JPS62278762A - Manufacture of electrolyte plate for molten carbonate fuel cell - Google Patents

Manufacture of electrolyte plate for molten carbonate fuel cell

Info

Publication number
JPS62278762A
JPS62278762A JP61121473A JP12147386A JPS62278762A JP S62278762 A JPS62278762 A JP S62278762A JP 61121473 A JP61121473 A JP 61121473A JP 12147386 A JP12147386 A JP 12147386A JP S62278762 A JPS62278762 A JP S62278762A
Authority
JP
Japan
Prior art keywords
electrolyte
plate
base material
roll
electrolyte plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61121473A
Other languages
Japanese (ja)
Inventor
Toshitaka Shigematsu
重松 敏廷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Corporate Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Corporate Research and Development Ltd filed Critical Fuji Electric Corporate Research and Development Ltd
Priority to JP61121473A priority Critical patent/JPS62278762A/en
Publication of JPS62278762A publication Critical patent/JPS62278762A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • H01M8/0295Matrices for immobilising electrolyte melts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To increase the uniformity and strength of an electrolyte plate by molding a paste-like mixture comprising electrolyte retaining material and binder with a roller, folding back the molding via a mat made of ceramic fibers, and molding several times with the roller. CONSTITUTION:A paste-like mixture obtained by kneading slurry comprising electrolyte retaining material powder and organic solvent together with an organic binder, is molded in a plate with a roller 6 to form a mother material 7. A short fiber mat 9 obtained by intertwining ceramic fibers in a felt shape is placed on the half of one side of the mother material 7, and the mother material 7 is folded back so that the mat 9 is interposed. The mather material 7 and the mat 9 are rolled several times to form an electrolyte plate for a molten carbonate fuel cell. Since the ceramic fibers serving as reinforcing material are uniformly distributed, the electrolyte plate having uniformity and large strength can be obtained.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔発明の属する技術分野〕 この発明は溶融炭酸塩型燃料1!池を溝底する電解質板
の農遣方法に関する。
[Detailed description of the invention] 3. Detailed description of the invention [Technical field to which the invention pertains] This invention provides a molten carbonate fuel 1! This article relates to a farming method using electrolyte plates for the bottom of ponds.

〔従来技術とその問題点〕[Prior art and its problems]

群電池の一般構成を第3図に示す。すなわち溶融炭酸塩
型燃料電池は、電解質を保持する電解質板1と、該電解
質板lを挾んでその両側に対向するアノード電極2およ
びカノード電極3と、各電極2.3を外方から包囲する
セル枠4と、セル枠4と前記各電極2.3との間に介装
した集電板を兼用する電極支持板5との組V体として構
成されている。
The general configuration of the group battery is shown in Figure 3. That is, a molten carbonate fuel cell includes an electrolyte plate 1 that holds an electrolyte, an anode electrode 2 and a cathode electrode 3 that sandwich the electrolyte plate 1 and face each other on both sides, and surround each electrode 2.3 from the outside. The cell frame 4 and the electrode support plate 5, which also serves as a current collector plate, are interposed between the cell frame 4 and each of the electrodes 2.3.

ここで電解質板1は電解質としての炭酸リチウム(LI
2CO3)、炭酸カリウム(K2CO3)に代表される
二元系の炭酸塩をアルミン酸リチウム、マグネシア等の
電解質保持材内部に保持させたものとしてなる。
Here, the electrolyte plate 1 is lithium carbonate (LI) as an electrolyte.
2CO3) and potassium carbonate (K2CO3) are held inside an electrolyte holding material such as lithium aluminate or magnesia.

一方、前記した電解質板の製造方法としては、炭酸塩と
電解質保持材とを混練したペースト状混合物を所定形状
の電解質板金型内に注入し、熱を与えて反型するホット
プレス法が従来より一般に広く採用されているが、この
ホットプレス法は製造に長時間を要して製造上での作業
能率が低いこと、および電解質板の薄形化が困難である
等の難点があり、これに代わって最近ではロール成形法
6ごよる電解質板の製造方法が一部で開発、実施される
よう4こなっている。このロール成形法は電解側保持材
および結着剤とを混練し、たペースト状混合物をロール
成形lこより所定の厚さに圧延した上で所定寸法に裁断
する等して整形し焼成して電解質板を得るようにした裏
道方法であり、電解質としての炭酸塩は、あらかじめ電
解質保持材や結着剤とともに混練して板に含浸させるか
、あるいはロール成形し7たペースト状混合物を焼成し
て結着剤を除去した後、溶融含浸させることにより、電
解質板に保持される。
On the other hand, as a manufacturing method for the electrolyte plate described above, the hot press method in which a paste mixture of carbonate and an electrolyte holding material is kneaded is injected into an electrolyte plate mold of a predetermined shape, and the mold is deformed by applying heat. Although it is generally widely adopted, this hot pressing method has drawbacks such as a long production time, low production efficiency, and difficulty in making the electrolyte plate thinner. Instead, recently, a method for producing electrolyte plates using a roll forming method has been developed and put into practice in some areas. This roll-forming method involves kneading the electrolytic side holding material and a binder, rolling the paste-like mixture to a predetermined thickness using roll-forming l, cutting it to a predetermined size, shaping it, and baking it to form an electrolyte. This is a back-door method to obtain a plate, and the carbonate as an electrolyte is either kneaded in advance with an electrolyte holding material or a binder and impregnated into the plate, or it is rolled and baked to form a paste mixture to form a solid. After removing the adhesive, it is held on the electrolyte plate by melt impregnation.

ところで前記し、たロール成形法により電解質保持材お
よび結着剤の混合物をそのままロール圧延して成形し、
た電解質板は、その機械的強度か非常に弱く、このため
に従来では前記のペースト状混合物に溶融炭酸塩に対し
て耐蝕性のあるセラミック短繊維を混入した上でロール
成形して電解質板の強度向上を図る方法が試みられてい
る。ここで前記したセラミ、りの短繊維の混入による補
強方式は、周知のように短繊維の界面接合力による電%
質板の補強効果を期待するものである。しかしてこの補
強方式を実施するに際し、前記したセラミック線維のア
スペクト比(繊維長/繊維径)が200を超えるような
短繊維を使用した場合には、短繊維を電解質保持材へ混
ぜて混練操作する過程で、繊維同士がボール状に絡み合
つ現象が生じ、繊維を電解質保持材の全面域に増−に分
散させることが極めて困難であった。また一方、前記の
補強法で電解質板の強度をより一層高めるには、電解質
保持材に混入する繊維の体積含有率を上げる必要がある
が、このために例えばフェルト状に繊維が絡み合ったも
のを電解質保持材中に混入する場合、従来の方法では繊
維の均一な分散度を得ることがより一層難しくなる他、
繊維同士の密な絡まり合いから線維境界面で良好な界面
接合状態を得ることが益々困維となり、この結果として
均質で強度の高い電解質板を製造することが殆ど不可能
である。
By the way, as described above, the mixture of the electrolyte holding material and the binder is rolled and formed as it is by the roll forming method,
The mechanical strength of the electrolyte plate is very weak, and for this reason conventionally the electrolyte plate is made by mixing short ceramic fibers that are resistant to corrosion against molten carbonate into the paste-like mixture and then roll-forming the mixture. Attempts are being made to improve the strength. As is well-known, the reinforcing method by mixing short fibers of ceramic and porcelain mentioned above is effective at increasing electrical resistance due to the interfacial bonding force of the short fibers.
This is expected to have a reinforcing effect on the quality board. However, when carrying out the lever reinforcement method, if short fibers with an aspect ratio (fiber length/fiber diameter) of the ceramic fibers described above exceed 200 are used, the short fibers are mixed into the electrolyte holding material and kneaded. In the process, a phenomenon occurs in which the fibers become entangled with each other in the shape of a ball, making it extremely difficult to disperse the fibers over the entire surface of the electrolyte holding material. On the other hand, in order to further increase the strength of the electrolyte plate using the reinforcement method described above, it is necessary to increase the volume content of fibers mixed in the electrolyte holding material. When mixed in the electrolyte holding material, it becomes even more difficult to obtain uniform dispersion of fibers using conventional methods.
Due to the dense entanglement of the fibers, it becomes increasingly difficult to obtain a good interfacial bonding state at the fiber interface, and as a result, it is almost impossible to produce a homogeneous and strong electrolyte plate.

〔発明の目的〕[Purpose of the invention]

この発明は上記の点にかんがみなされたものであり、ロ
ール成形法(γよって電f@質板を製造する角根で前プ
ホした耐蝕性のある短繊維を電解質保持材および結着材
を含む混合物に混入して電解質板の補強を図るに際し、
繊維を母材の層内全面域lこ均−lこ分散させ、しかも
繊維の良好な界面接合状態が得られるようlこした機械
的強度の高い電解質板の得られる又遣方法を提供するこ
とを目的とする。
This invention has been made in consideration of the above points, and uses a roll forming method (γ) to produce an electrolyte-retaining material and a binding material using corrosion-resistant short fibers pre-pressed with a square root. When mixing in the mixture to strengthen the electrolyte plate,
To provide a spreading method for obtaining an electrolyte plate with high mechanical strength, in which fibers are uniformly dispersed over the entire area within a layer of a base material, and a good interfacial bonding state of the fibers is obtained. With the goal.

〔発明の要点〕[Key points of the invention]

上記目的を達成するために、この発明は′電解質保持材
および結着剤とを混練したペースト状混合物を板状にロ
ール成形して得た板状成形体を母材とし、該母材を半分
に折り返してPrt板状lこロール成形す名ロール圧延
工程を複数回検り返すとともに、前記母材の折り返し過
程毎にその母材折り返し部の間に補強材としてのセラミ
ック繊維のマットを介装してロール成形することlこよ
り、セラミック繊維を前記母材の層内に均一に分散させ
、かつ同時にa−ル圧延により繊維の隙間に母材が食い
込み結着して良好な界面接合状態が得られるよ:)tこ
したものである。
In order to achieve the above object, the present invention uses a plate-shaped molded body obtained by roll-forming a paste mixture of an electrolyte holding material and a binder into a plate shape as a base material, and half of the base material is used as a base material. The roll rolling process of folding back and forming a Prt plate into a roll was repeated several times, and at each folding process of the base material, a mat of ceramic fiber was interposed as a reinforcing material between the folded parts of the base material. By doing this, the ceramic fibers are uniformly dispersed within the layer of the base material, and at the same time, the base material bites into the gaps between the fibers and binds together, resulting in a good interfacial bonding state. You'll be able to do it :) It's more than that.

〔発明の実施例〕[Embodiments of the invention]

第1図はこの発明の実施例による電解質板の製造工程図
、第2図は第1図に工程で使用するフェルト状のセラミ
ック繊維マットの形状を示すものである。第1図におい
て、(3)〜(hlは製造工程を)11を追って表した
ものである。
FIG. 1 is a manufacturing process diagram of an electrolyte plate according to an embodiment of the present invention, and FIG. 2 is a diagram showing the shape of a felt-like ceramic fiber mat used in the process shown in FIG. In FIG. 1, steps (3) to 11 (hl represents the manufacturing process) are shown sequentially.

前記製造工程のうち、8g1図1alはアルミン酸リチ
ウムとしての電解質保持材粉末を有機溶媒でスラリー化
し、さらに有機バインダを加えてよく混練して得たペー
スト状混合物を符号6で示す圧延ローラにより薄く圧延
して板状に成形した母材7を示している。ここで第2図
に示すようにアルミナ等のセラミック短繊維8を材料に
、該短繊維8がフェルト状に絡まり合った極薄な繊維マ
ット9を補強材として別に用意し、前記した母材7の面
積の%、つまり母材の長手寸法2の%で同幅の寸法に裁
断したものを第1図fblのように母材7の片(Ill
半分の領域に重ね合わせる。続いて同図(clに示すよ
うに、母材7を長手方向で矢印Pのように半分に折り返
して繊維マット9を母材7の内側に挾み込む。この折り
重ね状態は同図+dlに示すごとくであり、この状態で
は母材7の平面積は当初の面積の号になっている。次に
前工程で半分に折り畳んだ母材7の向きを矢印Qのよう
に面方向で加変転換した上で、同図telで示すように
再度ローラ6で圧延し再び同図1alで示した当初の面
積まで薄く延展する。この状態では同°図(clの工程
で母材70)間に介装した繊維マット9がロール圧延に
よる母材の延展に併せてフェルト状繊維マット9の短繊
維8(第2[!82I)がほぐれように広がって母材の
層内全面域に分散するようになる。その後に再び同図ば
)で示すよう1こ母材7の片側半分に%面積の繊維マッ
ト9を乗せ、同図(g+ 、 (hlのようlこ母材7
を半分に折り返して重ね合わせ、さらにその向きを面方
向で(イ)度転換して再度ローラ6で圧延成形する。
Among the above manufacturing steps, 8g1 in Figure 1al is made by slurrying the electrolyte retaining material powder as lithium aluminate with an organic solvent, further adding an organic binder, and kneading the resulting paste-like mixture to a thin layer using a rolling roller indicated by reference numeral 6. A base material 7 that has been rolled and formed into a plate shape is shown. Here, as shown in FIG. 2, an extremely thin fiber mat 9 made of ceramic short fibers 8 such as alumina and the short fibers 8 intertwined in a felt-like manner is separately prepared as a reinforcing material. A piece of base material 7 (Ill
Overlap in half the area. Next, as shown in the same figure (cl), the base material 7 is folded in half in the longitudinal direction as shown by arrow P, and the fiber mat 9 is sandwiched inside the base material 7.This folded state is shown in +dl in the same figure. As shown, in this state, the planar area of the base material 7 is the same as the original area.Next, the direction of the base material 7, which was folded in half in the previous step, is varied in the plane direction as shown by the arrow Q. After the conversion, as shown in tel in the same figure, it is rolled again with roller 6 and spread again thinly to the original area shown in 1al in the same figure.In this state, there is a gap between the base material 70 in the process in cl. As the interposed fiber mat 9 spreads the base material by roll rolling, the short fibers 8 (second [!82I) of the felt-like fiber mat 9 are spread as if unraveled and dispersed over the entire area within the layer of the base material. After that, a fiber mat 9 with an area of % is placed on one half of one side of the base material 7 as shown in the same figure (g+, (hl)), and
The sheets are folded in half and stacked one on top of the other, and then their orientation is changed (a) degree in the surface direction and rolled again using rollers 6.

以下同様にパイ皮を作る要領で母材7を折り返し、その
都度新たに繊維マット9を母材7の折り返し部の間に介
装してロール成形する操作を数回繰り返すこと番こより
、母材7の層内には多重J―に互りアルミナ短繊維8が
二次元方向へ均一に分散して内包されることになる。し
かも前記の各工程でのロール圧延により広がった繊維マ
ット9の隙間には母材が食い込み結着するようになり、
この結果とし、て繊維の界面接合状態も良好となる。最
後に母材7を裁断するなどし、所定の電解質板寸法に整
形し板を焼成して結着剤を除去した後、炭酸塩を溶融含
浸することにより電解質板を得る。このようにして製造
された電解質板は、繊維体積含有率が高く、かつその繊
維の分散度が犠牲にされることなく母材の層内に均一に
分散し、しかも繊維の界面接合状態も良好である等、全
体に均質でかつ高い機械的強度を示すことが発明者の製
品の検査1強度試験の結果からも確認されている。また
特に前述のようにロール成形の度に母材の向きを面方向
で(イ)度転換してロール成形することにより、繊維マ
ットは母材の層内で一方回に偏ることなく二次元方向へ
広げて全面域で均一分散させることができるようになる
。なお、上記の実施例では、ロール成形したペースト状
混合物を焼成して結着剤を除去した後、電解質としての
炭酸塩を溶融含浸することにより、炭酸塩を電解質板に
保持させるものについて述べたが、大発明はこれに限定
されるものではなく、炭酸塩をあらかじめ電解質保持材
や結着剤とともに混練してペースト状混合物を形成し、
成形前に電解質を板に含浸させるものについても同様な
効果が得られる。この場合、ペースト状混合物は電解質
を含有した状態でロール成形され、焼成により結着剤が
焼失気化する時点ではすでに板に含浸されている。
Thereafter, the base material 7 is folded back in the same manner as for making a pie crust, and each time a new fiber mat 9 is inserted between the folded portions of the base material 7, and the operation of roll forming is repeated several times. In the layer 7, the alumina short fibers 8 are evenly dispersed and encapsulated in a two-dimensional direction, alternating each other in multiple J- shapes. Moreover, the base material bites into the gaps in the fiber mat 9 that have expanded due to the roll rolling in each of the above steps, and is bound together.
As a result, the interfacial bonding state of the fibers also becomes good. Finally, the base material 7 is cut, shaped into a predetermined electrolyte plate size, and the plate is fired to remove the binder, and then melted and impregnated with carbonate to obtain an electrolyte plate. The electrolyte plate manufactured in this way has a high fiber volume content, and the fibers are uniformly dispersed within the base material layer without sacrificing the degree of dispersion, and the interfacial bonding state of the fibers is also good. It has been confirmed from the results of the Inspection 1 strength test of the inventor's product that it is homogeneous throughout and exhibits high mechanical strength. In particular, as mentioned above, by changing the orientation of the base material (a) degree in the plane direction each time roll forming is performed, the fiber mat can be produced in two-dimensional directions without being biased to one side within the base material layer. It becomes possible to spread it evenly over the entire area. In addition, in the above example, the carbonate is held in the electrolyte plate by baking the roll-formed paste mixture to remove the binder and then melting and impregnating the carbonate as the electrolyte. However, the great invention is not limited to this, and the carbonate is kneaded in advance with an electrolyte holding material and a binder to form a paste-like mixture,
A similar effect can be obtained by impregnating the plate with an electrolyte before molding. In this case, the paste-like mixture is roll-formed while containing the electrolyte, and the plate is already impregnated by the time when the binder is burnt out and vaporized by firing.

〔発明の効果〕〔Effect of the invention〕

以上述べたようにこの発明によれば%電解質保持材およ
び結着剤とを混練したペースト状混合物を板状にロール
成形して得た板状成形体・を母材とし、該母材を半分に
折り返して再度板状にロール成形するロール圧延工程を
複数回繰り返すおともに、前記母材の折り返し過程毎に
その母材折り返し部の間に補強材としてのセラミック繊
維のマ。
As described above, according to the present invention, a plate-shaped molded body obtained by roll-forming a paste mixture of an electrolyte holding material and a binder into a plate shape is used as a base material, and half of the base material is The roll rolling process of folding back the base material and roll-forming it into a plate shape is repeated several times, and at each folding process of the base material, a matrix of ceramic fibers is used as a reinforcing material between the folded parts of the base material.

トを介装してロール成形を行うことにより、補強材とし
、ての耐蝕性のあるセラミック締、維を容易に母材の層
内へ多数層に互り均一に分散内包させることができ、こ
れにより繊維の均一な分散度を維持しつつ高い繊維体撰
含有上と良好な繊維の界面接合状態が同時に得られる等
、溶融炭酸塩型燃料電池の電解質板として均質で機械的
強度の高い電解質板を與造することができる。
By performing roll forming with a reinforcing material, corrosion-resistant ceramic fibers can be easily dispersed and encapsulated in multiple layers of the base material evenly. As a result, it is possible to simultaneously obtain a high fiber content while maintaining a uniform dispersion of fibers, and a good interfacial bonding state of the fibers.As a result, the electrolyte plate can be used as a homogeneous and mechanically strong electrolyte plate for molten carbonate fuel cells. A board can be built.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明による電解質板の↓造工程図、第2図
はwC1図の工程で母材に介装するセラミ。 り短繊維で形成したフェルト状繊維マットの形状図、第
3図は溶融炭酸塩型燃料電池の単位電池の構成断面図で
ある。図において、 1:電解質板、6:圧延ローラ、7:ロール底形された
母材、8:セラミック短繊維、9:フェルト状の繊維マ
ット、P:母材の折り返し方向、Q:母材の向きの転換
方向。 72図 垢、3囚
Fig. 1 is a diagram of the manufacturing process of an electrolyte plate according to the present invention, and Fig. 2 shows the ceramic interposed in the base material in the process shown in Fig. wC1. FIG. 3 is a cross-sectional view of a unit cell of a molten carbonate fuel cell. In the figure, 1: Electrolyte plate, 6: Rolling roller, 7: Roll-bottomed base material, 8: Ceramic short fibers, 9: Felt-like fiber mat, P: Folding direction of base material, Q: Base material direction of change of direction. 72 illustrations, 3 prisoners

Claims (1)

【特許請求の範囲】 1)電解質保持材および結着剤とを含むペースト状混合
物をロール成形し焼結して電解質板を製造する電解質板
製造方法において、前記混合物を板状にロール成形して
得た板状成形体を母材とし、該母材を半分に折り返して
再度板状にロール成形するロール圧延工程を複数回繰り
返すとともに、前記母材の折り返し過程毎にその母材折
り返し部の間に補強材としてのセラミック繊維のマット
を介装してロール成形を行うことを特徴とする溶融炭酸
塩型燃料電池の電解質板製造方法。 2)特許請求の範囲第1項記載の電解質板製造方法にお
いて、電解質としての炭酸塩をあらかじめ電解質保持材
や結着剤とともに混練してペースト状混合物とすること
を特徴とする溶融炭酸塩型燃料電池の電解質板製造方法
。 3)特許請求の範囲第1項記載の電解質板製造方法にお
いて、ロール成形したペースト状混合物を焼成して結着
剤を除去した後、電解質としての炭酸塩を溶融含浸する
ことを特徴とする溶融炭酸塩型燃料電池の電解質板製造
方法。 4)特許請求の範囲第1項記載の電解質板製造方法にお
いて、ロール圧延工程の途中で母材を折り返す毎にその
向きを面方向で90度転換して再度ロール成形を行うこ
とを特徴とする溶融炭酸塩型燃料電池の電解質板製造方
法。 5)特許請求の範囲第1項記載の電解質板製造方法にお
いて、セラミック繊維のマットがセラミック短繊維をフ
ェルト状に絡み合わせた繊維マットであることを特徴と
する溶融炭酸塩型燃料電池の電解質板製造方法。
[Scope of Claims] 1) An electrolyte plate manufacturing method in which an electrolyte plate is manufactured by roll-forming and sintering a paste-like mixture containing an electrolyte holding material and a binder, comprising: roll-forming the mixture into a plate shape; The obtained plate-shaped molded body is used as a base material, and the roll rolling process of folding the base material in half and roll-forming it into a plate shape is repeated several times, and at each folding process of the base material, between the folded parts of the base material 1. A method for manufacturing an electrolyte plate for a molten carbonate fuel cell, which comprises inserting a ceramic fiber mat as a reinforcing material and performing roll forming. 2) The method for producing an electrolyte plate according to claim 1, wherein the molten carbonate fuel is characterized in that carbonate as an electrolyte is kneaded in advance with an electrolyte holding material and a binder to form a paste mixture. A method for manufacturing electrolyte plates for batteries. 3) In the method for manufacturing an electrolyte plate according to claim 1, the roll-formed paste mixture is fired to remove the binder, and then a carbonate as an electrolyte is melted and impregnated. A method for manufacturing an electrolyte plate for a carbonate fuel cell. 4) The method for manufacturing an electrolyte plate according to claim 1, characterized in that each time the base material is folded back during the roll rolling process, its direction is changed by 90 degrees in the plane direction and roll forming is performed again. A method for manufacturing an electrolyte plate for a molten carbonate fuel cell. 5) An electrolyte plate manufacturing method for a molten carbonate fuel cell according to claim 1, wherein the ceramic fiber mat is a fiber mat in which short ceramic fibers are intertwined in a felt-like manner. Production method.
JP61121473A 1986-05-27 1986-05-27 Manufacture of electrolyte plate for molten carbonate fuel cell Pending JPS62278762A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61121473A JPS62278762A (en) 1986-05-27 1986-05-27 Manufacture of electrolyte plate for molten carbonate fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61121473A JPS62278762A (en) 1986-05-27 1986-05-27 Manufacture of electrolyte plate for molten carbonate fuel cell

Publications (1)

Publication Number Publication Date
JPS62278762A true JPS62278762A (en) 1987-12-03

Family

ID=14812023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61121473A Pending JPS62278762A (en) 1986-05-27 1986-05-27 Manufacture of electrolyte plate for molten carbonate fuel cell

Country Status (1)

Country Link
JP (1) JPS62278762A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009068949A2 (en) * 2007-11-26 2009-06-04 Toyota Jidosha Kabushiki Kaisha Composite electrolyte membrane, membrane-electrode assembly, fuel cell, and methods for manufacturing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009068949A2 (en) * 2007-11-26 2009-06-04 Toyota Jidosha Kabushiki Kaisha Composite electrolyte membrane, membrane-electrode assembly, fuel cell, and methods for manufacturing same
WO2009068949A3 (en) * 2007-11-26 2009-09-24 Toyota Jidosha Kabushiki Kaisha Composite electrolyte membrane, membrane-electrode assembly, fuel cell, and methods for manufacturing same
US8338052B2 (en) 2007-11-26 2012-12-25 Toyota Jidosha Kabushiki Kaisha Method for manufacturing a membrane-electrode assembly, with folding process

Similar Documents

Publication Publication Date Title
JP4927609B2 (en) Method for producing solid electrolyte structure for all solid state battery and method for producing all solid state battery
EP1223627B1 (en) Plate making process for lead acid battery
JP7183529B2 (en) LAMINATED GREEN SHEET, ALL-SOLID SECONDARY BATTERY AND MANUFACTURING METHOD THEREOF
JPH03187161A (en) Electrode holder
US9231272B2 (en) Electrode and method for producing the same
JPS62278762A (en) Manufacture of electrolyte plate for molten carbonate fuel cell
JP2588538B2 (en) Manufacturing method of gas diffusion electrode
JPH0337265B2 (en)
JPS6288279A (en) Manufacture of electrolytic board for fused carbonate fuel cell
JPS58100364A (en) Porous electrode plate for fuel cell
JP2020161471A (en) Manufacturing method of all-solid battery, and all-solid battery
JPS6215768A (en) Manufacture of rused salt fuel battery
JP3091280B2 (en) Manufacturing method of hollow ceramic plate
CN220731559U (en) Joint structure of electrode biscuit diaphragm
JP2504467B2 (en) Molten carbonate fuel cell electrolyte plate and method for producing the same
JPH07282814A (en) Manufacture of gas diffusion electrode
JP3104295B2 (en) Method for producing molten salt fuel cell
JPH07335211A (en) Manufacture of paste electrode for alkaline battery
JPS60133663A (en) Manufacturing method for gas diffusion layer of fuel cell electrode
JPS61225772A (en) Manufacture of molten carbonate fuel cell
JPH0935730A (en) Molten carbonate fuel cell electrolyte matrix sheet and its manufacture
KR20220125929A (en) Method of manufacturing electrode for all-solid-state battery, and electrode for all-solid-state battery manufactured thereby
JPS6059663A (en) Electrode plate for fuel cell and its manufacture
KR20230102278A (en) Non-woven fabric for supporting an active material of battery with double layer and manufacturing method thereof
KR20140141994A (en) electrode for fuel cell using porous foam and manufacturing method thereof