JPS62279304A - Production of optical waveguide layer - Google Patents

Production of optical waveguide layer

Info

Publication number
JPS62279304A
JPS62279304A JP12128286A JP12128286A JPS62279304A JP S62279304 A JPS62279304 A JP S62279304A JP 12128286 A JP12128286 A JP 12128286A JP 12128286 A JP12128286 A JP 12128286A JP S62279304 A JPS62279304 A JP S62279304A
Authority
JP
Japan
Prior art keywords
substrate
layer
optical waveguide
waveguide layer
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12128286A
Other languages
Japanese (ja)
Inventor
Shigeru Semura
滋 瀬村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP12128286A priority Critical patent/JPS62279304A/en
Publication of JPS62279304A publication Critical patent/JPS62279304A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To improve the uniformity of a film thickness and to decrease transmission loss by preliminarily forming an Si layer on a substrate by a plasma cracking method and oxidizing said layer to form an SiO2 layer. CONSTITUTION:The substrate 2 is imposed on a sample holder 3 in a sample chamber (vacuum chamber) 1 in which the pressure is regulated. The substrate is heated by a heater 4 to a low temp. of about <=500 deg.C, for example, about 300 deg.C. On the other hand, a gas introducing hole piece 5 is connected to a high- frequency source 7. A gas contg. Si such as, for example, SiH4 is introduced through a gas introducing port 6 and the hole piece 5 into the sample chamber 1 to form Si on the substrate 2 while plasma power is kept impressed by the source 7. The Si is thereafter oxidized, by which the SiO2 is formed.

Description

【発明の詳細な説明】 工発明の詳細な説明 〔産業上の利用分野〕 この発明は、光通信ンステム、光情報処理の多様化、高
度化に必要不可欠な、光カッグラー1光合波・分波器な
どの光部品の経済化、小型化。
[Detailed Description of the Invention] Detailed Description of the Invention [Industrial Application Field] This invention is an optical coupler that is essential for the diversification and advancement of optical communication systems and optical information processing. Economicalization and miniaturization of optical components such as containers.

安定化に有利な光導波J6の製造方法に関する−のであ
る。
The present invention relates to a method of manufacturing an optical waveguide J6 that is advantageous for stabilization.

〔従来の技術〕[Conventional technology]

従来の光部品は、プリズム等の微小光学部品からなり、
光軸会せ、組立てが困難であった。
Conventional optical components consist of microscopic optical components such as prisms.
It was difficult to assemble the optical axis.

そこで、平面上に光4彼路全作成することによジ、これ
らの繁雑な作業を避けるように、槌々の4波路が提案さ
nてさた。
Therefore, in order to avoid these complicated operations by creating all four paths of light on a plane, a four-wave path method was proposed.

光導波路に用いらnる材料には、例えば半導体結晶、誘
電体結晶、ガラス、高分子材料などがある。こ扛らの材
料により光導波路?作成するには、基板(クラッドを基
ねでもよい)上りこコア層及びクラッド層を形成し之後
に、エツチング法、露光去等によV第3図に示すような
構造全作成し、光のとじ込め?行う。なお第3図中、2
は基板(クラッド)、9はクラッド層、8はコア層をあ
られす。
Examples of materials used for optical waveguides include semiconductor crystals, dielectric crystals, glass, and polymer materials. Can optical waveguides be created using these materials? To create this, a core layer and a cladding layer are formed on the substrate (which may be based on a cladding), and then the entire structure as shown in Fig. 3 is created by etching, exposure, etc., and then exposed to light. Lock it up? conduct. In addition, in Figure 3, 2
is a substrate (cladding), 9 is a cladding layer, and 8 is a core layer.

ところで、こ八らのコア層、クラッド層形成には、従来
、熱OVD法や火炎直接堆積法が用いらnてき之。
By the way, conventionally, thermal OVD method or flame direct deposition method has not been used to form the core layer and cladding layer.

熱aVD法とは、第4図にその概略説明図を示すように
、石英ガラス製の炉心管10のガス人口11より、ガラ
ス原料のハロゲン化物ガスおよび反応用ガス例えば5i
Ct4. T1C1,、o2等を導入し、酸化反応によ
りガラス微粒子を合放し、ホルダー12上の基板2上に
該合成ガラス微粒子全堆積させる方法で、反応温度は最
高部で1200℃程度で、炉13により温度勾配を持f
Cせることで、熱泳動効果に:クガラス微粒子の堆積が
促進さnる。なお14は排気系を示すO 火炎直接堆積法とは、第5図に示すように、石英ガラス
等の基板2をター7テーブル15上に回転中心から等距
離の位置に配置し、ガラス原料51az4. Ttaz
4等は同心固状ノズルを有するガラス微粒子合成用トー
チ16に導入さn2予め形成されている酸水素フレーム
17中で、火炎加水分解反応によりガラス微粒子を合成
する。合成したガラス微粒子はフレーム17直下を移動
している基板2上に堆積させる。ガラス微粒子堆積膜厚
の均一化を図るため、トーチ17をターンテーブル15
の半径方向に往復運動させる。
The thermal aVD method, as shown in a schematic diagram in FIG.
Ct4. This is a method in which T1C1, O2, etc. are introduced, glass fine particles are combined by an oxidation reaction, and all of the synthetic glass fine particles are deposited on the substrate 2 on the holder 12. has a temperature gradient f
By adding carbon, the thermophoretic effect promotes the deposition of black glass particles. Reference numeral 14 indicates an exhaust system. In the flame direct deposition method, as shown in FIG. .. Ttaz
4 and the like are introduced into a torch 16 for synthesizing glass fine particles having a concentric solid nozzle, and glass fine particles are synthesized by a flame hydrolysis reaction in an oxyhydrogen flame 17 formed in advance. The synthesized glass particles are deposited on the substrate 2 which is moving directly below the frame 17. In order to make the thickness of the deposited glass particles uniform, the torch 17 is moved to the turntable 15.
reciprocate in the radial direction.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上記の熱C’lD法、火炎直接堆積法等
の従来技術では、堆積時の基板温度の不均一性の九めに
膜厚の不均一性が生じ伝搬損失が増加するという欠点が
あった。
However, conventional techniques such as the above-mentioned thermal C'ID method and flame direct deposition method have the disadvantage that non-uniformity of the substrate temperature during deposition causes non-uniformity of the film thickness and increases propagation loss. Ta.

本発明はこの二つな従来技術の欠点を解消し、低損失な
光導波層を容易に製造できる新規な方法を提供せんとす
るものである。
The present invention aims to eliminate these two drawbacks of the prior art and provide a new method that can easily produce a low-loss optical waveguide layer.

〔問題点を解決する友めの手段〕[Friendly means of solving problems]

本発明者らは、従来の基板上にS i O2を直接堆積
する方法にかえて、まずプラズマ分解法にて81層を形
成しておき、これを酸化して810゜層とすることで、
上記した欠点を解決でさること全見出し、本発明に到達
したo すなわち、本発明は基板上に光4彼hケ作成するにおい
て、 131i含有するガスをプラズマ分解することに
より該基板上にEll 全生成分とする層上形成し友後
、該層中のSi i酸化することによ5sio、  と
することを特徴とする光導波層の製造方法である。
Instead of the conventional method of directly depositing SiO2 on a substrate, the present inventors first formed an 81 layer using a plasma decomposition method, and then oxidized this to form an 810° layer.
The present invention has been developed to solve the above-mentioned drawbacks. Namely, in the production of light on a substrate, the present invention provides a solution to the above-mentioned drawbacks. This is a method for producing an optical waveguide layer, characterized in that after forming a layer on a layer to be produced, Si in the layer is oxidized to obtain 5sio.

本発明の特に好ましい実施態様としては、プラズマ分解
がマイクロ波プラズマ分解である上記光導波層の製造方
法が挙げらC1基板温度は500℃以下に保持して行う
ことも本発明の目的達成の之めに好ましいことである。
A particularly preferred embodiment of the present invention is the above method for producing an optical waveguide layer in which the plasma decomposition is microwave plasma decomposition. This is a good thing.

本発明においてはSi  i含有するガス全励起し81
 を活性化する友めに、該ガスに高周波(R?)i印加
しプラズマ状態として分解させる、いわゆるプラズマ分
解を利用し、こ:f”LK ! り基板上にSiを主成
分とする層上堆積し、その後該層中の81 を酸化して
基板上に8102 層を得る。このときの本発明の反応
メカニズムは下記の如くである。
In the present invention, the Si i-containing gas is fully excited 81
In order to activate the gas, a high frequency (R?) i is applied to the gas to decompose it into a plasma state, which is so-called plasma decomposition. After that, 81 in the layer is oxidized to obtain an 8102 layer on the substrate.The reaction mechanism of the present invention at this time is as follows.

SiHシ→Si + 2Hz 通常のプラズマ分解におい1は高周波とじて1ム56・
MHzf用いているが、本発明においては好ましくは2
.45 GHzのマイクロ波?電源、導波管を経由して
イオン源に印加する。従来の高周波によるものと区別し
て、本明細書ではこれをマイクロ波プラズマ分解という
。このマイクロ波によりイオン源中の電子が高速で撮動
するが、このときに該イオン源にマイクロ波の進行方向
と平行な磁界を印加すると、磁場とマイクロ波による電
場との相互作用により電子がドリフトする。磁場の強度
が875 Gaus日のとき、電子サイクロトロン共鳴
の条件が満さn、電子がイオン源中で加速さ汎、この之
めイオン源中で電子衝撃による中性子粒子(ガス)の電
離確率が高くなる。
SiH → Si + 2Hz In normal plasma decomposition, 1 is considered to be a high frequency and 1μ56.
MHzf is used, but in the present invention preferably 2
.. 45 GHz microwave? A power source is applied to the ion source via a waveguide. In this specification, this is referred to as microwave plasma decomposition to distinguish it from conventional high frequency decomposition. Electrons in the ion source are imaged at high speed by this microwave, but if a magnetic field parallel to the traveling direction of the microwave is applied to the ion source at this time, the electrons are captured by the interaction between the magnetic field and the electric field caused by the microwave. Drift. When the magnetic field strength is 875 Gauss, the conditions for electron cyclotron resonance are satisfied, and the electrons are accelerated in the ion source, so the probability of ionization of neutron particles (gas) due to electron impact in the ion source is high. Become.

本発明において用いら几るSl を含有するガスとして
は、例えばSiH4,!312馬、 Si F4.5i
HC4゜SiH2CL、 、 81(、C4等が挙げら
n、さらにSi、 02層中に添加さnるその他の取分
の原料ガスとして、し1]えばNHI 、 GeH4、
N2 、02 、 N20. B2H6、PH3等を主
原料のSi ’z金含有るガスに加えて用いてもよい。
Examples of the Sl-containing gas used in the present invention include SiH4,! 312 horses, Si F4.5i
HC4゜SiH2CL, , 81 (including C4, etc.), and other raw material gases added to the Si, 02 layer, such as NHI, GeH4,
N2, 02, N20. B2H6, PH3, etc. may be used in addition to the Si'z gold-containing gas as the main raw material.

こn等のガス流量は例えば81 を含有するガス10〜
50 cc/分程度に添加物原料ガス音訓える等である
が、特に限定さnるところはない。本発明における一般
的な反応容器内の真空度もプラズマが発生できる程度で
よい。
The flow rate of these gases is, for example, 10~
The additive raw material gas may be heated at a rate of about 50 cc/min, but there is no particular limitation. The degree of vacuum in the general reaction vessel in the present invention may be at a level that allows plasma to be generated.

本発明における基板の温度は好ましくは200〜500
℃の範囲であり、特に好ましくは250〜350℃の範
囲である。この温度に加熱するには通常の加熱手段例え
ば抵抗加熱で容易に制御して行える。また均一加熱が可
能なため膜厚不均一とか基板のそり発生という問題も起
こらない。
The temperature of the substrate in the present invention is preferably 200 to 500.
℃ range, particularly preferably 250 to 350℃ range. Heating to this temperature can be easily controlled using conventional heating means, such as resistance heating. Furthermore, since uniform heating is possible, problems such as uneven film thickness and warping of the substrate do not occur.

本発明におけるプラズマ条件とじてに、−例を挙げt′
Lげ145 GHz、マイクag 10−500Wとい
った条件である。
Examples of the plasma conditions in the present invention include t'
The conditions were L: 145 GHz, microphone: 10-500W.

本発明により以上のような条件で基板表面に81 を主
成分とする層堆積させるとさ、CV D速度(膜付着速
度)は100〜500 A/分という良好な速度が得ら
nる。
According to the present invention, when a layer containing 81 as a main component is deposited on the substrate surface under the above conditions, a good CVD rate (film deposition rate) of 100 to 500 A/min can be obtained.

基板表面にSiを主成分とする層を堆積させ文仮、該層
中のE3i i酸化して8102とする。具体的には例
え!”[’酸化用の熱炉を用い、酸化用ガスとしでH2
O又は02ヲ用いる。
A layer containing Si as a main component is deposited on the surface of the substrate, and then E3i in the layer is oxidized to form 8102. Specifically, an example! ``['Use a thermal furnace for oxidation, and use H2 as the oxidation gas.
Use O or 02.

本発明の方法によジ光導波層全製造するには、コア・ク
ラッド層共1(S>’f<主成分とする層として形成し
友後−挙に酸1ヒしてもよいし、各層毎に81 を主成
分とする層上形成し文化することを繰ジ返してゆく方法
をとってもよい。またパターン形成についてぼ公矧の技
術を用いて、光導波層を得る。
In order to manufacture the entire optical waveguide layer by the method of the present invention, both the core and cladding layers may be formed as layers containing 1 (S>'f<main component) and then treated with an acid. A method may be adopted in which each layer is repeatedly formed and cultured on a layer containing 81 as a main component.An optical waveguide layer is obtained using a commonly known technique for pattern formation.

第1図は本発明に従い低温プラズマ法にLジS土 層を
形成する工程の一実施態様ど砥1略説明する購戊図であ
って、図には記載されていない減圧手段によジ圧力調整
した試料室(真空チャンバ)1内部の試料ホルダ6上に
基板2を載置し、ヒータ4により加熱して基板温度を5
00℃以下の低温例えば300℃程度とする。一方、ガ
ス導入ホールピース5は高周仮源7に接続されており、
該高側V源7に:9プラズマパワーを印カロしながら、
ガス尋人口6、ガスホールピース5t−経て試料室1内
に例えばSiH4等のSiを含むガス金導入する。こn
により基板2上にSl が形成さnる。
FIG. 1 is a schematic diagram illustrating one embodiment of the process of forming an LSI layer using a low-temperature plasma method according to the present invention. The substrate 2 is placed on the sample holder 6 inside the adjusted sample chamber (vacuum chamber) 1, and heated by the heater 4 to bring the substrate temperature to 5.
The temperature is set at a low temperature of 00°C or lower, for example, about 300°C. On the other hand, the gas introduction hole piece 5 is connected to a high frequency temporary source 7,
While applying 9 plasma power to the high side V source 7,
A gas containing Si, such as SiH4, is introduced into the sample chamber 1 through a gas depth of 6 and a gas hole piece of 5t. This
As a result, Sl is formed on the substrate 2.

〔実施例〕〔Example〕

第1図の装置を用い本発明による81層の形成全行つ之
。真空度I TorriC調整し定試料室に100鵡丸
の石英基板を載置し、温度300℃にてSiH425c
c/分ヲ導入し、厚さ15μmのクラッド層を形成した
。次にS i H,およびGeH4を夫々25 cc/
分、5cc/分の条件にて導入し厚さ4.5μmのコア
層を形成し友。このときプラスマ高周仮パワーは30W
であった。
All 81 layers were formed according to the present invention using the apparatus shown in FIG. A quartz substrate of 100 square meters was placed in a constant sample chamber with the degree of vacuum I TorriC adjusted, and SiH425C was heated at a temperature of 300°C.
c/min was introduced to form a 15 μm thick cladding layer. Next, S i H and GeH4 were each added at 25 cc/
The mixture was introduced at a rate of 5 cc/min to form a core layer with a thickness of 4.5 μm. At this time, the plasma high frequency provisional power is 30W
Met.

次に熱炉を用いて上記で得らn、九槓1層物を温度12
00℃まで加熱し、H2O20cc/分全装置内に導入
して81層を酸化し、第2図に示す基板を得之。このt
f2化に:、!lll基板2上のクラッド層9は約1μ
m、コア層10は10μmになつ几。この基板を従来法
によりパターン全作成した後、さらにクラッド層として
SiO2全堆積し友。
Next, use a thermal furnace to heat the one-layered material obtained above at a temperature of 12
The substrate was heated to 00° C. and introduced into the entire apparatus at 20 cc/min of H2O to oxidize 81 layers, yielding the substrate shown in FIG. This t
To f2 conversion:,! The cladding layer 9 on the lll substrate 2 has a thickness of about 1μ
m, the core layer 10 has a thickness of 10 μm. After fully patterning this substrate using the conventional method, SiO2 was further deposited as a cladding layer.

以上により得らルた光導波路のロスはα08dB/αと
従来の製造法に比べて極めて低損失なものであった。
The loss of the optical waveguide obtained as described above was α08 dB/α, which was extremely low loss compared to the conventional manufacturing method.

〔発明の効果〕〔Effect of the invention〕

本発明の方法は仄のような効果?奏する。 Does the method of the present invention have such effects? play.

(1)  s 102に比べてSlの堆積は含S1 ガ
スの熱反応により堆積速度が決まってくるために、膜厚
の均一性が上が9、膜成長速度の制御性が高い。
(1) Compared to s102, the deposition rate of Sl is determined by the thermal reaction of the S1-containing gas, so the uniformity of the film thickness is 9 higher and the controllability of the film growth rate is better.

(2)  低温プラズマO’/D法でSi i堆積する
ことから、基板面内の温度均−l−シが上がり、膜厚の
制tIllXl性が高い。
(2) Since Si is deposited by low-temperature plasma O'/D method, the temperature uniformity within the substrate surface is increased, and the film thickness is highly controlled.

(3)  31の酸化により形成さ汎る:漠はSiO2
で、Sl:o=1:2のストイキオメトリ−制御が容易
なことから、組成、届所゛惧分布のコノトロールが可能
になり、再現性も極めて高い。
(3) Formed by oxidation of 31: vaguely SiO2
Since the stoichiometry of Sl:o=1:2 is easy to control, it is possible to control the composition and the desired distribution, and the reproducibility is also extremely high.

(4)  Siから5102ンこなるため、高ギ屯度石
ブ゛′A:j・;できる友めに、云@損失も小さく2均
一性も高い。
(4) Since it is made of 5102 parts from Si, it is a high-strength stone with low loss and high uniformity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施態様を示す概略の断面図、 第2図は本発明の実施例11で得らf′1.たコア層。 クラッドM全堆積した基板の断面図、 第3図は光導波価の−filを示す断面図、第4図は従
来の熱CV DE全概略説明する断面図、 第5図は従来の火盃直接堆槓法の説明図である。
FIG. 1 is a schematic sectional view showing an embodiment of the present invention, and FIG. 2 is a schematic cross-sectional view showing an embodiment of the present invention. core layer. Figure 3 is a cross-sectional view showing the -fil of the optical waveguide, Figure 4 is a cross-sectional view illustrating the entire conventional thermal CV DE, and Figure 5 is the conventional thermal CV DE. FIG.

Claims (3)

【特許請求の範囲】[Claims] (1)基板上に光導波層を作成するにおいて、Siを含
有するガスをプラズマ分解することにより該基板上にS
iを主成分とする層を形成した後、該層中のSiを酸化
することにより SiO_2とすることを特徴とする光導波層の製造方法
(1) In creating an optical waveguide layer on a substrate, a Si-containing gas is plasma decomposed to form an optical waveguide layer on the substrate.
A method for manufacturing an optical waveguide layer, which comprises forming a layer containing i as a main component and then oxidizing Si in the layer to form SiO_2.
(2)プラズマ分解がマイクロ波プラズマ分解である特
許請求の範囲第(1)項に記載の光導波層の製造方法。
(2) The method for manufacturing an optical waveguide layer according to claim (1), wherein the plasma decomposition is microwave plasma decomposition.
(3)基板は温度500℃以下に保持されている特許請
求の範囲第(1)項又は第(2)項に記載の光導波層の
製造方法。
(3) The method for manufacturing an optical waveguide layer according to claim (1) or (2), wherein the substrate is maintained at a temperature of 500° C. or lower.
JP12128286A 1986-05-28 1986-05-28 Production of optical waveguide layer Pending JPS62279304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12128286A JPS62279304A (en) 1986-05-28 1986-05-28 Production of optical waveguide layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12128286A JPS62279304A (en) 1986-05-28 1986-05-28 Production of optical waveguide layer

Publications (1)

Publication Number Publication Date
JPS62279304A true JPS62279304A (en) 1987-12-04

Family

ID=14807395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12128286A Pending JPS62279304A (en) 1986-05-28 1986-05-28 Production of optical waveguide layer

Country Status (1)

Country Link
JP (1) JPS62279304A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994000869A1 (en) * 1992-06-29 1994-01-06 United Solar Systems Corporation Microwave energized deposition process with substrate temperature control
US5476798A (en) * 1992-06-29 1995-12-19 United Solar Systems Corporation Plasma deposition process with substrate temperature control

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5856319A (en) * 1981-09-30 1983-04-04 Toshiba Corp Formation of polycrystalline silicon
JPS602905A (en) * 1983-06-20 1985-01-09 Nippon Telegr & Teleph Corp <Ntt> Manufacture of diffusion type glass waveguide

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5856319A (en) * 1981-09-30 1983-04-04 Toshiba Corp Formation of polycrystalline silicon
JPS602905A (en) * 1983-06-20 1985-01-09 Nippon Telegr & Teleph Corp <Ntt> Manufacture of diffusion type glass waveguide

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994000869A1 (en) * 1992-06-29 1994-01-06 United Solar Systems Corporation Microwave energized deposition process with substrate temperature control
US5346853A (en) * 1992-06-29 1994-09-13 United Solar Systems Corporation Microwave energized deposition process with substrate temperature control for the fabrication of P-I-N photovoltaic devices
US5476798A (en) * 1992-06-29 1995-12-19 United Solar Systems Corporation Plasma deposition process with substrate temperature control

Similar Documents

Publication Publication Date Title
US4125389A (en) Method for manufacturing an optical fibre with plasma activated deposition in a tube
JPS62279304A (en) Production of optical waveguide layer
JPS62279303A (en) Production of optical waveguide layer
JPS59146947A (en) Manufacture of preform for light conductive body
EP1186917A2 (en) Co-flow diffusion flame burner device for fabricating of optical waveguide
JPS59136130A (en) Device for forming plasma film by microwave
US7092607B2 (en) Optical waveguide device, and method of manufacturing optical waveguide device
JP3697155B2 (en) Silicon dioxide film generation method and optical waveguide generation method
JP3097698B2 (en) Manufacturing method of optical waveguide
JPH079493B2 (en) Method of manufacturing optical waveguide
JPH0641751A (en) Production of optical thin film material
JPS62111207A (en) Production of optical waveguide layer
JP2005037410A (en) Planar optical waveguide using aerosol process and its manufacturing method
JP2759568B2 (en) Manufacturing method of optical functional element
KR19980069112A (en) Method for manufacturing optical waveguide with rare earth ions
JPH06289243A (en) Forming method of glass film for light waveguide
JPH09297239A (en) Production of optical waveguide
JPS59195546A (en) Method for generating plasma in plasma cvd method
JPH06183751A (en) Production of optical waveguide film
JPS5945907A (en) Method and apparatus for forming metallic oxide film
CN115287624A (en) Technology for preparing carbon-based material film based on combined action of bias voltage and laser
JPH06317719A (en) Formation of glass film for optical waveguide
JPH09297237A (en) Production of optical waveguide
JPS62224923A (en) Formation of semiconductor thin film and device therefor
JPH0255231A (en) Production of light wave-guide glass film