JPH0935730A - Molten carbonate fuel cell electrolyte matrix sheet and its manufacture - Google Patents

Molten carbonate fuel cell electrolyte matrix sheet and its manufacture

Info

Publication number
JPH0935730A
JPH0935730A JP7178353A JP17835395A JPH0935730A JP H0935730 A JPH0935730 A JP H0935730A JP 7178353 A JP7178353 A JP 7178353A JP 17835395 A JP17835395 A JP 17835395A JP H0935730 A JPH0935730 A JP H0935730A
Authority
JP
Japan
Prior art keywords
sheet
electrolyte
ceramic
electrolyte matrix
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7178353A
Other languages
Japanese (ja)
Inventor
Setsuo Inuzuka
節男 犬塚
Hideji Nagata
秀治 永田
Yoichi Seta
曜一 瀬田
Yasushi Shimizu
康 清水
Katsumi Sato
克己 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Industrial Technology Corp
Original Assignee
Toshiba Corp
Toshiba Industrial Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Industrial Technology Corp filed Critical Toshiba Corp
Priority to JP7178353A priority Critical patent/JPH0935730A/en
Publication of JPH0935730A publication Critical patent/JPH0935730A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • H01M8/0295Matrices for immobilising electrolyte melts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrolyte matrix with high breaking resistance, long life, and high productivity, and the manufacturing process of the electrolyte matrix. SOLUTION: Mixed slurry comprising an organic binder, a ceramic electrolyte holding material, and a solvent is impregnated in a fiber cloth made of ceramic fibers, and dried to form a ceramic fiber sheet 1. A mixed slurry comprising a ceramic fine powder holding material, an organic binder, a plasticizer is dried in a sheet to form an electrolyte green sheet 2. The ceramic fiber sheet 1 is interposed between two electrolyte green sheet 2, and they are integrally bonded with hot rollers 11a, 11b to form a three layer structure electrolyte matrix sheet 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は溶融炭酸塩型燃料電池の
電解質マトリックスシートおよびその製造方法に関す
る。
FIELD OF THE INVENTION The present invention relates to an electrolyte matrix sheet for a molten carbonate fuel cell and a method for producing the same.

【0002】[0002]

【従来の技術】溶融炭酸塩型燃料電池の単セルは溶融炭
酸塩を保持した平板状の電解質マトリックスと、この電
解質マトリックスを挟持するように配置された平板状の
一対の多孔質のガス拡散電極すなわち燃料極および酸化
剤極と、これら電極の外側に配置されて、燃料ガスと酸
化剤ガスの供給路と導電路とを兼ねるガスチャンネルと
で構成される。通常、大出力を得るためにこの単セルが
電子伝導性のセパレータ板を介して複数枚積層され積層
電池として構成される。
2. Description of the Related Art A unit cell of a molten carbonate fuel cell is a flat plate-like electrolyte matrix holding a molten carbonate salt, and a pair of flat plate-like porous gas diffusion electrodes arranged so as to sandwich the electrolyte matrix. That is, it is composed of a fuel electrode and an oxidant electrode, and a gas channel arranged outside these electrodes and serving as a supply path for the fuel gas and the oxidant gas and a conductive path. Usually, in order to obtain a large output, a plurality of these single cells are laminated with an electronically conductive separator plate in between to form a laminated battery.

【0003】このとき、電極の平面形状に合わせた開口
部を有するエッジ板を設け、エッジ板とセパレータ板と
の周囲を接合して閉じたガス流路空間を形成する。電解
質マトリックスは電極とエッジ板との境界線をも覆うよ
うに電極よりもひとまわり大きく作られる。
At this time, an edge plate having an opening conforming to the planar shape of the electrode is provided, and the periphery of the edge plate and the separator plate are joined to form a closed gas flow path space. The electrolyte matrix is made larger than the electrode so as to cover the boundary line between the electrode and the edge plate.

【0004】このような電解質マトリックスは、一般
に、リチウムアルミネート粉末などの電解質保持材と、
ポリビニールブチラールなどの有機結合剤と、有機溶剤
等を配合し混練して得たスラリーからドクターブレード
法等で成形し、乾燥した電解質グリーンシートの有機結
合剤を加熱揮散させることにより多孔質電解マトリック
スとして得られる。
Such an electrolyte matrix generally comprises an electrolyte holding material such as lithium aluminate powder,
Porous electrolytic matrix by heating and volatilizing the organic binder of the dried electrolyte green sheet, which is formed by a doctor blade method from a slurry obtained by mixing and kneading an organic binder such as polyvinyl butyral and an organic solvent. Obtained as.

【0005】この場合、電解質グリーンシートに含まれ
る有機結合剤を加熱揮散させるバインダー揮散の工程に
おいて、この電解質マトリックスは非常に脆いセラミッ
クス粉末の集合体となるが、この集合体は、電極エッジ
板との境界のギャップや段差のある部分で割れが生じ易
い。
In this case, in the step of volatilizing the binder by heating and volatilizing the organic binder contained in the electrolyte green sheet, the electrolyte matrix becomes a very brittle ceramic powder aggregate, and this aggregate forms an electrode edge plate and an electrode edge plate. Cracks are likely to occur at the boundary gaps or stepped portions.

【0006】また、さらに高温に保って脱バインダー後
のマトリックスシートに電解質を含侵する場合、電解質
の固相から液層への相変化および電池を電解質の融点以
下に降温し、停止したり再昇温する場合、熱サイクル中
に同様な相変化やセルの熱変形が起こり、割れやすくな
る。
When the matrix sheet after debinding is kept at a higher temperature and the electrolyte is impregnated with the electrolyte, the phase change of the electrolyte from the solid phase to the liquid layer and the temperature of the battery are lowered below the melting point of the electrolyte to stop or restart. When the temperature is raised, the same phase change and thermal deformation of the cell occur during the thermal cycle, and the cell is easily cracked.

【0007】こうした電解質マトリックスの割れは、燃
料ガスと酸化剤ガスとの交差混合を引き起こし、電池と
しての機能喪失につながるために電解質板の割れを防止
する方法としてセラミックス繊維等の補強材をマトリッ
クスシートのスラリー中に混合し、マトリックスシート
を補強することが試みられている。あるいはマトリック
スシートと繊維シートおよび電解質シートを積層して電
解質板を構成することが試みられている。
[0007] Such cracking of the electrolyte matrix causes cross-mixing of the fuel gas and the oxidant gas, which leads to loss of the function of the battery. As a method of preventing cracking of the electrolyte plate, a reinforcing material such as ceramic fiber is used as a matrix sheet. It has been attempted to reinforce the matrix sheet by mixing it in the slurry. Alternatively, it has been attempted to construct an electrolyte plate by laminating a matrix sheet, a fiber sheet and an electrolyte sheet.

【0008】[0008]

【発明が解決しようとする課題】マトリックスシートを
補強する方法の一つとして、たとえば特開平1−130
474号公報にはセラミックス微粉末とセラミックス繊
維からなるスラリーより薄状シートを形成し、該シート
を複数枚積み重ねて加圧成形し、バインダー揮散後電解
質を含浸させることを特徴とする電解質板の製造方法が
提案されている。また、特開平1−132061号公報
にはガンマーリチウムアルミネートに補強材としてセラ
ミックス繊維を配合させてなる電解質板において、セラ
ミックス繊維が95%以上の高純度アルミナ繊維である
ことを特徴とする電解質板が提案されている。
As one of the methods for reinforcing the matrix sheet, for example, Japanese Patent Application Laid-Open No. 1-130.
No. 474, a thin sheet is formed from a slurry composed of ceramic fine powder and ceramic fibers, a plurality of the sheets are stacked, pressure-molded, and a binder is volatilized and then impregnated with an electrolyte. A method has been proposed. Further, Japanese Patent Laid-Open No. 1-132061 discloses an electrolyte plate in which gamma-lithium aluminate is mixed with ceramic fibers as a reinforcing material, wherein the ceramic fibers are high purity alumina fibers of 95% or more. Is proposed.

【0009】上記した電解質板のいずれも、電解質保持
材微粉末、有機結合剤、溶剤からなる混練スラリー中に
該セラミックス繊維を均等に分散させることが必要であ
る。通常、このような分散混合工程では脱泡混合機が用
いられるが、マトリックスの原料スラリーにセラミック
ス繊維をそのまま添加しても、通常は綿状の凝集体とな
っている繊維の凝集が解けず均一に分散することが困難
である。また、ボールミルのような解砕混合機を用いて
強制的に混合分散させると、繊維が解繊させるのと同時
に繊維そのものが破壊されて短繊維化し、意図する繊維
長のものを均一に分散させることが困難になる。
In any of the above-mentioned electrolyte plates, it is necessary to evenly disperse the ceramic fibers in a kneading slurry composed of fine powder of an electrolyte holding material, an organic binder and a solvent. Usually, a defoaming mixer is used in such a dispersion mixing process, but even if ceramic fibers are added as it is to the raw material slurry of the matrix, the flocculation of the fibers, which is usually a cotton-like agglomerate, does not dissolve and is uniform. Difficult to disperse into. Further, when the mixture is forcibly mixed and dispersed by using a crushing mixer such as a ball mill, the fiber is disintegrated, and at the same time, the fiber itself is broken to shorten the fiber, and the fiber having the intended fiber length is uniformly dispersed. Becomes difficult.

【0010】一方、他の方法として、特開平4−115
464号公報にはリチウムアルミネートマトリックスー
シート、アルミナ繊維シート、電解質シートを三層構造
に積層した電解質板を構成することが提案されている。
この方法はセラミックス繊維が原形を保持していること
で強度の向上は著しいが、マトリックスシートとー体化
しておらず、マトリックスシートそのものの強度の改善
には効果が十分でない。また、この場合の繊維層は電解
質の保持性が弱く、電池の運転途中でこの繊維層端部か
ら電解質が漏洩し、電池性能の低下を招き、高性能を保
って長時間運転するには問題がある。
On the other hand, as another method, Japanese Patent Laid-Open No. 4-115
Japanese Patent No. 464 proposes to construct an electrolyte plate in which a lithium aluminate matrix sheet, an alumina fiber sheet, and an electrolyte sheet are laminated in a three-layer structure.
In this method, the strength is remarkably improved because the ceramic fiber retains its original shape, but it is not integrated with the matrix sheet and is not sufficiently effective in improving the strength of the matrix sheet itself. Further, in this case, the fiber layer has a weak electrolyte retention property, the electrolyte leaks from the end of the fiber layer during the operation of the battery, which leads to a decrease in the battery performance, which is a problem for long-term operation while maintaining high performance. There is.

【0011】本発明の目的は電解質マトリックス耐割れ
性を向上し、長寿命化を図り、かつ生産性の良い電解質
マトリックスおよびその製造方法を提供することにあ
る。
An object of the present invention is to provide an electrolyte matrix which has improved resistance to cracking of the electrolyte matrix, has a longer life, and has good productivity, and a method for producing the same.

【0012】[0012]

【課題を解決するための手段】本発明は電解質マトリッ
クスにセラミックス繊維を補強してなる溶融炭酸塩型燃
料電池の電解質板において、セラミックス繊維布のにセ
ラミックス電解質保持材、有機結合材、溶剤からなる混
合スラリーを含侵し、かつ乾燥させた繊維シーをセラミ
ックス微粉電解質保持材、有機結合剤、可塑剤および溶
剤からなる混合スラリーをシート状に乾燥させた電解質
マトリックスグリーンシートで挟持し、一体化したこと
を特徴とする。
The present invention provides an electrolyte plate of a molten carbonate fuel cell in which a ceramic fiber is reinforced in an electrolyte matrix, and a ceramic fiber cloth comprises a ceramic electrolyte holding material, an organic binder and a solvent. The fibrous sheet impregnated with the mixed slurry and dried is sandwiched by a mixed slurry consisting of a ceramic fine powder electrolyte holding material, an organic binder, a plasticizer and a solvent, and dried electrolyte matrix green sheets to be integrated. Is characterized by.

【0013】また、本発明による製造方法はセラミック
ス繊維からなる繊維布に有機結合剤、セラミックス電解
質保持材、溶剤からなる混合スラリーを含侵させると共
に、これを乾燥させてセラミックス繊維シートとする一
方、セラミックス微粉電解質保持材、有機結合剤、可塑
剤および溶剤からなる混合スラリーをもとにこれをシー
ト状に乾燥させて電解質マトリックスグリーンシートと
し、次にセラミックス繊維シートを2枚の電解質グリー
ンシートの間に挟持し、熱ローラーまたは熱プレスを用
いて3層構造のシートとして融着一体化したことを特徴
とする。
Further, in the manufacturing method according to the present invention, a fiber cloth made of ceramic fibers is impregnated with a mixed slurry made of an organic binder, a ceramic electrolyte holding material and a solvent, and dried to form a ceramic fiber sheet. Based on a mixed slurry composed of ceramic fine powder electrolyte holding material, organic binder, plasticizer and solvent, this is dried into a sheet form to form an electrolyte matrix green sheet, and then a ceramic fiber sheet is placed between the two electrolyte green sheets. It is characterized in that it is sandwiched between two sheets and is fused and integrated as a sheet having a three-layer structure by using a heat roller or a heat press.

【0014】[0014]

【作用】セラミック繊維で補強した電解質マトリックス
シートを構成する場合に、セラミックス繊維布を用い、
この繊維布に有機結合剤、電解質保持材および溶剤から
なる混合スラリーを含浸させ、さらに従来の有機結合剤
を含む電解質マトリックスグリーンシートと積層するこ
とにより、電池内あるいは電池外で容易に融着一体化し
た電解質マトリックスシートが得られる。すなわち、繊
維布を用いるこの方法は、電解質マトリックス用スラリ
ー中へのセラミックス繊維の分散配合なしにセラミック
ス繊維の原形を保持したセラミックス繊維強化形の電解
質マトリックスを容易に得ることができる。
[Function] When a ceramic fiber reinforced electrolyte matrix sheet is formed, a ceramic fiber cloth is used,
This fiber cloth is impregnated with a mixed slurry consisting of an organic binder, an electrolyte holding material and a solvent, and further laminated with an electrolyte matrix green sheet containing a conventional organic binder to facilitate fusion bonding inside or outside the battery. A solidified electrolyte matrix sheet is obtained. That is, according to this method using a fiber cloth, it is possible to easily obtain a ceramics fiber reinforced electrolyte matrix in which the original shape of the ceramics fiber is maintained without dispersing and mixing the ceramics fiber in the slurry for the electrolyte matrix.

【0015】また、複合一体化構造の電解質シートを構
成することができ、均質な強度の高い電解質シートを得
ることができる。
Further, an electrolyte sheet having a composite integrated structure can be formed, and a homogeneous and high-strength electrolyte sheet can be obtained.

【0016】さらに、このセラミックス繊維布に混合調
整した電解質保持材微粉末を含むスラリーを含浸保持さ
せることにより、セラミックス繊維層の中心細孔径が従
来の電解質マトリックスグリーンシートから得られる電
解質マトリックスシートのそれと同等かそれ以下とする
ことができる。
Further, the ceramic fiber cloth is impregnated and held with a slurry containing fine powder of an electrolyte holding material, which is mixed and adjusted, so that the central pore diameter of the ceramic fiber layer is the same as that of the electrolyte matrix sheet obtained from the conventional electrolyte matrix green sheet. It can be equal or less.

【0017】[0017]

【実施例】以下、本発明の実施例を図面を参照して説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0018】図1に本発明による複合電解質マトリック
スシートの製作工程を示す。セラミックス繊維布に含浸
させるためのスラリーは、リチウムアルミネートに代表
されるようなセラミックス電解質保持材粉末と有機結合
材、可塑剤および溶剤を適量に配合し、ボールミル等で
スラリーの含浸に適した条件で解砕混合を行う。このと
き、電解質保持材の粒径が繊維層に侵入でき、かつ適正
な細孔分布が得られるようにミルボールの大きさ、量お
よび混合時間を調節する。その後、スラリーは真空攪拌
脱泡機にて含浸に適した粘度に調節する。
FIG. 1 shows a manufacturing process of the composite electrolyte matrix sheet according to the present invention. The slurry for impregnating the ceramic fiber cloth is a mixture of a ceramic electrolyte retaining material powder represented by lithium aluminate, an organic binder, a plasticizer and a solvent in an appropriate amount, and a suitable condition for impregnating the slurry with a ball mill or the like. Disintegrate and mix with. At this time, the size, amount and mixing time of the mill balls are adjusted so that the particle size of the electrolyte holding material can penetrate into the fiber layer and an appropriate pore distribution can be obtained. After that, the slurry is adjusted to a viscosity suitable for impregnation with a vacuum stirring defoaming machine.

【0019】この粘度調節を行ったスラリーを別に用意
したセラミックス繊維布に含浸し、シート成形を行う。
含浸シート成形には真空含浸装置、ローラーコーター等
を用いて成形し、セラミックス繊維シートを成形してお
く。
A ceramic fiber cloth prepared separately is impregnated with this viscosity-adjusted slurry to form a sheet.
The impregnated sheet is formed by using a vacuum impregnating device, a roller coater or the like to form the ceramic fiber sheet.

【0020】一方、電解質シート成形は従来用いられて
きた方法と同様に、すなわち、電解質保持材粉末、有機
結合剤、可塑剤および溶剤を適量に配合し、ボールミル
および真空攪拌脱泡等を用いて解砕混合、粘度調節を行
った後、ドクターブレード法等でシート成形、乾燥を行
って電解質グリーンシートを成形する。
On the other hand, the molding of the electrolyte sheet is carried out in the same manner as the conventionally used method, that is, the electrolyte holding material powder, the organic binder, the plasticizer and the solvent are mixed in an appropriate amount, and the ball mill and the vacuum stirring defoaming are used. After crushing and mixing and adjusting the viscosity, the sheet is formed by a doctor blade method or the like and dried to form an electrolyte green sheet.

【0021】それぞれ繊維シートおよび電解質グリーン
シートは、そのまま必要な大きさに裁断し電池積層に供
してもよいが、この場合は複合積層するとき、各シート
が空隙なく密着できるような調整作業を必要とする。
Each of the fibrous sheet and the electrolyte green sheet may be cut into a desired size as they are and used for battery lamination, but in this case, when the composite lamination is performed, it is necessary to perform an adjusting operation so that the respective sheets can be adhered to each other without voids. And

【0022】このような手間を省くため、あらかじめ電
池外でー体化した積層体としておく方が後の電池積層作
業の信頼性が高い。そのため、本実施例では繊維シート
を電解質グリーンシートで挟み、加熱ローラー等で圧着
一体化させる。このとき、空隙なく接着するよう上下ロ
ーラー間の間隙およびローラーの回転速度を適正に調整
する。この方法によりそれぞれのシートは空隙なく融着
一体化した複合マトリックスシートを形成することがで
きる。次に、この発明に従って、製作した複合電解質マ
トリックスを用いて、評価を行った結果を説明する。批
評面積が10m2 /gのリチウムアルミネート粉末とオ
レフィン系共重合樹脂を80:20の割合で混合し、有
機溶剤を加えて、ボールミルで解砕混合しスラリー化し
た後ドクターブレード法により、成膜し電解質マトリッ
クスグリーンシートを得た。
In order to save such troubles, it is more reliable to carry out the subsequent battery stacking work by forming the stacked body outside the battery in advance. Therefore, in this embodiment, the fiber sheet is sandwiched between the electrolyte green sheets and is pressed and integrated with a heating roller or the like. At this time, the gap between the upper and lower rollers and the rotation speed of the rollers are appropriately adjusted so that they adhere to each other without any gap. By this method, it is possible to form a composite matrix sheet in which the respective sheets are fused and integrated without any void. Next, the results of evaluation using the composite electrolyte matrix manufactured according to the present invention will be described. Lithium aluminate powder having a critical area of 10 m 2 / g and olefinic copolymer resin were mixed at a ratio of 80:20, an organic solvent was added, and the mixture was crushed and mixed in a ball mill to form a slurry, which was then formed by a doctor blade method. A membrane was obtained to obtain an electrolyte matrix green sheet.

【0023】一方、純度95%以上、厚さ0.25mm、
繊維径10μmのアルミナ繊維布に、同じく批表面積が
10m2 /gのリチウムアルミネート粉末とオレフィン
系共重合樹脂を80:20の割合で混合し、有機溶剤を
加えボールミールで解砕混合したスラリーをローラーコ
ーティング法によって、含浸湿布しアルミナ繊維グリー
ンシートを得た。
On the other hand, a purity of 95% or more, a thickness of 0.25 mm,
A slurry in which an alumina fiber cloth having a fiber diameter of 10 μm was mixed with a lithium aluminate powder having a critical surface area of 10 m 2 / g and an olefin-based copolymer resin at a ratio of 80:20, an organic solvent was added, and the mixture was crushed and mixed with a ball meal. A roller-coating method was used to impregnate a compress to obtain an alumina fiber green sheet.

【0024】複合マトリックスを得るため図2に示すよ
うに、セラミック繊維グリーンシート1の両側に電解質
グリーンシート2を挟持させた積層体を120℃の温度
に調節した熱ローラー11a、11bでそれぞれのシー
トを融着一体化した三層構造の複合電解質マトリックス
グリーンシート3を得た。
In order to obtain the composite matrix, as shown in FIG. 2, the laminated body in which the electrolyte green sheet 2 is sandwiched on both sides of the ceramic fiber green sheet 1 is heated by the heating rollers 11a and 11b adjusted to the temperature of 120 ° C. respectively. To obtain a composite electrolyte matrix green sheet 3 having a three-layer structure in which

【0025】この複合マトリックスグリーンシートから
サンプルを切り出し、アルミナ板に挟み、約0.2kgf
・cm2 の荷重を掛け、Air:CO2 =70:30、4
50℃〜20Hrで有機結合剤の拡散を行った後、三点
曲げは段強度の測定を行った。その結果を図3の曲線J
に示す。また比較例として、前述した電解質マトリック
スシートのみの測定結果を、図3の曲線Kに示す。な
お、測定条件は表1の通りである。
A sample is cut out from this composite matrix green sheet, sandwiched between alumina plates, and about 0.2 kgf
・ A load of cm 2 is applied, and Air: CO 2 = 70: 30, 4
After the organic binder was diffused at 50 ° C. to 20 hr, the three-point bending was performed to measure the step strength. The result is the curve J in FIG.
Shown in As a comparative example, the measurement result of only the above-mentioned electrolyte matrix sheet is shown by the curve K in FIG. The measurement conditions are as shown in Table 1.

【0026】[0026]

【表1】 アルミナ繊維強化マトリックスは破断強度に至った後も
応力値が残り、変位量の増大と共に穏やかな減少傾向を
示し、その最大応力値は約2.2kgf・mm2 を示した。
[Table 1] The alumina fiber reinforced matrix had a residual stress value even after reaching the breaking strength, and showed a mild decrease tendency with an increase in the displacement amount, and the maximum stress value thereof was about 2.2 kgf · mm 2 .

【0027】これに比べ従来法の電解質マトリックス版
は、変位量0.22mmまで応力値が直線的に増大し、破
断強度0.3kgf・mm2 を示した後破断した。
On the other hand, in the conventional electrolyte matrix plate, the stress value linearly increased up to a displacement of 0.22 mm, and the fracture strength was 0.3 kgf · mm 2, and then fracture occurred.

【0028】また、図4(a)(b)に示すように、カ
ソード4と同一寸法に切り出した複合電解質マトリック
スグリーンシート3を段差が生ずるずるような厚さを違
えたアノード5とアノード側アルミナ枠6とでー方か
ら、カソード4で他方から挟持した模擬セル7を組み立
て約1kgf・cm2 の荷重をかけ有機結合剤の揮散を行って
耐割れ性の確認試験を実施した。なお、同様に従来の電
解質マトリックスを用いて比較試験も実施した。その結
果を表2に示す。
As shown in FIGS. 4 (a) and 4 (b), the composite electrolyte matrix green sheet 3 cut out to the same size as the cathode 4 has different thicknesses such that the anode 5 and the anode side alumina have different thicknesses so that a step is formed. From the frame 6 and the other side, a simulated cell 7 sandwiched by the cathode 4 from the other side was assembled, and a load of about 1 kgf · cm 2 was applied to volatilize the organic binder to carry out a crack resistance confirmation test. A comparative test was also conducted using a conventional electrolyte matrix. The results are shown in Table 2.

【0029】[0029]

【表2】 発明シート1〜6に示す複合マトリックスを用いた場合
は割れ現象は見られなかったが、比較シート1の従来法
のマトリックスは完全な割れを示した。
[Table 2] No cracking was observed when the composite matrices shown in Invention Sheets 1-6 were used, whereas the conventional matrix of Comparative Sheet 1 showed complete cracking.

【0030】上記実施例は電池外で三層構造の複合電解
質マトリックスグリーンシート3を得る手順を述べるも
のであるが、電池内で複合マトリックスを構成すること
も可能である。
Although the above-mentioned embodiment describes the procedure for obtaining the composite electrolyte matrix green sheet 3 having a three-layer structure outside the battery, it is also possible to construct the composite matrix inside the battery.

【0031】この電池の構成は図5の摸式図のようにな
る。セラミックス繊維グリーンシート1は2枚の電解質
保持材グリーンシート2で挟持するように組み立てる。
The structure of this battery is shown in the schematic diagram of FIG. The ceramic fiber green sheet 1 is assembled so as to be sandwiched between two electrolyte holding material green sheets 2.

【0032】上述の発明シート1に示した材料の複合マ
トリックスを用いて電池を構成し、表3に示す条件で発
電試験を実施し、発電の途中で二度の熱サイクル試験を
実施した。
A battery was constructed using the composite matrix of the materials shown in the above-mentioned invention sheet 1, a power generation test was carried out under the conditions shown in Table 3, and two thermal cycle tests were carried out during the power generation.

【0033】[0033]

【表3】 その結果得られた電池性能を図6のlに、比較例として
従来法の電解質マトリックスを用いた電池の電池性能を
図6のmに示す。なお、図6のnは熱サイクルの回数を
示す。
[Table 3] The battery performance obtained as a result is shown in 1 of FIG. 6, and the battery performance of the battery using the conventional electrolyte matrix as a comparative example is shown in m of FIG. Note that n in FIG. 6 indicates the number of thermal cycles.

【0034】従来法の電解質マトリックスを用いた例で
は、二度目の熱サイクルで電解質板の割れに起因したガ
ス交差混合により発電が完全に停止したがセラミックス
繊維強化電解質マトリックスを用いた例では熱サイクル
後も性能の低下は見られなかった。
In the example using the conventional electrolyte matrix, the power generation was completely stopped by the gas cross-mixing caused by the crack of the electrolyte plate in the second heat cycle, but in the example using the ceramic fiber reinforced electrolyte matrix, the heat cycle was performed. After that, there was no deterioration in performance.

【0035】一般に、電解質マトリックスに電解質の漏
洩が生じている場合、電池の起電力はー定の割合で低下
する傾向を示すが、本発明シートではその傾向は見られ
ず電解質の喪失が生じていないことを間接的に示してい
る。
Generally, when electrolyte leakage occurs in the electrolyte matrix, the electromotive force of the battery tends to decrease at a constant rate. However, in the sheet of the present invention, this tendency is not observed and the loss of electrolyte occurs. It indirectly indicates that there is no.

【0036】以上の実施例の他、発明シート2〜6の組
合わせの複合マトリックスシートを用い同様に曲げ試験
を実施した結果も図3とほぼ同様の結果を得た。その他
セラミックス繊維シートを構成させるセラミックス繊維
布の種類およびセラミックス繊維布に含浸させるセラミ
ックス電解質保持材の種類について表4に示す材料を用
いて上述同様に試験を実施し、同様の結果を得た。
In addition to the above examples, the same bending test was carried out using the composite matrix sheets of the invention sheets 2 to 6 in combination, and substantially the same results as in FIG. 3 were obtained. Other tests were conducted in the same manner as above using the materials shown in Table 4 with respect to the types of ceramic fiber cloths constituting the ceramic fiber sheet and the types of ceramic electrolyte holding materials impregnated into the ceramic fiber cloths, and similar results were obtained.

【表4】 また、電解質層マトリックスグリーンシートとセラミッ
クス繊維シートとの複合積層体を得る方法として図2に
示す電池外でー体化する方法で製作した電解質マトリッ
クスシートを用い同様に試験を行った結果も図示しない
が、同様な効果が得られた。電池外でー体化することに
より取扱いが容易になった。
[Table 4] Also, as a method for obtaining a composite laminate of the electrolyte layer matrix green sheet and the ceramic fiber sheet, the results of the same test using the electrolyte matrix sheet manufactured by the method of externalizing outside the battery shown in FIG. 2 are also not shown. However, a similar effect was obtained. It became easy to handle by embodying it outside the battery.

【0037】本実施例では2枚の電解質マトリックスグ
リーンシートでセラミックス繊維シートを挟み、三層構
造の電解質マトリックスシートを得たが、さらに枚数を
増やして両者を交互に積層しても同様な効果を得ること
ができる。
In this embodiment, a ceramic fiber sheet was sandwiched between two electrolyte matrix green sheets to obtain an electrolyte matrix sheet having a three-layer structure, but the same effect can be obtained by further increasing the number and stacking the two layers alternately. Obtainable.

【0038】一方、表2の複合マトリックスのうち発明
シート1、発明シート3、発明シート4、発明シート5
および発明シート6の複合電解質マトリックスについ
て、水銀圧入法による細孔分布測定の結果を図7に示
す。この結果、電解質保持に関与する微細孔は、いずれ
も0.1〜0.2μmの間に形成されており電解質保持
機能が従来のセラミックス繊維を含まない電解質マトリ
ックスと同等の細孔分布を示すことが判る。
On the other hand, among the composite matrices of Table 2, invention sheet 1, invention sheet 3, invention sheet 4, invention sheet 5
FIG. 7 shows the results of pore distribution measurement by the mercury intrusion method for the composite electrolyte matrix of Invention Sheet 6 and. As a result, the micropores involved in electrolyte retention are all formed between 0.1 and 0.2 μm, and the electrolyte retention function shows a pore distribution equivalent to that of a conventional electrolyte matrix containing no ceramic fiber. I understand.

【0039】[0039]

【発明の効果】溶融炭酸塩型燃料電池の電解質マトリッ
クスシートにおいて、該電解質マトリックスシートがセ
ラミックス繊維布を用いて製作した繊維シートを2枚の
電解質マトリックスグリーンシートで両側から挟持し融
着一体化した構造の電解質マトリックスシートとするこ
とにより下記の効果が得られる。
INDUSTRIAL APPLICABILITY In an electrolyte matrix sheet for a molten carbonate fuel cell, a fiber sheet produced by using a ceramic fiber cloth as the electrolyte matrix sheet is sandwiched by two electrolyte matrix green sheets from both sides to be fused and integrated. The following effects can be obtained by using an electrolyte matrix sheet having a structure.

【0040】(1)セラミックス繊維布を用いることで
電解質マトリックスシート用のスラリ一中にセラミック
ス繊維を均等に分散配合させる繁雑な工程を経る必要が
なく、容易に繊維シートが製作でき、生産性の高いシー
トが得られる。また特に電池外でー体化したものは、そ
の取扱いが容易で電池組立ても容易に行えるようにな
る。(2)一体化した電解質マトリックスシートは高い
耐割れ性を示し、熱衝撃およびエッジと電極間のギャッ
プでの割れ防止が図れ電池の信頼性が大幅に向上する。
(3)セラミックス繊維層に電解質保持材を含浸させる
ことで、電解質保持性が維持でき、長寿命が可能にな
る。
(1) By using a ceramic fiber cloth, it is not necessary to go through the complicated step of uniformly dispersing and mixing the ceramic fibers in the slurry for the electrolyte matrix sheet, and the fiber sheet can be easily manufactured, and the productivity is improved. A high sheet can be obtained. Further, in particular, the one integrated outside the battery can be easily handled and can be easily assembled even when the battery is assembled. (2) The integrated electrolyte matrix sheet exhibits high cracking resistance, prevents thermal shock and cracking in the gap between the edge and the electrode, and greatly improves battery reliability.
(3) By impregnating the ceramic fiber layer with the electrolyte retaining material, the electrolyte retaining property can be maintained and the life can be extended.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る電解質マトリックスシートの製造
手順を示す工程図。
FIG. 1 is a process drawing showing a manufacturing procedure of an electrolyte matrix sheet according to the present invention.

【図2】三層構造の電解質マトリックスシートを製作す
る様子を示す摸式図。
FIG. 2 is a schematic diagram showing a state of producing an electrolyte matrix sheet having a three-layer structure.

【図3】電解質マトリックスシートの曲げ応力と変位と
の関係を示す線図。
FIG. 3 is a diagram showing a relationship between bending stress and displacement of an electrolyte matrix sheet.

【図4】(a)(b)は割れ試験に用いた模擬セルの構成
図。
4A and 4B are configuration diagrams of a simulated cell used in a crack test.

【図5】電池外で組立てる電極、電解質の配置を示す摸
式図。
FIG. 5 is a schematic diagram showing an arrangement of electrodes and an electrolyte assembled outside the battery.

【図6】熱サイクルを含む燃料電池の出力電圧の経時変
化を示す特性図。
FIG. 6 is a characteristic diagram showing changes over time in the output voltage of the fuel cell including thermal cycles.

【図7】本発明に係る電解質マトリックスシートの細孔
分布図。
FIG. 7 is a pore distribution diagram of the electrolyte matrix sheet according to the present invention.

【符号の説明】[Explanation of symbols]

1 セラミックス繊維グリーンシート 2 電解質グリーンシート 3 電解質マトリックスグリーンシート 4 カソード 5 アノード 6 アルミナ枠 1 Ceramic Fiber Green Sheet 2 Electrolyte Green Sheet 3 Electrolyte Matrix Green Sheet 4 Cathode 5 Anode 6 Alumina Frame

───────────────────────────────────────────────────── フロントページの続き (72)発明者 瀬田 曜一 神奈川県横浜市鶴見区末広町2の4 株式 会社東芝京浜事業所内 (72)発明者 清水 康 神奈川県横浜市鶴見区末広町2の4 株式 会社東芝京浜事業所内 (72)発明者 佐藤 克己 神奈川県横浜市鶴見区末広町2の4 株式 会社東芝京浜事業所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoichi Seta 4-4, 2 Suehiro-cho, Tsurumi-ku, Yokohama-shi, Kanagawa Stock company Toshiba Keihin Office (72) Inventor Yasushi Shimizu 4-4, Suehiro-cho, Tsurumi-ku, Yokohama-shi, Kanagawa Stock company Toshiba Keihin office (72) Inventor Katsumi Sato 2-4 Suehiro-cho, Tsurumi-ku, Yokohama-shi, Kanagawa Stock company Toshiba Keihin office

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 多孔質体からなる正負一対のガス拡散
電極間に溶融炭酸塩を保持する電解質板を配置してなる
溶融炭酸塩型燃料電池において、セラミックス繊維から
なる繊維布に有機結合剤、セラミックス電解質保持材、
溶剤からなる混合スラリーを含侵し、かつ乾燥させたセ
ラミックス繊維シートをセラミックス微粉電解質保持
材、有機結合剤、可塑剤および溶剤からなる混合スラリ
ーをシート状に乾燥させた電解質グリーンシートで挟持
し、一体化したことを特徴とする溶融炭酸塩型燃料電池
の電解質マトリックスシート。
1. A molten carbonate fuel cell comprising an electrolyte plate holding molten carbonate between a pair of positive and negative gas diffusion electrodes made of a porous body, wherein a fiber cloth made of ceramic fibers and an organic binder, Ceramic electrolyte holding material,
A ceramic fiber sheet impregnated with a mixed slurry composed of a solvent and dried is sandwiched between a ceramic fine powder electrolyte holding material, an organic binder, a plasticizer, and a solvent-containing mixed slurry composed of a solvent, which is sandwiched between the electrolyte green sheets to form an integrated body. An electrolyte matrix sheet for a molten carbonate fuel cell, characterized in that
【請求項2】 アルミナ、チタニア、ジルコニア、金
属チタネート、金属ジルコネートおよびリチウムアルミ
ネートから選ばれたいずれか1種または2種以上の材料
からなるセラミックス繊維を繊維布として用いることを
特徴とする請求項1記載の溶融炭酸塩型燃料電池の電解
質マトリックスシート。
2. A ceramic fiber made of one or more materials selected from alumina, titania, zirconia, metal titanate, metal zirconate and lithium aluminate is used as a fiber cloth. 2. An electrolyte matrix sheet for a molten carbonate fuel cell according to 1.
【請求項3】 リチウムアルミネートおよびリチウム
チタネートから選ばれたいずれか1種を電解質マトリッ
クスグリーンシートの保持材として用いることを特徴と
する請求項1記載の溶融炭酸塩型燃料電池の電解質マト
リックスシート。
3. The electrolyte matrix sheet for a molten carbonate fuel cell according to claim 1, wherein any one selected from lithium aluminate and lithium titanate is used as a holding material for the electrolyte matrix green sheet.
【請求項4】 オレフィン系共重合樹脂、オレフィン
−アクリル系重合樹脂、オレフィン−ビニール系共重合
樹脂から選ばれたいずれか1種または2種以上を混合し
た有機結合剤を電解質マトリクスグリーンシートおよび
繊維シートの結合剤として用いることを特徴とする請求
項1記載の溶融炭酸塩型燃料電池の電解質マトリックス
シート。
4. An organic binder containing an organic binder prepared by mixing one or more selected from an olefin-based copolymer resin, an olefin-acrylic-based polymer resin, and an olefin-vinyl-based copolymer resin, an electrolyte matrix green sheet and fibers. The electrolyte matrix sheet for a molten carbonate fuel cell according to claim 1, which is used as a binder for the sheet.
【請求項5】 セラミックス繊維からなる繊維布に有
機結合剤、セラミックス電解質保持材、溶剤からなる混
合スラリーを含侵させると共に、これを乾燥させてセラ
ミックス繊維シートとする一方、セラミックス微粉電解
質保持材、有機結合剤、可塑剤および溶剤からなる混合
スラリーをもとにこれをシート状に乾燥させて電解質マ
トリックスグリーンシートとし、次に前記セラミックス
繊維シートを2枚の前記電解質グリーンシートの間に挟
持し、熱ローラーまたは熱プレスを用いて3層構造のシ
ートとして融着一体化したことを特徴とする溶融炭酸塩
型燃料電池の電解質マトリックスシートの製造方法。
5. A fiber cloth made of ceramic fibers is impregnated with a mixed slurry made of an organic binder, a ceramic electrolyte holding material, and a solvent, and dried to form a ceramic fiber sheet, while a ceramic fine powder electrolyte holding material, Based on a mixed slurry composed of an organic binder, a plasticizer and a solvent, this is dried into a sheet form to form an electrolyte matrix green sheet, and then the ceramic fiber sheet is sandwiched between two electrolyte green sheets, A method for producing an electrolyte matrix sheet for a molten carbonate fuel cell, characterized in that the sheet is fused and integrated as a sheet having a three-layer structure using a hot roller or a hot press.
JP7178353A 1995-07-14 1995-07-14 Molten carbonate fuel cell electrolyte matrix sheet and its manufacture Withdrawn JPH0935730A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7178353A JPH0935730A (en) 1995-07-14 1995-07-14 Molten carbonate fuel cell electrolyte matrix sheet and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7178353A JPH0935730A (en) 1995-07-14 1995-07-14 Molten carbonate fuel cell electrolyte matrix sheet and its manufacture

Publications (1)

Publication Number Publication Date
JPH0935730A true JPH0935730A (en) 1997-02-07

Family

ID=16047013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7178353A Withdrawn JPH0935730A (en) 1995-07-14 1995-07-14 Molten carbonate fuel cell electrolyte matrix sheet and its manufacture

Country Status (1)

Country Link
JP (1) JPH0935730A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100644855B1 (en) * 2005-03-14 2006-11-14 한국과학기술연구원 Reinforced matrix for molten carbonate fuel cell using porous aluminium support and method for preparing the molten carbonate fuel cell comprising the same
US8790818B2 (en) 2008-12-20 2014-07-29 Qinetiq Limited Multifunctional composite
KR20170089630A (en) * 2016-01-27 2017-08-04 한국과학기술연구원 Molten carbonate fuel cells including electrolyte impregnated matrix and methods of manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100644855B1 (en) * 2005-03-14 2006-11-14 한국과학기술연구원 Reinforced matrix for molten carbonate fuel cell using porous aluminium support and method for preparing the molten carbonate fuel cell comprising the same
US8790818B2 (en) 2008-12-20 2014-07-29 Qinetiq Limited Multifunctional composite
KR20170089630A (en) * 2016-01-27 2017-08-04 한국과학기술연구원 Molten carbonate fuel cells including electrolyte impregnated matrix and methods of manufacturing the same

Similar Documents

Publication Publication Date Title
JP2007511874A (en) ELECTROLYTE SHEET HAVING PROJECTED SHAPE HAVING UNDER CUT ANGLE AND METHOD OF SEPARATING THE SHEET FROM CARRIER
JP3692623B2 (en) Ceramic laminate and manufacturing method thereof
JP5209120B2 (en) Method for producing fuel electrode for in-situ sintering of molten carbonate fuel cell
JP5862485B2 (en) Method for forming gas diffusion layer for fuel cell
US4710436A (en) Molten carbonate fuel cell and method of manufacturing electrolyte plate thereof
KR20100047703A (en) An electrolyte-filled and reinforced matrix for molten carbonate fuel cell and method for producing the same
JPH0935730A (en) Molten carbonate fuel cell electrolyte matrix sheet and its manufacture
JP3405918B2 (en) Method for manufacturing molten carbonate fuel cell electrolyte plate
JP2001283876A (en) Unit cell of solid electrolytic fuel battery
JP3592839B2 (en) Method for producing electrolyte plate, ceramic reinforcing material and ceramic sintered body
JP3116455B2 (en) Solid oxide fuel cell
JP3104295B2 (en) Method for producing molten salt fuel cell
JPH09512950A (en) Two-layer tape for molten carbonate fuel cell
JPH06223849A (en) Joint material for solid electrolyte type fuel cell stack and its manufacture
KR102636544B1 (en) Ultrasonic heating pressing apparatus for particle alignment densification of laminating sheet or slurry sheet
JPH0227665A (en) Electrolyte plate for fused carbonate type fuel cell
JPS61193374A (en) Manufacture of fused carbonate fuel cell
JP2504467B2 (en) Molten carbonate fuel cell electrolyte plate and method for producing the same
JPH0650643B2 (en) Method for manufacturing electrolyte plate for molten carbonate fuel cell
JP6270791B2 (en) Gas diffusion layer for fuel cells
JP3249494B2 (en) Molten carbonate fuel cell with electrolyte plate crack prevention structure
JPH04101361A (en) Solid electrolyte-type fuel cell
JPH09129249A (en) Fused carbonate fuel cell
JPH07282814A (en) Manufacture of gas diffusion electrode
JPS62241263A (en) Fuel cell

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20021001