JPH06183751A - Production of optical waveguide film - Google Patents

Production of optical waveguide film

Info

Publication number
JPH06183751A
JPH06183751A JP34007592A JP34007592A JPH06183751A JP H06183751 A JPH06183751 A JP H06183751A JP 34007592 A JP34007592 A JP 34007592A JP 34007592 A JP34007592 A JP 34007592A JP H06183751 A JPH06183751 A JP H06183751A
Authority
JP
Japan
Prior art keywords
film
optical waveguide
rare earth
waveguide film
earth element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34007592A
Other languages
Japanese (ja)
Inventor
Keizo Shudo
啓三 首藤
Takeshi Kitagawa
毅 北川
Kuninori Hattori
邦典 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP34007592A priority Critical patent/JPH06183751A/en
Publication of JPH06183751A publication Critical patent/JPH06183751A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1415Reactant delivery systems
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • C03B2201/28Doped silica-based glasses doped with non-metals other than boron or fluorine doped with phosphorus
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/34Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with rare earth metals, i.e. with Sc, Y or lanthanides, e.g. for laser-amplifiers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/34Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with rare earth metals, i.e. with Sc, Y or lanthanides, e.g. for laser-amplifiers
    • C03B2201/36Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with rare earth metals, i.e. with Sc, Y or lanthanides, e.g. for laser-amplifiers doped with rare earth metals and aluminium, e.g. Er-Al co-doped
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/30For glass precursor of non-standard type, e.g. solid SiH3F
    • C03B2207/32Non-halide
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/36Fuel or oxidant details, e.g. flow rate, flow rate ratio, fuel additives

Abstract

PURPOSE:To obtain an optical waveguide film useful for an optical amplifier and laser by carrying out film formation by plasma CVD with a quartz glass to which an org. compd. of a rare earth element has been added. CONSTITUTION:When a rare earth element-added quartz glass film is formed, an org. compd. of the rare earth element is used as starting material for adding the rare earth element and film formation is carried out by plasma CVD to obtain the objective optical waveguide film. A beta-diketone compd. represented by the formula (where X is a rare earth element and each of R and R' is an alkyl) may be used as the org. compd. Silance (SiH4) or an org. compd. of silicon such as tetraethoxysilane as a silicon source and pure oxygen or nitrous oxide (N2O) as oxygen source are suitable for use as starting materials for the quartz glass film. This optical waveguide film preferably contains P, Al, etc., as constituents because it is used for an optical amplifier and laser.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光通信、光信号処理、光
計測用導波型光部品などに使用される光導波膜、さらに
詳しくは、レーザおよび光増幅器に用いられる希土類添
加石英系光導波膜の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical waveguide film used for optical communication, optical signal processing, waveguide type optical components for optical measurement, and more specifically, a rare earth-doped silica optical fiber used for lasers and optical amplifiers. The present invention relates to a method for manufacturing a wave film.

【0002】[0002]

【従来の技術】例えば、エルビウム(Er)に代表され
る希土類を添加した酸化物ガラス光導波膜は、光通信波
長帯(1.3μm帯,1.5μm帯など)にレーザ遷移
波長を持つことからレーザ・光増幅器などの導波型光部
品への利用が有望視され、現在、実用に向けた研究が進
められている。
2. Description of the Related Art For example, a rare earth-doped oxide glass optical waveguide film represented by erbium (Er) has a laser transition wavelength in an optical communication wavelength band (1.3 μm band, 1.5 μm band, etc.). Has been considered promising for use in waveguide-type optical components such as lasers and optical amplifiers, and research for practical use is currently underway.

【0003】希土類添加光導波膜の光部品への実用に
は、励起光強度当りの利得の向上が課題であるが、この
ためには、導波路の寸法を小さくすることで、励起光の
パワー密度を実質的に上げるのが非常に有効であること
が理論的・実験的に指摘されている。
In practical use of a rare earth-doped optical waveguide film as an optical component, improvement of the gain per pumping light intensity is a problem. To this end, the power of pumping light is reduced by reducing the size of the waveguide. It has been theoretically and experimentally pointed out that it is very effective to substantially increase the density.

【0004】従来、導波路サイズの低減に必須の薄膜技
術を用いた希土類添加光導波膜の形成法としては、Er
を添加したスパッタ法によるものが一例報告されている
のみである。このErを添加したスパッタ法による希土
類添加光導波膜の形成法では、比較的蛍光寿命が長いこ
とから導波路材料としてSiO2・Na20.20・CaO0
.117 ・Er0.028の組成の多成分ガラスを選んでいる。
このガラスターゲットをマグネトロンスパッタ装置で熱
酸化基板上にスパッタして光導波膜を成膜する。そし
て、成膜後に膜質改善のため600℃で熱処理する。更
に、イオンビームエッチング法で導波路パタンを形成
し、シリコンのゲルを上部クラッド層として塗布し、E
r添加光導波路を作製する。導波路のコア寸法は、高さ
1.3μm×幅6μmであり、サイズの小さい導波路が
実現されている。
Conventionally, as a method of forming a rare earth-doped optical waveguide film using a thin film technique essential for reducing the waveguide size, Er is known.
Only one example is reported by the sputtering method with addition of. In the method of forming the rare earth-doped optical waveguide film by the sputtering method with Er added, the fluorescence lifetime is relatively long, so that the waveguide material is SiO 2 · Na 2 O 0.20 · CaO 0.
A multi-component glass with a composition of .117 · Er 0.028 is selected.
This glass target is sputtered on the thermal oxide substrate by a magnetron sputtering device to form an optical waveguide film. Then, after film formation, heat treatment is performed at 600 ° C. to improve film quality. Further, a waveguide pattern is formed by an ion beam etching method, silicon gel is applied as an upper clad layer, and E
Create an r-doped optical waveguide. The core size of the waveguide is 1.3 μm in height × 6 μm in width, and a small-sized waveguide is realized.

【0005】[0005]

【発明が解決しようとする課題】ところが、上述したス
パッタ法による希土類添加光導波膜の形成方法によって
形成された導波路では、ガラス組成自体とスパッタ法と
いう成膜技術との関係から生じる次のような製法上の問
題がある。まず第1に、ガラス組成が複雑で、膨脹係数
が大きい組成であるため、通常大きなサイズのガラスタ
ーゲットを作ることが難しいことである。第2に、成膜
時に熱的にターゲット割れを生じないように成膜速度を
最大でも50A/分に抑えなければならないことであ
る。そして、第3に、加工時にNa2O、CaOおよびEr
の成分を除去するため、イオンビームエッチング法のよ
うな物理的方法に頼らざるを得ず、加工法に制約を生じ
ることである。
However, in the waveguide formed by the method for forming the rare earth-doped optical waveguide film by the above-mentioned sputtering method, the following is caused by the relationship between the glass composition itself and the film-forming technique called the sputtering method. There is a problem in the manufacturing method. First of all, since the glass composition is complicated and the expansion coefficient is large, it is usually difficult to make a large-sized glass target. Secondly, the film formation rate must be suppressed to 50 A / min at the maximum so that the target does not crack thermally during film formation. And thirdly, during processing, Na 2 O, CaO and Er
In order to remove the above component, there is no choice but to rely on a physical method such as an ion beam etching method, which causes a restriction on the processing method.

【0006】また、導波路の光学特性においても、組成
の複雑さによる内部散乱から散乱損失が約1dB/cmと大
きいこと、また、増幅器としてこの損失を補償するた
め、7−8wt%と通常より一桁多い量のErを添加せざる
を得ないこと等の問題がある。実際には、上記添加量に
おいても未だ実質的な信号光利得が得られていないのが
現状である。
Also in the optical characteristics of the waveguide, the scattering loss is as large as about 1 dB / cm due to internal scattering due to the complexity of the composition, and in order to compensate for this loss as an amplifier, it is 7-8 wt%, which is higher than usual. There is a problem in that Er must be added in an amount that is an order of magnitude higher. Actually, the actual situation is that a substantial signal light gain has not yet been obtained even with the above addition amount.

【0007】本発明はこのような問題点を解決するもの
であって、スパッタ法で形成したEr添加多成分ガラス
光導波路での製法上の制約の問題、及び、導波路の光学
的な散乱損失と信号光利得の問題を解決し、製造が比較
的容易で、且つ、光学的にも光品質な特性を有するEr
に代表される希土類添加光導波路に利用することのでき
る光導波膜の製造方法を提供することを目的とするもの
である。
The present invention is intended to solve such problems, and it is a problem of manufacturing restrictions in an Er-doped multi-component glass optical waveguide formed by a sputtering method, and optical scattering loss of the waveguide. Er which has the characteristics of optical gain and signal light gain, is relatively easy to manufacture, and has optical optical quality.
It is an object of the present invention to provide a method for producing an optical waveguide film that can be used in a rare earth-doped optical waveguide represented by.

【0008】[0008]

【課題を解決するための手段】上述の目的を達成するた
めの本発明の光導波膜の製造方法は、希土類を添加した
石英系ガラス膜において、前記希土類を添加する原料と
して希土類の有機化合物を用い、プラズマCVD法によ
り成膜することを特徴とするものである。
The method for producing an optical waveguide film of the present invention for achieving the above object is a silica glass film to which a rare earth element is added, wherein an organic compound of a rare earth element is used as a raw material for adding the rare earth element. It is characterized by being used and forming a film by a plasma CVD method.

【0009】また、本発明の光導波膜の製造方法は、前
記希土類を添加する原料として希土類の有機化合物を用
い、減圧CVD法により成膜することを特徴とするもの
である。
Further, the method for producing an optical waveguide film of the present invention is characterized in that an organic compound of a rare earth is used as a raw material for adding the rare earth and the film is formed by a low pressure CVD method.

【0010】この場合、本発明に用い得る希土類の有機
化合物としては、一般式X(RCOCHCOR′)
3 (ここでXは希土類、R,R′はアルキル基)で表さ
れるβジケトン化合物をはじめ、いかなる希土類の有機
化合物を挙げることができる。
In this case, the rare earth organic compound usable in the present invention is represented by the general formula X (RCOCHCOR ').
Examples include β-diketone compounds represented by 3 (where X is a rare earth and R and R ′ are alkyl groups), and any rare earth organic compound.

【0011】βジケトン化合物としては、揮発性を有
し、昇華により輸送可能なものが好適であり、具体的に
は2,2,6,6‐テトラメチル‐3,5‐ヘプタンジ
オンエルビウム(Er(DPM)3 )、1,1,1,
5,5,5‐ヘキサフロロ‐2,4‐ペンタンジオンエ
ルビウム(Er(HFA)3 )などを挙げることができ
る。
As the β-diketone compound, those having volatility and capable of being transported by sublimation are preferable, and specifically, 2,2,6,6-tetramethyl-3,5-heptanedionerbium (Er (DPM) 3 ), 1, 1, 1,
Examples include 5,5,5-hexafluoro-2,4-pentanedione erbium (Er (HFA) 3 ).

【0012】一方、本発明に用いる石英系ガラス膜の原
料としては、シリコン源にはシラン(SiH4)あるいは
シリコンの有機化合物(例えば、テトラエトキシシラン
(TEOS))、酸素源には純酸素(O2)あるいは亜
酸化窒素(N2O)が好適である。更に、レーザ及び光
増幅器という利用分野からして、本ガラス膜には、リン
やアルミニウム等を成分として含むことが好ましい。リ
ン源としてはホスフィン(PH3)あるいはリンの有機
化合物(例えば、リンのアルコキシド(PO(OC
3 3またはPO(OC253))、アルミニウム源
にはアルミニウムの有機化合物(例えばアルミニウムの
アルコキシド(Al(OCH33またはAl(OC25
3)あるいはβジケトン化合物(Al(DPM)3または
Al(HFA)3)が好適である。
On the other hand, as a raw material of the quartz glass film used in the present invention, silane (SiH 4 ) or an organic compound of silicon (for example, tetraethoxysilane (TEOS)) is used as a silicon source, and pure oxygen (is used as an oxygen source). O 2 ) or nitrous oxide (N 2 O) are preferred. Further, from the application fields of laser and optical amplifier, it is preferable that the present glass film contains phosphorus, aluminum or the like as a component. As a phosphorus source, phosphine (PH 3 ) or an organic compound of phosphorus (for example, phosphorus alkoxide (PO (OC
H 3) 3 or PO (OC 2 H 5) 3 )), an organic compound of aluminum in aluminum source (e.g. aluminum alkoxide (Al (OCH 3) 3 or Al (OC 2 H 5)
3 ) or β-diketone compounds (Al (DPM) 3 or Al (HFA) 3 ) are preferred.

【0013】そして、ガラス原料に対する上述のErに
代表される希土類の有機化合物の混合割合は、最終的に
得られる光導波膜に要求される特性に見合う希土類の添
加濃度、上述の混合原料の種類等の条件を考慮して決め
られる。
The mixing ratio of the above-mentioned rare earth organic compound represented by Er with respect to the glass raw material is the addition concentration of the rare earth corresponding to the characteristics required for the finally obtained optical waveguide film, and the kind of the above-mentioned mixed raw material. It is decided in consideration of such conditions.

【0014】[0014]

【実施例】以下、本発明の実施例を図面に基づいて詳細
に説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0015】図1には本発明の第1実施例に係る光導波
膜の製造方法を実施するための光導波膜の成膜に用いた
装置の概略構成、図2には作製したEr添加光導波路の
伝搬損失特性のグラフ、図3にはEr添加光導波路の励
起光強度に対する信号光利得特性のグラフを示してあ
る。
FIG. 1 is a schematic configuration of an apparatus used for forming an optical waveguide film for carrying out the method for manufacturing an optical waveguide film according to the first embodiment of the present invention. FIG. 2 shows the prepared Er-doped optical waveguide. A graph of the propagation loss characteristic of the waveguide, and FIG. 3 is a graph of the signal light gain characteristic of the Er-doped optical waveguide with respect to the pumping light intensity.

【0016】本実施例では、希土類としてエルビウム
(Er)を用いてプラズマCVD法により成膜する例を
示す。図1に示すように、1はガラス原料供給部、2は
供給配管系、3はEr有機化合物供給部、4Aは対向電
極(高周波側)、4Bは対向電極(接地側)、5は真空
室、6は排気系、7は圧力調整弁、8は基板、9は加熱
電源、10は内部ヒータ、11は高周波電源である。
In this embodiment, an example of forming a film by a plasma CVD method using erbium (Er) as a rare earth element is shown. As shown in FIG. 1, 1 is a glass raw material supply unit, 2 is a supply pipe system, 3 is an Er organic compound supply unit, 4A is a counter electrode (high frequency side), 4B is a counter electrode (ground side), and 5 is a vacuum chamber. , 6 is an exhaust system, 7 is a pressure regulating valve, 8 is a substrate, 9 is a heating power source, 10 is an internal heater, and 11 is a high frequency power source.

【0017】この光導波膜の成膜装置を用いて、光導波
膜は以下のように成膜される。まず、ガラス原料供給部
1においてシリコン、酸素、リン、アルミニウム等の原
料が供給される。この原料が液体原料であればバブラー
で蒸発され、固体原料であれば昇華され、いずれもキャ
リアガスにより供給配管系2に送られる。また、Er
(DPM)3などのEr有機化合物原料がEr有機化合物
供給部3において室温以上350℃以下の温度で昇華さ
れキャリアガスにより供給配管系2に送られる。これら
の原料は供給配管系2において合流せしめられ、対向電
極(高周波側)4Aのガス吹出し穴を通じて真空室5内
部に導入される。真空室5内部の圧力は、排気系6に付
随する圧力調整弁7により0.1から10Torrの間の一
定の値に調節される。
The optical waveguide film is formed as follows using this optical waveguide film forming apparatus. First, raw materials such as silicon, oxygen, phosphorus, and aluminum are supplied in the glass raw material supply unit 1. If this raw material is a liquid raw material, it is evaporated by a bubbler, and if it is a solid raw material, it is sublimated, and both are sent to the supply piping system 2 by a carrier gas. Also, Er
An Er organic compound raw material such as (DPM) 3 is sublimated in the Er organic compound supply unit 3 at a temperature of room temperature or higher and 350 ° C. or lower and sent to the supply pipe system 2 by a carrier gas. These raw materials are merged in the supply piping system 2 and introduced into the vacuum chamber 5 through the gas blowing holes of the counter electrode (high frequency side) 4A. The pressure inside the vacuum chamber 5 is adjusted to a constant value between 0.1 and 10 Torr by a pressure adjusting valve 7 attached to the exhaust system 6.

【0018】基板8は、もう一方の対向電極(接地側)
4Bに装着され、加熱電源9に接続された内部ヒータ1
0により300℃から500℃の範囲の一定温度に加熱
される。
The substrate 8 is the other counter electrode (ground side).
Internal heater 1 attached to 4B and connected to heating power source 9
It is heated to a constant temperature in the range of 300 ° C to 500 ° C.

【0019】このような状態で高周波電源11により対
向電極(高周波側)4Aに13.56MHzの高周波を印
加することで対向電極間にプラズマが形成され、導入さ
れた原料がプラズマ内で分解され、基板8上で結合して
ガラス膜が堆積される。この堆積速度は、典型的には、
200から400A/分の範囲にあり、従来の多成分ガ
ラスをスパッタする技術の場合よりかなり速いものであ
る。
By applying a high frequency of 13.56 MHz to the counter electrode (high frequency side) 4A by the high frequency power supply 11 in such a state, plasma is formed between the counter electrodes, and the introduced raw material is decomposed in the plasma. A glass film is deposited on the substrate 8 by bonding. This deposition rate is typically
It is in the range of 200 to 400 A / min, which is considerably faster than that of the conventional multi-component glass sputtering technique.

【0020】次に、堆積したガラス膜を上記の成膜温度
(基板加熱温度)よりも高い温度(400℃から110
0℃の範囲の一定温度)で加熱する、即ち、アニールす
ることによって膜を緻密化・安定化して所望の光導波膜
を得る。
Next, the deposited glass film is heated to a temperature (400 ° C. to 110 ° C.) higher than the above film forming temperature (substrate heating temperature).
The film is densified and stabilized by heating at a constant temperature in the range of 0 ° C.), that is, by annealing to obtain a desired optical waveguide film.

【0021】以下では、上述の光導波膜を用いたEr添
加光導波路の作製方法を説明し、増幅器としての導波路
の光学特性の評価結果を示す。
Hereinafter, a method of manufacturing an Er-doped optical waveguide using the above-mentioned optical waveguide film will be described, and evaluation results of optical characteristics of the waveguide as an amplifier will be shown.

【0022】ここでは、光導波路作製にリンを成分とす
る石英系光導波膜を用いる例を示すが、他のアルミニウ
ム等を単独あるいは複合して成分とする場合でも同様の
成膜・加工の方法を用いて光導波路を作製することがで
きる。
Here, an example is shown in which a silica-based optical waveguide film containing phosphorus as a component is used for producing an optical waveguide, but the same film forming / processing method is used even when other aluminum or the like is used alone or as a component. Can be used to fabricate an optical waveguide.

【0023】工程的には、まず、シリコン基板上に火炎
堆積法で石英と同等の屈折率の下部クラッド層(膜厚3
0μm)を形成した。続いて、本実施例の方法により光
導波膜であるコア層を成膜した。即ち、シラン及び亜酸
化窒素のガスと、80℃で蒸発させキャリアガス輸送し
たテトラメトキシフォスフェート(PO(OCH33
と、140℃で昇華させキャリアガス輸送したEr(D
PM)3とをプラズマCVD装置の真空室に導入し、4
00℃の基板加熱温度で、原料をプラズマ分解しバッフ
ァ層の上にガラス膜を堆積させた。そして、堆積後に電
気炉において不活性ガス中で500℃の温度で加熱して
緻密化し、Er添加濃度5000ppm 、厚さ4μm、比
屈折率差1.6%のコア層を有する光導波膜を成膜し
た。更に、LSI製造と同様のフォトリソグラフ工程と
ドライエッチング工程とによりコア層をパターン化し、
再び、火炎堆積法で石英と同等の屈折率を有する上部ク
ラッド層(膜厚30μm)を形成して導波路長7.5c
m、高さ4μm、幅4μmのコア寸法の小さな埋め込み
導波路を作製した。
In terms of steps, first, a lower clad layer (thickness: 3) having a refractive index equivalent to that of quartz is formed on a silicon substrate by a flame deposition method.
0 μm) was formed. Subsequently, a core layer which is an optical waveguide film was formed by the method of this example. That is, silane and nitrous oxide gas and tetramethoxyphosphate (PO (OCH 3 ) 3 ) vaporized at 80 ° C. and transported as a carrier gas.
Er (D
PM) 3 is introduced into the vacuum chamber of the plasma CVD apparatus, and
The raw material was plasma decomposed at a substrate heating temperature of 00 ° C. to deposit a glass film on the buffer layer. After the deposition, it is heated in an electric furnace in an inert gas at a temperature of 500 ° C. to be densified to form an optical waveguide film having a core layer having an Er addition concentration of 5000 ppm, a thickness of 4 μm and a relative refractive index difference of 1.6%. Filmed Further, the core layer is patterned by the photolithography process and the dry etching process similar to the LSI manufacturing,
Again, the upper clad layer (thickness 30 μm) having the same refractive index as quartz is formed by the flame deposition method, and the waveguide length is 7.5c.
An embedded waveguide having a small core size of m, a height of 4 μm, and a width of 4 μm was produced.

【0024】このようにして作製したEr添加光導波路
の伝搬損失特性のグラフを図2に示す。同図より、波長
1.53μmにErイオンに起因する吸収がみられる。
1.40μmにおける0.17dB/cmの伝搬損失が、こ
の吸収に起因しない導波路散乱による散乱損失を表して
おり、本実施例の方法で散乱損失の小さな導波路が実現
されることがわかる。
A graph of the propagation loss characteristic of the Er-doped optical waveguide thus manufactured is shown in FIG. From the figure, absorption due to Er ions is seen at a wavelength of 1.53 μm.
The propagation loss of 0.17 dB / cm at 1.40 μm represents the scattering loss due to the waveguide scattering that is not caused by this absorption, and it can be seen that the waveguide of small scattering loss is realized by the method of this embodiment.

【0025】図3にはこのEr添加光導波路を波長0.
98μmのチタンサファイアレーザで励起して波長可変
レーザからの波長1.53μmの信号光を導波路に通し
た場合の励起光強度に対する信号光利得特性のグラフを
示してある。同図より、導波路の散乱損失を補償して0
dB利得となるしきい値が23mWと低く、420mWの励起
光強度では5dB(単位長さ当り0.67dB/cm)の実質
的な高利得が得られていることがわかる。従って、本実
施例の方法は、Er添加導波型レーザや光増幅器の特性
向上に有効である。
In FIG. 3, this Er-doped optical waveguide has a wavelength of 0.
9 is a graph of signal light gain characteristics with respect to pumping light intensity when pumping with a 98 μm titanium sapphire laser and passing signal light with a wavelength of 1.53 μm from a wavelength tunable laser through a waveguide. From the figure, 0 is obtained by compensating for the scattering loss of the waveguide.
It can be seen that the threshold value for the dB gain is as low as 23 mW, and a substantially high gain of 5 dB (0.67 dB / cm per unit length) is obtained with the pump light intensity of 420 mW. Therefore, the method of this embodiment is effective for improving the characteristics of the Er-doped waveguide type laser and the optical amplifier.

【0026】図4には本発明の第2実施例に係る光導波
膜の製造方法を実施するための光導波膜の成膜に用いた
装置の概略構成を示してある。
FIG. 4 shows a schematic configuration of an apparatus used for forming an optical waveguide film for carrying out the method for manufacturing an optical waveguide film according to the second embodiment of the present invention.

【0027】本実施例では、希土類としてエルビウム
(Er)を用いて減圧CVD法により成膜する例を示
す。図4に示すように、1はガラス原料供給部、2は供
給配管系、3はEr有機化合物供給部、6は排気系、7
は圧力調整弁、8は基板、9は加熱電源、12は石英
管、13は石英ボート、14はヒータである。
In this embodiment, an example of forming a film by a low pressure CVD method using erbium (Er) as a rare earth element is shown. As shown in FIG. 4, 1 is a glass raw material supply unit, 2 is a supply pipe system, 3 is an Er organic compound supply unit, 6 is an exhaust system, and 7 is an exhaust system.
Is a pressure control valve, 8 is a substrate, 9 is a heating power source, 12 is a quartz tube, 13 is a quartz boat, and 14 is a heater.

【0028】この光導波膜の成膜装置を用いて、光導波
膜は以下のように成膜される。まず、ガラス原料供給部
1においてシリコン、酸素、リン、アルミニウム等の原
料が供給される。この原料が液体原料であればバブラー
で蒸発され、固体原料であれば昇華され、いずれもキャ
リアガスにより供給配管系2に送られる。また、Er
(DPM)3などのEr有機化合物原料がEr有機化合物
供給部3において室温以上350℃以下の温度で昇華さ
れキャリアガスにより供給配管系2に送られる。これら
の原料は供給配管系2において合流せしめられ、ガス取
入れ口を通じて石英管12の内部に導入される。石英管
12内部の圧力は、排気系6に付随する圧力調整弁7に
より0.1から10Torrの間の一定の値に調節される。
The optical waveguide film is formed as follows using this optical waveguide film forming apparatus. First, raw materials such as silicon, oxygen, phosphorus, and aluminum are supplied in the glass raw material supply unit 1. If this raw material is a liquid raw material, it is evaporated by a bubbler, and if it is a solid raw material, it is sublimated, and both are sent to the supply piping system 2 by a carrier gas. Also, Er
An Er organic compound raw material such as (DPM) 3 is sublimated in the Er organic compound supply unit 3 at a temperature of room temperature or higher and 350 ° C. or lower and sent to the supply pipe system 2 by a carrier gas. These raw materials are merged in the supply pipe system 2 and introduced into the quartz tube 12 through the gas inlet. The pressure inside the quartz tube 12 is adjusted to a constant value between 0.1 and 10 Torr by a pressure adjusting valve 7 attached to the exhaust system 6.

【0029】基板8は、石英ボート13上に配置され、
加熱電源9に接続されたヒータ14により300℃から
900℃の範囲の一定温度で加熱される。この加熱によ
り、導入された原料は一旦熱分解され、再び基板上で結
合して所望の組成のガラス膜が堆積される。堆積速度は
典型的には300から600A/分の範囲にあり、従来
の多成分ガラスをスパッタする技術の場合よりかなり速
い。
The substrate 8 is placed on the quartz boat 13,
The heater 14 connected to the heating power source 9 heats at a constant temperature in the range of 300 ° C to 900 ° C. By this heating, the introduced raw materials are once pyrolyzed and bonded again on the substrate to deposit a glass film having a desired composition. Deposition rates are typically in the range of 300 to 600 A / min, much faster than with conventional multi-component glass sputtering techniques.

【0030】次に、堆積したガラス膜を上記の成膜温度
(基板加熱温度)よりも高い温度(400℃から110
0℃の範囲の一定温度)で加熱する、即ち、アニールす
ることによって膜を緻密化・安定化して所望の光導波膜
を得る。
Next, the deposited glass film is heated to a temperature (400 ° C. to 110 ° C.) higher than the above film forming temperature (substrate heating temperature).
The film is densified and stabilized by heating at a constant temperature in the range of 0 ° C.), that is, by annealing to obtain a desired optical waveguide film.

【0031】上述の光導波膜を用いたEr添加光導波路
の作製工程は、コア層形成工程を除いては前述した実施
例の場合と同様であるため、ここでは、減圧CVD法に
よるコア層の形成工程のみを詳しく述べる。
The manufacturing process of the Er-doped optical waveguide using the above-mentioned optical waveguide film is the same as that of the above-mentioned embodiment except for the core layer forming process. Therefore, here, the core layer formed by the low pressure CVD method is used. Only the forming process will be described in detail.

【0032】原料には、シアン、純酸素およびホスフィ
ン(PH3)のガスと、140℃で昇華させキャリアガ
ス輸送したEr(DPM)3とを用い、減圧CVD装置の
石英管内にガス取入れ口を通じて導入し、600℃の温
度にヒータにより基板加熱することで、原料を熱分解し
てバッファ層の上にガラス膜を堆積させた。そして、堆
積後に電気炉において不活性ガス中で700℃の温度で
加熱アニールして緻密化し、Er添加濃度5000ppm
、厚さ4μm、比屈折率差1.6%のコア層を有する
光導波膜を成膜した。
Gases of cyan, pure oxygen and phosphine (PH 3 ) and Er (DPM) 3 sublimated at 140 ° C. and transported as a carrier gas were used as raw materials, and the gas was introduced into a quartz tube of a low pressure CVD apparatus. By introducing and heating the substrate to a temperature of 600 ° C. by a heater, the raw material was thermally decomposed to deposit a glass film on the buffer layer. Then, after the deposition, it is annealed in an electric furnace at a temperature of 700 ° C. in an electric furnace to be densified, and the Er addition concentration is 5000 ppm.
An optical waveguide film having a core layer having a thickness of 4 μm and a relative refractive index difference of 1.6% was formed.

【0033】最終的な光導波路は、導波路長7.5cm、
高さ4μm、幅4μmのコア寸法の小さな埋め込み導波
路である。
The final optical waveguide has a waveguide length of 7.5 cm,
It is a buried waveguide having a small core size of 4 μm in height and 4 μm in width.

【0034】本導波路は、前述した実施例にて説明した
図2及び図3と同様の伝搬損失特性と信号光利得特性を
示しており、低伝搬損失で高信号利得の光導波路が得ら
れることがわかる。従って、減圧CVD法による本実施
例の光導波膜の製造方法も、Er添加導波型レーザや光
増幅器の特性向上に有効である。
The present waveguide exhibits the same propagation loss characteristics and signal light gain characteristics as those in FIGS. 2 and 3 described in the above-mentioned embodiment, and an optical waveguide having a low signal loss and a high signal gain can be obtained. I understand. Therefore, the method of manufacturing the optical waveguide film of this embodiment by the low pressure CVD method is also effective for improving the characteristics of the Er-doped waveguide laser and the optical amplifier.

【0035】[0035]

【発明の効果】以上、実施例を挙げて詳細に説明したよ
うに本発明の光導波膜の製造方法によれば、希土類を添
加した石英系ガラス膜において、前記希土類を添加する
原料として希土類の有機化合物を用い、プラズマCVD
法あるいは、減圧CVD法により成膜するようにしたの
で、製法上成膜及び加工が容易であり、光学的には散乱
損失の小さい希土類添加光導波膜を作製できるので、レ
ーザ、光増幅器等の特性改善を図ることができる。ま
た、非平衡の薄膜技術であるCVD法を用いるため、リ
ンやアルミニウムの濃度の増大や導波路サイズの低減が
容易となり、更なる特性の向上を期待することができ
る。更に、導波路サイズの低減によってシングルモード
化が可能となり、レーザ、光増幅器等の光回路の特性安
定化を図ることができる。
As described above in detail with reference to the embodiments, according to the method for producing an optical waveguide film of the present invention, in the rare earth-added silica-based glass film, a rare earth element is used as a raw material for adding the rare earth element. Plasma CVD using organic compounds
Method or low pressure CVD method, the film formation and processing are easy in the manufacturing method, and a rare earth-doped optical waveguide film with small scattering loss can be produced optically. It is possible to improve the characteristics. Further, since the CVD method, which is a non-equilibrium thin film technology, is used, it is easy to increase the concentration of phosphorus or aluminum and reduce the waveguide size, and further improvement in characteristics can be expected. Furthermore, the reduction of the waveguide size enables a single mode, and the characteristics of optical circuits such as a laser and an optical amplifier can be stabilized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例に係るプラズマCVD法を
用いた光導波膜の製造方法を実施するための光導波膜の
成膜に用いた装置の概略構成図である。
FIG. 1 is a schematic configuration diagram of an apparatus used for forming an optical waveguide film for implementing an optical waveguide film manufacturing method using a plasma CVD method according to a first embodiment of the present invention.

【図2】本発明の光導波膜で作製したEr添加光導波路
の伝搬損失特性を表すグラフである。
FIG. 2 is a graph showing a propagation loss characteristic of an Er-doped optical waveguide manufactured by the optical waveguide film of the present invention.

【図3】本発明の光導波膜で作製したEr添加光導波路
の励起光強度に対する信号光利得特性を表すグラフであ
る。
FIG. 3 is a graph showing signal light gain characteristics with respect to pumping light intensity of an Er-doped optical waveguide manufactured by the optical waveguide film of the present invention.

【図4】本発明の第2実施例に係るプラズマ減圧CVD
法を用いた光導波膜の製造方法を実施するための光導波
膜の成膜に用いた装置の概略構成図である。
FIG. 4 is a plasma low pressure CVD according to a second embodiment of the present invention.
It is a schematic block diagram of the apparatus used for film-forming of the optical waveguide film for enforcing the manufacturing method of the optical waveguide film using the method.

【符号の説明】[Explanation of symbols]

1 ガラス原料供給部 2 供給配管系 3 Er有機化合物供給部 4A 対向電極(高周波側) 4B 対向電極(接地側) 5 真空室 6 排気系 7 圧力調整弁 8 基板 9 加熱電源 10 内部ヒータ 11 高周波電源 12 石英管 13 石英ボート 14 ヒータ 1 Glass Raw Material Supply Section 2 Supply Piping System 3 Er Organic Compound Supply Section 4A Counter Electrode (High Frequency Side) 4B Counter Electrode (Ground Side) 5 Vacuum Chamber 6 Exhaust System 7 Pressure Adjustment Valve 8 Substrate 9 Heating Power Supply 10 Internal Heater 11 High Frequency Power Supply 12 Quartz tube 13 Quartz boat 14 Heater

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 希土類を添加した石英系ガラス膜におい
て、前記希土類を添加する原料として希土類の有機化合
物を用い、プラズマCVD法により成膜することを特徴
とする光導波膜の製造方法。
1. A method for producing an optical waveguide film, comprising forming a rare earth-added quartz glass film by a plasma CVD method using an organic compound of a rare earth as a raw material for adding the rare earth.
【請求項2】 希土類を添加した石英系ガラス膜におい
て、前記希土類を添加する原料として希土類の有機化合
物を用い、減圧CVD法により成膜することを特徴とす
る光導波膜の製造方法。
2. A method for producing an optical waveguide film, comprising forming a rare earth-added quartz glass film by a low pressure CVD method using a rare earth organic compound as a raw material to which the rare earth is added.
JP34007592A 1992-12-21 1992-12-21 Production of optical waveguide film Pending JPH06183751A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34007592A JPH06183751A (en) 1992-12-21 1992-12-21 Production of optical waveguide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34007592A JPH06183751A (en) 1992-12-21 1992-12-21 Production of optical waveguide film

Publications (1)

Publication Number Publication Date
JPH06183751A true JPH06183751A (en) 1994-07-05

Family

ID=18333487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34007592A Pending JPH06183751A (en) 1992-12-21 1992-12-21 Production of optical waveguide film

Country Status (1)

Country Link
JP (1) JPH06183751A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09133827A (en) * 1995-11-09 1997-05-20 Nec Corp Production of optical waveguide
EP0882683A2 (en) * 1997-06-06 1998-12-09 Alcatel Lightguide amplifier and method for making it
JP2005187254A (en) * 2003-12-25 2005-07-14 Sumitomo Electric Ind Ltd Manufacturing method of glass body

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09133827A (en) * 1995-11-09 1997-05-20 Nec Corp Production of optical waveguide
EP0882683A2 (en) * 1997-06-06 1998-12-09 Alcatel Lightguide amplifier and method for making it
EP0882683A3 (en) * 1997-06-06 1999-04-07 Alcatel Lightguide amplifier and method for making it
JP2005187254A (en) * 2003-12-25 2005-07-14 Sumitomo Electric Ind Ltd Manufacturing method of glass body

Similar Documents

Publication Publication Date Title
JPH05283789A (en) Optical fiber and manufacture thereof
US20040136681A1 (en) Erbium-doped oxide glass
US6650816B2 (en) Planar waveguide amplifier
KR100482478B1 (en) MATERIAL FOR SiON-OPTICAL WAVEGUIDES AND METHOD FOR FABRICATING SUCH WAVEGUIDES
JPH06183751A (en) Production of optical waveguide film
US5378256A (en) Method of manufacturing silica waveguide optical components
US6528338B2 (en) Silica-based optical device fabrication
JP3279495B2 (en) Optical waveguide film forming method
JP2900732B2 (en) Manufacturing method of optical waveguide
JP3971524B2 (en) Manufacturing method of optical waveguide
JPH05313034A (en) Low loss rare earth element added optical waveguide and manufacture thereof
JP2002068779A (en) Producing method for light amplifying thin glass film
US20050169592A1 (en) Optical waveguide device, and method of manufacturing optical waveguide device
JPH0473717A (en) Manufacture of optical waveguide film
KR100418908B1 (en) Fabrication Method of Silica layer for Optical Waveguide
JP2747352B2 (en) Method for forming glass film for optical waveguide and method for manufacturing optical waveguide
JP3454134B2 (en) Waveguide and manufacturing method thereof
JP3107334B2 (en) Rare earth ion doped optical waveguide film and method of manufacturing optical waveguide
KR100461874B1 (en) Fabrication of planar waveguide with photosensitivity during FHD process
JPH03119305A (en) Production of optical waveguide film
JP2984130B2 (en) Glass film for optical waveguide by plasma CVD method and method for manufacturing optical waveguide
JPH1062638A (en) Optical waveguide and its manufacture
FI114829B (en) Process for the manufacture of reinforcing waveguides
JPH1180935A (en) Vapor depositing material
JPH06289243A (en) Forming method of glass film for light waveguide

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010424