JPS62279303A - Production of optical waveguide layer - Google Patents
Production of optical waveguide layerInfo
- Publication number
- JPS62279303A JPS62279303A JP12128186A JP12128186A JPS62279303A JP S62279303 A JPS62279303 A JP S62279303A JP 12128186 A JP12128186 A JP 12128186A JP 12128186 A JP12128186 A JP 12128186A JP S62279303 A JPS62279303 A JP S62279303A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- gas
- vacuum vessel
- optical waveguide
- contg
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 27
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 239000000758 substrate Substances 0.000 claims abstract description 35
- 238000000034 method Methods 0.000 claims abstract description 20
- 238000000354 decomposition reaction Methods 0.000 claims description 8
- 239000002994 raw material Substances 0.000 abstract description 7
- 238000010438 heat treatment Methods 0.000 abstract description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 5
- 238000006243 chemical reaction Methods 0.000 abstract description 5
- 230000015572 biosynthetic process Effects 0.000 abstract description 3
- 230000001105 regulatory effect Effects 0.000 abstract description 2
- 229910052681 coesite Inorganic materials 0.000 abstract 2
- 229910052906 cristobalite Inorganic materials 0.000 abstract 2
- 239000000377 silicon dioxide Substances 0.000 abstract 2
- 235000012239 silicon dioxide Nutrition 0.000 abstract 2
- 229910052682 stishovite Inorganic materials 0.000 abstract 2
- 229910052905 tridymite Inorganic materials 0.000 abstract 2
- 238000005336 cracking Methods 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 29
- 239000010410 layer Substances 0.000 description 20
- 238000000151 deposition Methods 0.000 description 10
- 238000005253 cladding Methods 0.000 description 9
- 239000011521 glass Substances 0.000 description 8
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 6
- 239000010931 gold Substances 0.000 description 6
- 229910052737 gold Inorganic materials 0.000 description 6
- 230000008021 deposition Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 239000012792 core layer Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 239000010419 fine particle Substances 0.000 description 3
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 2
- 229910004014 SiF4 Inorganic materials 0.000 description 1
- 102220606700 Syndecan-1_F31H_mutation Human genes 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- ABTOQLMXBSRXSM-UHFFFAOYSA-N silicon tetrafluoride Chemical compound F[Si](F)(F)F ABTOQLMXBSRXSM-UHFFFAOYSA-N 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Landscapes
- Optical Integrated Circuits (AREA)
Abstract
Description
【発明の詳細な説明】
3発明の詳細な説明
〔産業上の利用分野〕
本発明は光通信システム、光情報システムの多様化、高
度化に必要不可欠な、光カツプラ−、光合波・分波器な
どの光部品の0済化、小型化、安定化に有利な光導波路
の製造方法に関するものである。[Detailed Description of the Invention] 3. Detailed Description of the Invention [Field of Industrial Application] The present invention is directed to optical couplers, optical multiplexing and demultiplexing, which are essential for the diversification and advancement of optical communication systems and optical information systems. The present invention relates to a method of manufacturing an optical waveguide that is advantageous for reducing the cost, size, and stability of optical components such as devices.
〔従来の技術]
従来の光部品は、プリズム等の微小光学部品からなり、
光軸合せ、組立てが困難であつ次。[Prior art] Conventional optical components consist of microscopic optical components such as prisms.
Optical axis alignment and assembly are difficult.
そこで、平面上に光導波路を作成することにより、これ
らの繁雑な作業を避けるように、種々の導波路が提案さ
れてき友。Therefore, various waveguides have been proposed in order to avoid these complicated operations by creating optical waveguides on a plane.
光導波路に用いられる材料には、例えば半導体結晶、誘
電体結晶、ガラス、高分子材料などがある。これらの材
料により光導波路を作成するには、基板(クラッドケ兼
ねても工い)上にコア層及びクラッド層を形成した後に
、エツチング法、露光法等により第3図に示すような構
造を作成し、光のとじ込め全行う。なお第3図中、2は
基板(もしくはクラッド)、10はコア層、11はクラ
ッド層をあられす。Examples of materials used for optical waveguides include semiconductor crystals, dielectric crystals, glass, and polymer materials. To create an optical waveguide using these materials, after forming a core layer and a cladding layer on a substrate (which can also be used as a cladding layer), a structure as shown in Figure 3 is created using an etching method, exposure method, etc. Then, do all the trapping of the light. In FIG. 3, 2 is a substrate (or cladding), 10 is a core layer, and 11 is a cladding layer.
ところで、こnらのコア層、クラッド層形成には、従来
、熱CVD法や火炎直接堆積法が用Aらnでさた。By the way, thermal CVD methods and flame direct deposition methods have conventionally been used to form these core layers and cladding layers.
熱CVD法とは5第4図にその概略説明図を示すように
、石英ガラス製の炉心管12のガス人口13より、ガラ
ス原料のハロゲン化物ガスおよび反応用ガス例えば51
CL< 、 Ti C14、02等を導入し、酸化反応
によりガラス微粒子を合成し、ホルダー14上の基板2
上に該合成ガラス微粒子を堆積させる方法で、反応温度
は最高部で1200℃程度で、炉15により温度勾配金
持たせることで、熱泳動効果によりガラス微粒子の堆積
が促進さnる。なお16は排気系金示す。What is the thermal CVD method?5As shown in a schematic diagram in FIG.
CL< , Ti C14,02, etc. are introduced, glass fine particles are synthesized by an oxidation reaction, and the substrate 2 on the holder 14 is
In this method, the synthetic glass particles are deposited on top of the reactor, and the reaction temperature is about 1200° C. at the highest point, and by creating a temperature gradient in the furnace 15, the deposition of the glass particles is promoted due to the thermophoretic effect. Note that 16 indicates the exhaust system.
火炎直接堆積法とは、第5図に示すように、石英ガラス
等の憑板2をターンテーブル17上に回転中心から等距
離の位置に配置し、ガラス原料5iOt4 、 ’L’
iCt、等は同心円状ノズルを有するガラス微粒子合成
用トーチ18に導入さn1予め形成されている酸水素フ
レーム19中で、火炎加水分解反応によりガラス微粒子
を合成し、合成し次ガラス微粒子はフレーム19直下金
移動している基板2上に堆積させる方法である。The flame direct deposition method is, as shown in FIG.
iCt, etc. are introduced into a glass fine particle synthesis torch 18 having a concentric nozzle, and glass fine particles are synthesized by a flame hydrolysis reaction in an oxyhydrogen frame 19 which has been formed in advance. This is a method in which gold is deposited directly on the substrate 2 where gold is moving.
ガラス微粒子堆積膜厚の均一化を図るため、トーチ18
をターンテーブル17の半径方向に往復運動させる。In order to make the thickness of the deposited glass particle film uniform, the torch 18
is caused to reciprocate in the radial direction of the turntable 17.
しかしながら、上記の熱C”i’D法、火炎直接堆積法
等の従来技術では、光導波層の堆積時に基板温度′(i
−soo〜1200℃といった高温に保つ九めに、基板
温度が均一にな9難く、また堆積時のガス流量のゆらぎ
や排気系の状態により屈折率が変化した9、膜厚の不均
一性が生じて伝搬損失の増加や、基板にそり金主じると
いった欠点があった。However, in conventional techniques such as the thermal C"i'D method and the flame direct deposition method, the substrate temperature'(i
- Keeping the temperature at a high temperature of ~1200°C makes it difficult to maintain a uniform substrate temperature9, and the refractive index changes due to fluctuations in the gas flow rate during deposition and the condition of the exhaust system9, and non-uniformity in film thickness. This has disadvantages such as increased propagation loss and presence of warp metal on the substrate.
本発明はこのような従来技術の大声を解消し、低損失な
光導波路を容易に製造できる新規な方法を提供せんとす
るものである。The present invention aims to solve the problems of the prior art and provide a new method that can easily manufacture a low-loss optical waveguide.
本発明者らは従来の基板を高温に保持する方法にかえて
、S1含有ガス及びo6含有するガスfc原料とし、該
S1含有ガス及びO含有ガスを低温プラズマにて分解し
、基板表面で反応させてS i o2 とする方法に
よnば基板を500℃以下といつ次低温に保持して基板
上に8102 からなる光導波層を堆積が可能であり、
前記欠点を解決し友低損失な光導波層が得られること全
見出し、本発明に到達した。Instead of the conventional method of holding the substrate at a high temperature, the present inventors used a gas containing S1 and O6 as fc raw materials, decomposed the S1-containing gas and O-containing gas with low-temperature plasma, and reacted on the substrate surface. By this method, it is possible to deposit an optical waveguide layer made of 8102 on the substrate by keeping the substrate at a low temperature of 500° C. or lower.
The inventors have discovered that it is possible to solve the above-mentioned drawbacks and obtain an optical waveguide layer with low loss, and have thus arrived at the present invention.
すなわち本発明は、S1y@有するガス及び0を含有す
るガス?グラズマ分解することにより基板上に8102
換金形成することを特徴とする光導波層の製造方法で
ある。That is, the present invention provides a gas containing S1y@ and a gas containing 0? 8102 on the substrate by glazma decomposition
This is a method of manufacturing an optical waveguide layer, which is characterized in that it is formed by conversion.
本発明の特に好ましい実施態様としては、プラズマ分解
がマイクロ波プラズマ分解であり、基板は温度500℃
以下に保持して行う上記方法が挙げられろ。In a particularly preferred embodiment of the invention, the plasma decomposition is microwave plasma decomposition and the substrate is heated to a temperature of 500°C.
The above-mentioned method is listed below.
本発明においては、ガスを励起し七の他を活性化するた
めに、該ガスに高周波(RF )を印加してガスをプラ
ズマ状態にして分解させる、いわゆるプラズマ分解法を
徂」用する。Si金含むガスとしてSiH4に、又Ωを
含むガスとしてζ)zk例にとnば、このときの本発明
の反応メカニズムは下記の如くである。In the present invention, in order to excite the gas and activate other components, a so-called plasma decomposition method is used in which radio frequency (RF) is applied to the gas to transform the gas into a plasma state and decompose it. For example, using SiH4 as the gas containing Si gold and ζ)zk as the gas containing Ω, the reaction mechanism of the present invention in this case is as follows.
RF *
o2−一→20
*
El i H4→S1+4H
a H−2H2(pF気)
通常プラズマ分解におげろ高周改として1五56MHz
を用いているが、不開明において、・て好ましくは2.
45 GHzのマ・fり[コ該金℃源・専彼管を経由し
てイオン源に印?j[1する(従来の高周彼によるもの
と区別して、本明細薔ではマイクロ波プラズマ分解とい
う、、)。このマイクロ波によリイオノ源中の電子が高
速で保動するが、このときに、該イオン源にマイクCI
彼の進行方向と平行な磁界を印力口すると、磁場とマイ
クロ反による電場との相互作用に=9電子がドリフト運
動する。a場の強度が875 Gaussのとさ、電子
サイクロトロン共鳴の条件が調さn、電子がイオン源中
で加速さn、このためイオン源中で電子面sKよる中性
粒子(ガス)の電離確率が高くなる。RF * o2-1 → 20 * El i H4 → S1 + 4H a H-2H2 (pF air) 1556 MHz as high frequency modification for normal plasma decomposition
However, in Unkaimei, 2. is preferably used.
45 GHz MA/F [marked on the ion source via the gold source/special tube? j [1 (to be distinguished from the conventional one by Koshu He, herein it is referred to as microwave plasma decomposition). The electrons in the ion source are held at high speed by this microwave, but at this time, the microphone CI
When a magnetic field parallel to the direction of movement is applied, 9 electrons drift due to the interaction between the magnetic field and the electric field caused by micro-reactions. The strength of the field a is 875 Gaussian, the conditions for electron cyclotron resonance are adjusted, and the electrons are accelerated in the ion source. Therefore, the probability of ionization of neutral particles (gas) due to the electron surface sK in the ion source is becomes higher.
本発明において用いら九るsiミラ有するガスとしては
、例えばSiH4、812H4、5iHC4、F31H
2C8iO24、SiF4等が挙げらjL、Oi金含有
るガスとしては例え1−I′02 * N20が挙げら
nる。本発明においてはさらにガラスに添加さnるべき
その他の原料ガスとして1例えばN2 、 N H3、
G 8 H4。Examples of gases having Si Mira used in the present invention include SiH4, 812H4, 5iHC4, F31H
Examples of the gold-containing gas include 2C8iO24 and SiF4, and examples of the gold-containing gas include 1-I'02*N20. In the present invention, other raw material gases to be added to the glass include 1, for example, N2, NH3,
G 8 H4.
82H4,PH3等を用いてもよい。これ等のガスの流
量は例えばSl 含有ガス及び0含有ガスは5〜20
cc/分ドーピング用原料ガスは上記0含有ガスの10
〜20係程度で行ゎnるが、特にこの条件に限定さnる
ものではない。本発明における一般的なチャンバー内の
真空度は、プラズマが発生できるものであnばよ(,1
(]弓〜10−” Torr、通常10−’ Torr
程度で、こnも特別なものではない。82H4, PH3, etc. may also be used. The flow rate of these gases is, for example, 5 to 20 for Sl-containing gas and 0-containing gas.
cc/min The raw material gas for doping is 10 of the above 0-containing gas.
This is done at about 20 times, but the conditions are not particularly limited. The degree of vacuum in the general chamber in the present invention is such that plasma can be generated (,1
(] Bow ~10-” Torr, usually 10-’ Torr
This is nothing special.
本発明における基板の温度は常温以上でよく、好ましく
は常温〜500℃で行なう。なお、これは500℃以上
でも可能であるが、5oo℃程度であれば均一加熱が容
易であるという理由からである。加熱手段はごく通常の
抵抗加熱で光分であり、均一加熱が可能なため、膜厚不
拘t2.−や基板のそり発生が起こらない。The temperature of the substrate in the present invention may be at room temperature or higher, preferably at room temperature to 500°C. Although this is possible even at 500°C or higher, this is because uniform heating is easy at about 50°C. The heating means is ordinary resistance heating using light, and uniform heating is possible, so the film thickness is not limited to t2. - or warping of the board does not occur.
本発明におけるプラズマ条件としては、−例を挙げると
2.45 GHzマイクロ波 〜I KW、 マグネ
ット電流0〜30A等の条件である。The plasma conditions in the present invention include, for example, 2.45 GHz microwave to IKW, magnet current 0 to 30 A, and the like.
以上のような条件にて本発明を行ったとき、CvD速度
(膜付着速度)は200〜1000A/分という良好な
速度を得らnる。When the present invention is carried out under the above conditions, a good CvD rate (film deposition rate) of 200 to 1000 A/min can be obtained.
以下図面全参照して説明する。第1図は本発明の実施態
様を説明する几めの図である。第1図において1は真空
チャンバ(試料室)であp、その内部には例えば加熱ヒ
ータ7のような加熱手段を有する基板ホルダ5が設けて
あり、基板(試料)2は該基板ホルダ3上に載置さnて
、温度500℃以下に加熱さnる。真空チャンバ1内は
排気系により圧力調整されており、真空チャンバ1には
Sl 含有ガスその他原料ガス及び02ガスが七nぞれ
導入管8及び9より導入さnる。真空チャンバ1内でマ
イク0波源6から導波管5を経て真空チャンバ1内に導
入したプラズマ波によりS1含有ガス、その他の原料ガ
ス及び02ガスは分解さn、基板2の表面にて反応して
、基板表面KSiO2’i析出する。The explanation will be given below with reference to all the drawings. FIG. 1 is a schematic diagram illustrating an embodiment of the present invention. In FIG. 1, 1 is a vacuum chamber (sample chamber), inside of which is provided a substrate holder 5 having a heating means such as a heater 7, and a substrate (sample) 2 is placed on the substrate holder 3. and heated to a temperature of 500° C. or less. The pressure inside the vacuum chamber 1 is regulated by an exhaust system, and a Sl 2 -containing gas, other raw material gas, and 02 gas are introduced into the vacuum chamber 1 through seven inlet pipes 8 and 9, respectively. The S1-containing gas, other raw material gases, and O2 gas are decomposed by plasma waves introduced into the vacuum chamber 1 from the microphone wave source 6 through the waveguide 5, and react on the surface of the substrate 2. Then, KSiO2'i is deposited on the substrate surface.
以上のようにして基板に8101層、又はSin。As described above, the 8101 layer or Sin is formed on the substrate.
に添加物を含む層を形成し、公知の方法でパターン形成
することを組合せて、光導波層を得ることができる。An optical waveguide layer can be obtained by forming a layer containing an additive and patterning it by a known method.
第1図の構成の装置を用いて、本発明により光導波層を
作成し友。試料室内を5 X 10−’ Torrに保
ち、基板ホルダーに直径100m丸型の石英基板を載置
し、基板温度を300℃に保持した。試料室内にSiH
420cc/分および0225cc/分を導入し、マイ
クロ波パワーを200Wにして20分間基板上にクラッ
ド層となる8102層全1μm厚さに堆積し文。次に基
板温度、マイクロ波パワーは同条件の”!IcLで、ガ
ス条件f Sl[420cc/分、GeH44cc/分
および0225 cc7分に変えて、コア層となる5i
02 G302層全10μm厚さに堆積し友。以上で
得らnた5102クラッド層と5i020e02 コ
ア層全形成した基板について、従来法によりパターンを
作成しt後、さらに上記のクラッド層作成と同条件でク
ラッド層を形成し光導波層とした。An optical waveguide layer can be produced according to the present invention using the apparatus having the configuration shown in FIG. The interior of the sample chamber was maintained at 5 x 10-' Torr, a round quartz substrate with a diameter of 100 m was placed on a substrate holder, and the substrate temperature was maintained at 300°C. SiH in the sample chamber
420 cc/min and 0.225 cc/min were introduced, the microwave power was set to 200 W, and the 8102 layer serving as the cladding layer was deposited on the substrate to a total thickness of 1 μm for 20 minutes. Next, the substrate temperature and microwave power were the same under the same conditions.
02 G30 2 layers were deposited to a total thickness of 10 μm. For the substrate on which the 5102 cladding layer and the 5i020e02 core layer obtained above were completely formed, a pattern was created by a conventional method, and then a cladding layer was further formed under the same conditions as for the above cladding layer creation to obtain an optical waveguide layer.
以上により得らn九本発明の光導波路のロスは、α1d
B/Kyn と熱C’7D法で製造した従来品に比し
低損失であった。またその断面におけるロスの分布は、
第2図(イ)に示すように直径90晒丸型のいずnの部
分においてもはヌ同じ値(11aB/Km)で、±5係
という極めて高い均一性を示した。比較のために熱CV
D法による従来品の断面におけるロス分布全第2図(ロ
)に示すが、直径50園以内で±10壬、直径90mm
以内では±45%と非常に不均一であった。なお第2図
(イ)、(ロ)において、白抜き地部分はロス[1l
bB/Km以下、梨地部分ばQ、 24871m以下、
斜線部分はα34871m以下を意味する。本発明品の
優れた均一性がわかる。The loss of the optical waveguide of the present invention obtained from the above is α1d
The loss was lower than that of conventional products manufactured using B/Kyn and thermal C'7D methods. Also, the loss distribution in that cross section is
As shown in FIG. 2(a), the same value (11aB/Km) was obtained in the 90-diameter bleached round part of the n part, showing an extremely high uniformity of ±5 coefficient. For comparison, thermal CV
The loss distribution in the cross section of the conventional product obtained by method D is shown in Figure 2 (b).
It was extremely non-uniform within ±45%. In Figures 2 (a) and (b), the white areas are loss [1l
bB/Km or less, satin part Q, 24871m or less,
The shaded area means α34871m or less. It can be seen that the product of the present invention has excellent uniformity.
以上の如く本発明では、基板温度を低温にしたままで導
波層を堆積する次めに、均一性の良い膜厚制御ができ、
基板のそりも低減できる。As described above, in the present invention, by depositing the waveguide layer while keeping the substrate temperature low, it is possible to control the film thickness with good uniformity.
Warpage of the board can also be reduced.
しかも堆積速度の制御がプラズマのパワー密度、真空度
、ガス流量で行なえることから膜厚、膜質の再現性が良
くなる。従来の技術では堆積時のガス流量のゆらぎや併
気糸の状態により、屈折率が変化するとか、膜厚の不均
一性のために伝搬損失が増加するといつ次欠点がめった
0本発明ではガス流、温度制御が容易な低温プラズマO
VDを用いている定めに、上記の欠/ik抑えることが
できる。Moreover, since the deposition rate can be controlled by the plasma power density, degree of vacuum, and gas flow rate, the reproducibility of film thickness and film quality is improved. In the conventional technology, the refractive index changes due to fluctuations in the gas flow rate during deposition and the state of parallel fibers, and propagation loss increases due to non-uniformity of the film thickness. Low-temperature plasma O with easy flow and temperature control
By using VD, the above-mentioned lack/ik can be suppressed.
第1図は本発明の実施態様上水す概略の断面図である。
第2図(イ)および(ロ)は光4波路の径方向に2ける
ロス分布を示す断面図であって、(イ)は本発明品、(
ロ)は熱OVD法による従来品の図である。
第3図は光導波層全説明する断面図、
第4図は従来の熱C”/D法全全説明る概念図、第5図
は従来の火炎直接堆積法を説明する概念図である。FIG. 1 is a schematic cross-sectional view of an embodiment of the present invention. FIGS. 2(a) and 2(b) are cross-sectional views showing the loss distribution in the radial direction of four optical wave paths, in which (a) shows the product of the present invention, (
B) is a diagram of a conventional product made by the thermal OVD method. FIG. 3 is a cross-sectional view illustrating the entire optical waveguide layer, FIG. 4 is a conceptual diagram illustrating the entire conventional thermal C''/D method, and FIG. 5 is a conceptual diagram illustrating the conventional flame direct deposition method.
Claims (3)
ズマ分解することにより、基板上に SiO_2膜を形成することを特徴とする光導波層の製
造方法。(1) A method for manufacturing an optical waveguide layer, which comprises forming an SiO_2 film on a substrate by plasma decomposing a gas containing Si and a gas containing O.
許請求の範囲第(1)項に記載の光導波層の製造方法。(2) The method for manufacturing an optical waveguide layer according to claim (1), wherein the plasma decomposition is microwave plasma decomposition.
求の範囲第(1)項又は(2)項に記載の光導波層の製
造方法。(3) The method for manufacturing an optical waveguide layer according to claim (1) or (2), wherein the substrate is maintained at a temperature of 500° C. or lower.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12128186A JPS62279303A (en) | 1986-05-28 | 1986-05-28 | Production of optical waveguide layer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12128186A JPS62279303A (en) | 1986-05-28 | 1986-05-28 | Production of optical waveguide layer |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62279303A true JPS62279303A (en) | 1987-12-04 |
Family
ID=14807370
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12128186A Pending JPS62279303A (en) | 1986-05-28 | 1986-05-28 | Production of optical waveguide layer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62279303A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03220506A (en) * | 1990-01-26 | 1991-09-27 | Hitachi Cable Ltd | Method for forming glass film for optical waveguide and method for manufacturing optical waveguide |
EP0735160A1 (en) * | 1995-03-31 | 1996-10-02 | France Telecom | Process and apparatus for microwave assisted low temperature CVD of silica layers |
US6716476B2 (en) * | 2001-09-21 | 2004-04-06 | Dalsa Semiconductor Inc. | Method of depositing an optical quality silica film by PECVD |
US6887514B2 (en) * | 2001-05-31 | 2005-05-03 | Dalsa Semiconductor Inc. | Method of depositing optical films |
JP2016051015A (en) * | 2014-08-29 | 2016-04-11 | 日本電信電話株式会社 | Forming method of waveguide material film |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5362982A (en) * | 1976-11-17 | 1978-06-05 | Toshiba Corp | Plasma cvd apparatus |
JPS59104120A (en) * | 1982-12-07 | 1984-06-15 | Fujitsu Ltd | Plasma treatment |
-
1986
- 1986-05-28 JP JP12128186A patent/JPS62279303A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5362982A (en) * | 1976-11-17 | 1978-06-05 | Toshiba Corp | Plasma cvd apparatus |
JPS59104120A (en) * | 1982-12-07 | 1984-06-15 | Fujitsu Ltd | Plasma treatment |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03220506A (en) * | 1990-01-26 | 1991-09-27 | Hitachi Cable Ltd | Method for forming glass film for optical waveguide and method for manufacturing optical waveguide |
EP0735160A1 (en) * | 1995-03-31 | 1996-10-02 | France Telecom | Process and apparatus for microwave assisted low temperature CVD of silica layers |
FR2732363A1 (en) * | 1995-03-31 | 1996-10-04 | France Telecom | METHOD AND APPARATUS FOR PLASMA MICROWAVE-BASED VAPOR PHASE CHEMICAL DEPOSITION OF THIN LOW TEMPERATURE SILICA THIN FILMS USING CHLORIDES |
US6887514B2 (en) * | 2001-05-31 | 2005-05-03 | Dalsa Semiconductor Inc. | Method of depositing optical films |
US6716476B2 (en) * | 2001-09-21 | 2004-04-06 | Dalsa Semiconductor Inc. | Method of depositing an optical quality silica film by PECVD |
JP2016051015A (en) * | 2014-08-29 | 2016-04-11 | 日本電信電話株式会社 | Forming method of waveguide material film |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4262035A (en) | Modified chemical vapor deposition of an optical fiber using an rf plasma | |
CA1054795A (en) | Optical fibres | |
TWI242246B (en) | Surface wave plasma treatment apparatus using multi-slot antenna | |
US4125389A (en) | Method for manufacturing an optical fibre with plasma activated deposition in a tube | |
GB1567876A (en) | Method of and apparatus for manufacturing a fused tube for forming into an optical fibre with plasma activated deposition in a tube | |
JPS584323B2 (en) | Kougakusenino Seizouhouhou | |
JP2613533B2 (en) | Method of forming an optically thin film waveguide of TiO2 | |
US5597624A (en) | Method and apparatus for coating dielectrics | |
JPS62279303A (en) | Production of optical waveguide layer | |
US6988380B2 (en) | Method of silica optical fiber preform production | |
JPS6168340A (en) | Manufacturing method of glass base material for optical fiber | |
GB1578826A (en) | Methods for fabricating optical fibre preforms | |
JPS62279304A (en) | Production of optical waveguide layer | |
US20020028415A1 (en) | Co-flow diffusion flame burner device used for fabricating an optical waveguide | |
JPH07130494A (en) | Microwave plasma processing device | |
JPH0641751A (en) | Method for producing optical thin film material | |
JP3097698B2 (en) | Manufacturing method of optical waveguide | |
JP2759568B2 (en) | Manufacturing method of optical functional element | |
JPS63123829A (en) | Production of preform for optical fiber | |
JP2951770B2 (en) | Manufacturing method of optical functional element | |
JPH01201045A (en) | Germanium oxide based optical fiber and preparation thereof | |
JPS62111207A (en) | Method for manufacturing optical waveguide layer | |
JPS62217207A (en) | Method for manufacturing optical waveguide layer | |
JPH079493B2 (en) | Method of manufacturing optical waveguide | |
JP2002148462A (en) | Method for forming silicon dioxide film and method for forming light guide |