, removing the resist pattern and dipping the substrate in choline or a derivative thereof. CONSTITUTION:A substrate 1 is provided by a silicon substrate covered with an insulation layer of phosphorus silicate glass or the like. An aluminium alloy layer 2 of Al-Cu (4%) for example is adhered thereon by means of the spattering process and a resist pattern 3 is formed thereon by using an ordinary lithography technique. The aluminium alloy layer 2 is patterned by means of the reactive ion etching process with the resist pattern 3 used as a mask so as to form an aluminium alloy pattern 2A. The substrate 1 is transported without breaking vacuum and disposed within a microwave downflow asher to be ashed. The substrate is then taken out of the asher and dipped in an aqueous solution of 5 % choline. Thereby, the amount of residual chlorine is decreased and corrosion can be prevented.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔概要〕 アルミニウム(AI)合金層、例えばアルミニウム銅(
AI−Cu)合金層のバターニングに際し、通常AI単
体のときと同様に塩素(CI)系ガスを用いたドライエ
ツチングを行うが、このときCuxCIyの形で塩素骨
が残りその除去が困難であり、Al−Cu合金層のコロ
−ジョン(腐食)が発生する。その抑止のために、Al
−Cu層をパターニングした後、コリン、もしくはその
誘導体中に浸漬する方法を提起する。
[Detailed description of the invention] 3. Detailed description of the invention [Summary] Aluminum (AI) alloy layer, for example aluminum copper (
When patterning the AI-Cu) alloy layer, dry etching is normally performed using chlorine (CI) gas as in the case of AI alone, but at this time, chlorine bones remain in the form of CuxCIy and are difficult to remove. , corrosion of the Al-Cu alloy layer occurs. To prevent this, Al
- A method is proposed in which the Cu layer is patterned and then immersed in choline or a derivative thereof.

〔産業上の利用分野〕[Industrial application field]

本発明はコロ−ジョンの発生を抑制した、A1合金層、
例えばAl−Cu合金層のエツチング方法に関する。
The present invention provides an A1 alloy layer that suppresses the occurrence of corrosion.
For example, it relates to a method of etching an Al--Cu alloy layer.

一般に半導体デバイスの配線層にはA1層、または珪素
(Si)を数%混入したAl−5A合金層が用いられて
いるが、エレクトロマイグレーションにより配線層が消
滅することがある。
Generally, an A1 layer or an Al-5A alloy layer mixed with several percent silicon (Si) is used for the wiring layer of a semiconductor device, but the wiring layer may disappear due to electromigration.

これを抑止するため、バイポーラデバイス、とくに高速
ロジック用大電流デバイスの配線層に、Cuを2〜4%
混入したAl−Cu合金層が用いられるようになった。
To prevent this, 2-4% Cu is added to the wiring layer of bipolar devices, especially high-current devices for high-speed logic.
Mixed Al-Cu alloy layers have come into use.

〔従来の技術〕[Conventional technology]

Ct系ガスを用いたAI、またはその合金のドライエツ
チングにおいて、残留塩素分によるAI、またはその合
金のコロ−ジョンが問題となっている。
In dry etching of AI or its alloy using Ct-based gas, corrosion of the AI or its alloy due to residual chlorine has become a problem.

つぎに、参考のためにコロ−ジョンの発生機構を考える
Next, for reference, we will consider the mechanism by which corrosion occurs.

いま、エツチングガスのプラズマにより生成した塩素ラ
ジカルを01″″で表すと、次式のように、AIはCげ
と反応してAICh 、あるいはA1□C1aとなって
昇華することによりエツチングは進む。
Now, if the chlorine radicals generated by the plasma of the etching gas are expressed as 01'', then as shown in the following equation, AI reacts with carbon and sublimates to become AICh or A1□C1a, and etching progresses.

八1+C1° → AlCl、↑、  Al□C16↑
 。
81+C1° → AlCl, ↑, Al□C16↑
.

このとき生じたAlC1,1等がエツチングされた41
層の側壁やレジスト表面に付着したまま大気中に取り出
されると、大気中の水分と反応しての次式ように塩酸(
l(C1)等を生じる。
The AlC1,1 etc. generated at this time were etched 41
If it is taken out into the atmosphere while remaining attached to the side walls of the layer or the resist surface, it will react with moisture in the atmosphere and produce hydrochloric acid (
l(C1), etc.

AICh +HzO→1(C1,Al(0)1)!。AICh +HzO→1 (C1, Al(0)1)! .

そうすると、次式のようにHCl はAIと反応して、
またAIChを生ずる。
Then, HCl reacts with AI as shown in the following equation,
It also produces AICh.

Al+HCl−4AICI、+ H2↑。Al+HCl-4AICI, +H2↑.

このようにして反応は循環的に繰り返して行われ、コロ
−ジョンは際限なく進行してゆく。
In this way, the reaction is repeated cyclically, and the corrosion progresses without limit.

そのため、通常のAl、 Al−5i合金、アルミニウ
ムチタン(AI−Ti)合金では、これらのドライエツ
チング後、つぎのような対策を行っている。
For this reason, the following measures are taken after dry-etching ordinary Al, Al-5i alloy, and aluminum titanium (AI-Ti) alloy.

■ エツチング後、真空を破らないでレジストを剥離す
る。
■ After etching, remove the resist without breaking the vacuum.

と(に、酸素(0□)と四弗化炭素(CFa)を用いた
μ波ダウンフローアフシングが有効である。
For this, μ-wave downflow afsing using oxygen (0□) and carbon tetrafluoride (CFa) is effective.

これは、プラズマ発生室でμ波によりQ、+ CF4の
プラズマをつくり、活性種を試料室に導入してアッシン
グを行うもので、試料室には通常のりアクティブイオン
エツチング(RIE)のようにイオンや電子を含まない
。従って被・エツチング物のこれらの衝撃による損傷が
なく、純粋に活性種によるアフシチングのみが行われる
This involves creating Q, + CF4 plasma using μ waves in a plasma generation chamber, and introducing active species into the sample chamber to perform ashing. Does not contain electrons or electrons. Therefore, the object to be etched is not damaged by these impacts, and only afshitting is performed purely by the active species.

■ 熱窒素()lot Nz)でブローした後、水洗す
る。
■ After blowing with hot nitrogen (lot Nz), wash with water.

■ 水洗後、0□中で350℃でベーキングする。■ After washing with water, bake at 350℃ in 0□.

■ CF4 、SF4 、C)IF3等の弗素系ガスで
プラズマ処理をする。
■ Perform plasma treatment with a fluorine-based gas such as CF4, SF4, or C)IF3.

この場合は、弗素プラズマにより生じた弗素ラジカル(
F“)が01と置換し、A1表面に安定なAIFが生成
する。
In this case, fluorine radicals (
F") replaces 01, and stable AIF is generated on the A1 surface.

AIFはAlF3の完全な形になるまで反応が進まない
途中の組成でも、水分と反応しない。
AIF does not react with moisture, even at intermediate compositions where the reaction does not proceed to the complete form of AlF3.

■ H2でプラズマ処理をする。■ Perform plasma treatment with H2.

以上のような処理により、安定してコロ−ジョンを防ぐ
ことができる。
By the above treatment, corrosion can be stably prevented.

しかしながら、Al−Cu合金、Al−Cu−5i合金
等のエツチングではCuxC1yO形で塩素骨が残り、
その除去が困難で、上記の処理を行ってもコロ−ジョン
が発生することがあった。
However, when etching Al-Cu alloy, Al-Cu-5i alloy, etc., chlorine bones remain in the form of CuxC1yO.
It is difficult to remove it, and even if the above treatment is carried out, corrosion may occur.

そのために、パターニング後、硝酸(HNOり中に基板
を浸漬して残留塩素分を除去していた。
To this end, after patterning, the substrate was immersed in nitric acid (HNO) to remove residual chlorine.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

エレクトロマイグレーション防止のためにCu等の重金
属を少量混合したA1合金のパターニングでは残留塩素
分の除去が困難で、コロ−ジョンが発生することがあっ
た。
When patterning an A1 alloy mixed with a small amount of heavy metal such as Cu to prevent electromigration, it is difficult to remove residual chlorine and corrosion may occur.

また、そのためパターニングの終わった基板を)INO
,中に浸漬する方法があるが、HN(hは強酸であるた
めプロセスの自動化が困難である等の問題があった。
Also, for that reason, the substrate after patterning)
There is a method of immersing it in HN (HN), but there are problems such as difficulty in automating the process because HN (h) is a strong acid.

C問題点を解決するための手段〕 第1図(1)〜(3)は本発明を工程順に説明する基板
断面図である。
Means for Solving Problem C] FIGS. 1 (1) to (3) are cross-sectional views of a substrate explaining the present invention in the order of steps.

上記問題点の解決は、基板1上にアルミニウム合金層2
を被着し、その上にレジストパターン3を形成し、該レ
ジストパターン3をマスクにして該アルミニウム合金層
2をエツチングして該アルミニウム合金層のパターン2
Aを形成し、該レジストパターン3を除去後、該基板(
1)をコリン、もしくはその誘導体中に浸漬する本発明
によるエツチング方法により達成される。
The solution to the above problem is to provide an aluminum alloy layer 2 on the substrate 1.
A resist pattern 3 is formed thereon, and the aluminum alloy layer 2 is etched using the resist pattern 3 as a mask to form the pattern 2 of the aluminum alloy layer.
After forming A and removing the resist pattern 3, the substrate (
This is achieved by the etching method according to the present invention in which 1) is immersed in choline or a derivative thereof.

〔作用1 本発明者は、前記のコロ−ジョン防止のため種々な方法
を実験したが、本発明の方法がとくに顕著な効果がある
ことを見出した。
[Effect 1] The present inventor has experimented with various methods for preventing the above-mentioned corrosion, and has found that the method of the present invention is particularly effective.

すなわち、重金属を少量混合したA1合金層、例えばA
l−Cu合金層をパターニングした後、基板をコリン、
もしくはその誘導体中に浸漬すると、残留塩素分が極め
て少なくなることを螢光X線測定を用いて確かめ、かつ
コロ−ジョンが発生しないことを実験的に確かめた。
That is, an A1 alloy layer mixed with a small amount of heavy metal, for example, A
After patterning the l-Cu alloy layer, the substrate was coated with choline,
It was confirmed using fluorescent X-ray measurement that the residual chlorine content was extremely reduced when the sample was immersed in a derivative thereof, and it was also confirmed experimentally that no corrosion occurred.

コリンの構造式を第2図に示す。(:u、C1yはCu
”CI−の形で結合しており、C1−はコリンのOH−
より電気的陰性度が強いためOH−に置換されることに
より、Cu、(C1yがコリン、もしくはその誘導体中
によく溶解されると考えられる。
The structural formula of choline is shown in Figure 2. (:u, C1y is Cu
``It is bonded in the form of CI-, and C1- is the OH- of choline.
It is thought that Cu, (C1y) is well dissolved in choline or its derivatives by being substituted with OH- because of its stronger electronegativity.

〔実施例〕〔Example〕

本発明の実施例を第1図を用いて説明する。 An embodiment of the present invention will be described with reference to FIG.

第1図(1)において、基板1として表面に燐珪酸ガラ
ス(PSG)層等の絶縁層を被着した珪素(St)基板
を用い、この上にAI合金層2として厚さ8000人の
AI−Cu(4%)層をスバ・7タ法で被着し、この土
に通常のりソグラフィを用いてレジストパターン3を形
成する。
In FIG. 1 (1), a silicon (St) substrate with an insulating layer such as a phosphosilicate glass (PSG) layer deposited on the surface is used as the substrate 1, and an AI alloy layer 2 with a thickness of 8,000 layers is formed on this substrate. A layer of -Cu (4%) is applied using the Suba-Sata method, and a resist pattern 3 is formed on this soil using normal glue lithography.

第1図(2)において、RIE法によりレジストパター
ン3をマスクにしてAI合金層2をパターニングしてA
1合金層のパターン2Aを形成する。
In FIG. 1 (2), the AI alloy layer 2 is patterned using the RIE method using the resist pattern 3 as a mask.
A pattern 2A of one alloy layer is formed.

RIEは、エツチングガスとしてCh (24SCCM
)、S iC1* (405CCM)を用い、これを0
.02Torrに減圧して周波数13.56MHzの電
力を250W 5分間印加して行った@ 第1図(3)において、基板1を真空を破らないで搬送
してμ波ダウンフローアフシャ中に置きアッシングした
RIE uses Ch (24SCCM
), S iC1* (405CCM) and set it to 0
.. Ashing was carried out by reducing the pressure to 0.2 Torr and applying a power of 250 W at a frequency of 13.56 MHz for 5 minutes @ In Figure 1 (3), the substrate 1 was transported without breaking the vacuum and placed in a μ-wave downflow affusion. did.

アッシングは、基板温度は室温で、反応ガスとしてCP
i(100SCCM)、02 (1500SCCM)を
用い、これをI Torrに減圧して周波数2.45G
)Izのμ波型力をI KW 2分間印加して行った。
In ashing, the substrate temperature is room temperature and CP is used as the reaction gas.
i (100SCCM) and 02 (1500SCCM), reduce the pressure to I Torr and set the frequency to 2.45G.
) A μ wave type force of Iz was applied for 2 minutes.

つぎに、基板を大気中に取り出し、そのままのものと、
HNOffに5秒浸漬したものと、コリンの5%の水溶
液(商品名TMK、関東化学類)に30秒浸漬したもの
について、つぎのテストを行った。
Next, take the board out into the atmosphere and leave it as it is.
The following tests were conducted on samples immersed in HNoff for 5 seconds and samples immersed in a 5% choline aqueous solution (trade name: TMK, Kanto Kagaku Group) for 30 seconds.

この後、基板を大気中で7日間放置してコロ−ジョンの
発生を観察し、また、螢光X線分析で残留塩素量を測定
した。
Thereafter, the substrate was left in the atmosphere for 7 days to observe the occurrence of corrosion, and the amount of residual chlorine was measured by fluorescent X-ray analysis.

これらの結果をつぎに示す。These results are shown below.

(a)  処理方法 (bl  コロ−ジョン発生の有無 (C1残留塩素量(cps、 count per s
ec、)とすると、 (al   処理なし HNO,浸漬 コリン浸漬(b
)    あり   なし   なしくcl    1
41.1  11.8   1.7上記の結果より、H
NO,浸漬処理より残留塩素量が減少し、勿論コロ−ジ
ョンの発生は認められなくなる。
(a) Treatment method (bl) Presence or absence of corrosion (C1 residual chlorine amount (cps, count per s)
ec,), (al No treatment HNO, immersion Choline immersion (b
) Yes No No cl 1
41.1 11.8 1.7 From the above results, H
The amount of residual chlorine is reduced compared to NO, immersion treatment, and of course no corrosion is observed.

実施例ではコリンを用いたがこれの代わりに、コリンの
誘導体、例えば第3図にその構造式を示すTMAHO(
テトラメチルアンモニウムハイドロオキサイド)を用い
てもコリンと全く同等の効果が得られる。
In the examples, choline was used, but instead of choline, a choline derivative such as TMAHO ( whose structural formula is shown in FIG.
Tetramethylammonium hydroxide) can also be used to achieve exactly the same effect as choline.

TMA)10の2.5%水溶液として、関東化学のTM
A、 東京応化工業のNMD、 長潮産業の932ディベロツバ−、 シブレイ・ファーイーストの マイクロホシソ)MF314 ティベロツバ−1MF3
12ディベロツバー 等がある(以上いずれも商品名)。
Kanto Kagaku's TM as a 2.5% aqueous solution of TMA) 10
A, Tokyo Ohka Kogyo's NMD, Nagashio Sangyo's 932 Diberotsuba, Sibley Far East's Micro Hoshiso) MF314 Tiberotsuba-1MF3
There are 12 developers, etc. (all of the above are product names).

C発明の効果〕 以上詳細に説明したように本発明によれば、エレクトロ
マイグレーション防止のための配線層であるAL−Cu
層等のA1合金層のパターニングにおいて、残留塩素分
を除去し、配線層にコロ−ジョンが発生することを抑止
する。
C Effects of the Invention] As explained in detail above, according to the present invention, the wiring layer for preventing electromigration is
In patterning an A1 alloy layer such as a layer, residual chlorine is removed to prevent corrosion from occurring in the wiring layer.

また、本発明の処理を採用することによりプロセスの自
動化が容易となる。
Further, by employing the process of the present invention, automation of the process becomes easy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(11〜(3)は本発明を工程順に説明する基板
断面図、 第2図はコリンの構造式を示す図、 第3図はTMAHOの構造式を示す図である。 図において、 1は基板、 2はA1合金層でAl−Cu層、 2AはAt合金層のパターン、 3レジストパターン 第  1  図 C2H,○ CH。 TMAHOの構造式を示” r図
Fig. 1 (11 to (3)) are cross-sectional views of a substrate explaining the present invention step by step, Fig. 2 is a view showing the structural formula of choline, and Fig. 3 is a view showing the structural formula of TMAHO. 1 is the substrate, 2 is the A1 alloy layer and Al-Cu layer, 2A is the pattern of the At alloy layer, and 3 is the resist pattern. Figure 1: C2H, ○ CH. The structural formula of TMAHO is shown in the r figure.

Claims (1)

【特許請求の範囲】[Claims] 基板(1)上にアルミニウム合金層(2)を被着し、そ
の上にレジストパターン(3)を形成し、該レジストパ
ターン(3)をマスクにして該アルミニウム合金層(2
)をエッチングして該アルミニウム合金層のパターン(
2A)を形成し、該レジストパターン(3)を除去後、
該基板(1)をコリン、もしくはその誘導体中に浸漬す
ることを特徴とするエッチング方法。
An aluminum alloy layer (2) is deposited on a substrate (1), a resist pattern (3) is formed thereon, and the aluminum alloy layer (2) is coated using the resist pattern (3) as a mask.
) is etched to form the pattern of the aluminum alloy layer (
2A) and after removing the resist pattern (3),
An etching method characterized in that the substrate (1) is immersed in choline or a derivative thereof.
JP12412486A 1986-05-29 1986-05-29 Etching method Granted JPS62281332A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12412486A JPS62281332A (en) 1986-05-29 1986-05-29 Etching method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12412486A JPS62281332A (en) 1986-05-29 1986-05-29 Etching method

Publications (2)

Publication Number Publication Date
JPS62281332A true JPS62281332A (en) 1987-12-07
JPH0513534B2 JPH0513534B2 (en) 1993-02-22

Family

ID=14877518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12412486A Granted JPS62281332A (en) 1986-05-29 1986-05-29 Etching method

Country Status (1)

Country Link
JP (1) JPS62281332A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0463423B1 (en) * 1990-06-14 1995-08-30 Mitsubishi Gas Chemical Company, Inc. Surface treating agent for aluminum line pattern substrate
JP2510053B2 (en) * 1990-06-27 1996-06-26 富士通株式会社 Method of manufacturing semiconductor integrated circuit and manufacturing apparatus used therefor
JPH11305454A (en) * 1998-04-24 1999-11-05 United Microelectronics Corp Removing method of residual substance
US6092537A (en) * 1995-01-19 2000-07-25 Mitsubishi Denki Kabushiki Kaisha Post-treatment method for dry etching
US6506684B1 (en) * 2000-05-24 2003-01-14 Lsi Logic Corporation Anti-corrosion system
EP1579033A1 (en) * 2002-11-12 2005-09-28 Kurita Water Industries Ltd. Metal corrosion inhibitor and hydrogen chloride formation inhibitor in a crude oil atmospheric distillation unit
US7547669B2 (en) 1998-07-06 2009-06-16 Ekc Technology, Inc. Remover compositions for dual damascene system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0463423B1 (en) * 1990-06-14 1995-08-30 Mitsubishi Gas Chemical Company, Inc. Surface treating agent for aluminum line pattern substrate
JP2510053B2 (en) * 1990-06-27 1996-06-26 富士通株式会社 Method of manufacturing semiconductor integrated circuit and manufacturing apparatus used therefor
US6092537A (en) * 1995-01-19 2000-07-25 Mitsubishi Denki Kabushiki Kaisha Post-treatment method for dry etching
JPH11305454A (en) * 1998-04-24 1999-11-05 United Microelectronics Corp Removing method of residual substance
US7547669B2 (en) 1998-07-06 2009-06-16 Ekc Technology, Inc. Remover compositions for dual damascene system
US6506684B1 (en) * 2000-05-24 2003-01-14 Lsi Logic Corporation Anti-corrosion system
EP1579033A1 (en) * 2002-11-12 2005-09-28 Kurita Water Industries Ltd. Metal corrosion inhibitor and hydrogen chloride formation inhibitor in a crude oil atmospheric distillation unit
EP1579033A4 (en) * 2002-11-12 2007-11-21 Kurita Water Ind Ltd Metal corrosion inhibitor and hydrogen chloride formation inhibitor in a crude oil atmospheric distillation unit
US8177962B2 (en) 2002-11-12 2012-05-15 Kurita Water Industries, Ltd. Metal corrosion inhibitor and hydrogen chloride formation inhibitor in a crude oil atmospheric distillation unit

Also Published As

Publication number Publication date
JPH0513534B2 (en) 1993-02-22

Similar Documents

Publication Publication Date Title
JP3181264B2 (en) Etching aqueous solution and etching method for removing inorganic polymer residue
EP0788143B1 (en) Method of producing semiconductor device and use of a rinse for cleaning semiconductor device
KR19990075991A (en) Metal wiring formation method of semiconductor device
JPH0728254A (en) Resist release solution
JPH057862B2 (en)
JP3236225B2 (en) Semiconductor device and manufacturing method thereof
JPS62281332A (en) Etching method
US5246888A (en) Method of preventing corrosion of aluminum alloys
TWI343078B (en) Wet cleaning process and method for fabricating semiconductor device using the same
US7055532B2 (en) Method to remove fluorine residue from bond pads
JP2000173920A (en) Removal of post rie sidewall polymer rail on al/cu metal line of semiconductor or microelectronic composite structure and tool for etching integrated metal
JPS5852324B2 (en) Manufacturing method of semiconductor device
JP2001520267A (en) Ammonium borate-containing compositions for stripping residues from semiconductor substrates
JP4559565B2 (en) Method for forming metal wiring
JPH09213612A (en) Method for manufacturing semiconductor device and rinse
JP2002162755A (en) Method of manufacturing semiconductor device
KR100214251B1 (en) Method of making a wiring layer
JPH03180040A (en) Manufacture of semiconductor device
KR0172773B1 (en) Method of forming pad of semiconductor device
KR100568098B1 (en) Method for forming metal pattern
JP2678049B2 (en) Semiconductor device cleaning method
JP2003005388A (en) Method for manufacturing semiconductor device
KR19980060585A (en) Metal wiring formation method
JPH01251742A (en) Surface treatment
JPH02262335A (en) Eliminating method of organic compound film

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees