JP2504467B2 - Molten carbonate fuel cell electrolyte plate and method for producing the same - Google Patents

Molten carbonate fuel cell electrolyte plate and method for producing the same

Info

Publication number
JP2504467B2
JP2504467B2 JP62157750A JP15775087A JP2504467B2 JP 2504467 B2 JP2504467 B2 JP 2504467B2 JP 62157750 A JP62157750 A JP 62157750A JP 15775087 A JP15775087 A JP 15775087A JP 2504467 B2 JP2504467 B2 JP 2504467B2
Authority
JP
Japan
Prior art keywords
electrolyte
fuel cell
binder
plate
holding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62157750A
Other languages
Japanese (ja)
Other versions
JPS643967A (en
Inventor
浩一 三次
秀夫 岡田
俊樹 加原
一男 岩本
嘉男 岩瀬
将人 竹内
友一 加茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62157750A priority Critical patent/JP2504467B2/en
Publication of JPS643967A publication Critical patent/JPS643967A/en
Application granted granted Critical
Publication of JP2504467B2 publication Critical patent/JP2504467B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • H01M8/0295Matrices for immobilising electrolyte melts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、溶融炭酸塩型燃料電池用電解質板及びその
製造方法に係り、特に反りがなく平滑な溶融炭酸塩型燃
料電池用電解質板及び該電解質板の製造方法に関する。
Description: TECHNICAL FIELD The present invention relates to an electrolyte plate for a molten carbonate fuel cell and a method for producing the same, and particularly to an electrolyte plate for a molten carbonate fuel cell which is smooth without warping and The present invention relates to a method for manufacturing the electrolyte plate.

〔従来の技術〕[Conventional technology]

一般に溶融炭酸塩型燃料電池は、炭酸リチウム,炭酸
カリウム等のアルカリ金属炭酸塩を混合した混合炭酸塩
を電解質として600〜700℃の高温で作動させる型の燃料
電池であり、作動温度において混合炭酸塩が溶融状態と
なり、炭酸イオン(CO3 2-)がイオン伝導体としての役
割をなす。
Generally, a molten carbonate fuel cell is a fuel cell of a type that operates at a high temperature of 600 to 700 ° C. with a mixed carbonate mixed with an alkali metal carbonate such as lithium carbonate and potassium carbonate as an electrolyte, and has a mixed carbonate at an operating temperature. The salt becomes molten, and the carbonate ion (CO 3 2− ) plays a role as an ion conductor.

この電池の基本構成は、上述の電解質が電解質マトリ
ツクス材に保持されて構成された電解質板の両側に、電
極であるアノード(燃料極)及びカソード(酸化剤極)
をそれぞれ配設する。そしてこれらの外側にそれぞれ燃
料ガス室及び酸化剤ガス室を設けている。これを単位電
池として複数個積層した積層電池をブロツクとして、所
定の電池電圧が得られるようになつている。
The basic configuration of this battery is that an anode (fuel electrode) and a cathode (oxidant electrode), which are electrodes, are provided on both sides of an electrolyte plate formed by holding the above-mentioned electrolyte in an electrolyte matrix material.
Are arranged respectively. A fuel gas chamber and an oxidant gas chamber are provided on the outside of these chambers. A predetermined battery voltage can be obtained by using a stacked battery in which a plurality of the batteries are stacked as a unit battery.

このような基本構成から成る溶融炭酸塩型燃料電池に
おいて、従来の一般的な電解質板には、特開昭60-10187
7号公報に提案されているように炭酸リチウム,炭酸カ
リウムの混合粉末をそれらの共晶点(491℃)以上の温
度で0.1〜0.6ton/cm2の圧力をかけることにより電解質
板(タイル)を形成する方法、特開昭60-105174号公報
で提案されているようにアルカリ炭酸塩(電解質)と酸
化物(リチウムアルミネート)との混合物を炭酸塩の融
点以上の温度で加熱処理し、その後それをコールドプレ
スし、さらに熱処理して電解質板(タイル)を形成する
方法、特開昭58-8775号公報で提案されているように有
機溶媒中でバインダーと炭酸塩(電解質)とマトリツク
ス骨材(リチウムアルミネート)とを混合,混練したも
のを圧着して薄板状の電解質板を形成する方法、特開昭
58-119169号公報で提案されているように電解質保持用
骨材(リチウムアルミネート)粉末と有機バインダを混
合したものを一対の電極に圧着し、これらの面を向かい
合わせ、その間に電解質粉末をはさみ込み、これを電解
質の融点以上に加熱し、さらに加圧することにより電解
質板を形成する方法等があつた。
In a molten carbonate fuel cell having such a basic structure, a conventional general electrolyte plate is disclosed in JP-A-60-10187.
As proposed in Japanese Patent Publication No. 7, an electrolyte plate (tile) is prepared by applying a pressure of 0.1 to 0.6 ton / cm 2 to a mixed powder of lithium carbonate and potassium carbonate at a temperature above their eutectic point (491 ° C.). And a mixture of an alkali carbonate (electrolyte) and an oxide (lithium aluminate) is heat treated at a temperature not lower than the melting point of the carbonate, as proposed in JP-A-60-105174. After that, it is cold-pressed and further heat-treated to form an electrolyte plate (tile). As proposed in JP-A-58-8775, a binder, a carbonate (electrolyte) and a matrix bone in an organic solvent are proposed. A method for forming a thin electrolyte plate by pressure-bonding a mixture of a material (lithium aluminate) and kneading
As proposed in Japanese Patent Laid-Open No. 58-119169, a mixture of an electrolyte-holding aggregate (lithium aluminate) powder and an organic binder is pressure-bonded to a pair of electrodes, and these surfaces are faced to each other. There is a method of forming an electrolyte plate by sandwiching, heating this to a temperature not lower than the melting point of the electrolyte, and further applying pressure.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記従来技術には下記のような種々の問題点があつ
た。
The above conventional technique has various problems as described below.

すなわち、特開昭60-101877号公報で提案されている
方法では電解質の共晶点以上の高温で加圧しなければな
らないので、電気炉が必要な上に製造工程が長くなる、
また0.1〜0.6ton/cm2の高い圧力で加圧しなければなら
ないので、大容量の加圧成形機(プレス)が必要とな
り、設備コストが大きいという問題があつた。
That is, in the method proposed in Japanese Patent Laid-Open No. 60-101877, it is necessary to press at a temperature higher than the eutectic point of the electrolyte, so an electric furnace is required and the manufacturing process becomes long,
In addition, since pressure must be applied at a high pressure of 0.1 to 0.6 ton / cm 2 , a large-capacity pressure molding machine (press) is required, resulting in a large equipment cost.

特開昭60-105174号公報で提案されている方法では炭
酸塩(電解質)と酸化物(リチウムアルミネート)の混
合物を炭酸塩(電解質)の融点以上で加熱処理した後
に、コールドプレスし、さらに熱処理をするので製造工
程が非常に長くなる上に、上記特開昭60-101877号公報
で提案された方法と同様に電気炉が必要となるので設備
コストが高くなるという問題があつた。
In the method proposed in JP-A-60-105174, a mixture of a carbonate (electrolyte) and an oxide (lithium aluminate) is heat-treated at a temperature not lower than the melting point of the carbonate (electrolyte), and then cold-pressed. Since the heat treatment is performed, the manufacturing process becomes very long, and an electric furnace is required as in the method proposed in JP-A-60-101877. Therefore, there is a problem that the equipment cost is increased.

特開昭58-8777号公報で提案された方法では、有機溶
媒を用いるのでその分製造コストが高くなるという問題
があつた。
In the method proposed in Japanese Patent Laid-Open No. 58-8777, there is a problem that the manufacturing cost is increased because the organic solvent is used.

特開昭58-119167号公報で提案された方法では、最終
的に電解質をそれの融点以上の温度に加熱して溶融さ
せ、電解質保持用骨材(リチウムアルミネート)にそれ
を含浸させて電解質板を形成するので、前述の特開昭60
-101877号公報及び特開昭60-105174号公報で提案された
方法と同様に製造工程が長くなる上に電気炉が必要とな
るので設備コストが高くなるという問題があつた。
In the method proposed in JP-A-58-119167, the electrolyte is finally heated to a temperature equal to or higher than the melting point of the electrolyte to melt it, and the aggregate (lithium aluminate) for retaining the electrolyte is impregnated with the electrolyte to form the electrolyte. Since a plate is formed, the above-mentioned JP-A-60
As in the methods proposed in Japanese Patent Laid-Open No. 101877 and Japanese Patent Laid-Open No. 60-105174, there is a problem that the manufacturing process becomes long and an electric furnace is required, resulting in high equipment cost.

本発明の目的は、低温度,低圧力で、さらに有機溶媒
又は水等の液体を用いずに形成できる溶融炭酸塩型燃料
電池用電解質板及びその製造方法の提供にある。
An object of the present invention is to provide an electrolyte plate for a molten carbonate fuel cell that can be formed at a low temperature and a low pressure without using a liquid such as an organic solvent or water, and a method for producing the same.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、以下に述べる知見によつてなされたもので
ある。つまり、前記従来技術である特開昭60-101777号
公報,特開昭58-105174号公報,特開昭58-119169号公報
で提案された方法の問題点、すなわち電解質の融点以上
の温度で電解質板を形成しなければならないのは、まず
電池の外で電解質板を作製しておいて、その後それを電
池に組み込んで再び昇温し電池を構成しようとする発想
に起因しているものである。
The present invention has been made based on the findings described below. That is, there is a problem of the method proposed in the above-mentioned prior arts JP-A-60-101777, JP-A-58-105174, and JP-A-58-119169, that is, at a temperature above the melting point of the electrolyte. The reason why the electrolyte plate has to be formed is that the electrolyte plate is first prepared outside the battery, and then it is incorporated into the battery to raise the temperature again to construct the battery. is there.

電解質はその融点以上になると溶融し、電解質を保持
する多孔質の電解質保持用マトリツクス成形体に自然に
含浸されるものである。従つて電解質保持用マトリツク
ス成形体と電解質保持用マトリツクス成形体との間に常
温の状態で電解質粉末が充填されていれば、それをその
まま電池に組み込み電池を運転温度である650℃まで昇
温する過程で、自然に電解質は電解質保持用マトリツク
ス成形体に含浸される。これにより温度を昇降温するの
は1度で済むので製造工程が短くなる。
The electrolyte is melted at a temperature equal to or higher than its melting point, and is naturally impregnated into a porous matrix-shaped matrix for holding an electrolyte, which holds the electrolyte. Therefore, if the electrolyte powder is filled between the electrolyte holding matrix molded body and the electrolyte holding matrix molded body at room temperature, it is incorporated into the battery as it is and the temperature of the battery is raised to 650 ° C which is the operating temperature. During the process, the electrolyte is naturally impregnated into the electrolyte retaining matrix molding. As a result, the temperature can be raised or lowered only once, and the manufacturing process can be shortened.

さらに、これにより電解質板は常温の状態で電解質保
持用マトリツクス成形体と電解質保持用マトリツクス成
形体の間に電解質が充填されているだけの構成で、電池
組込み時等のハンドリングに耐えるものであればよいこ
とになる。
Further, as a result, the electrolyte plate has a structure in which the electrolyte is filled between the matrix-holding matrix molded body for electrolyte holding and the matrix-holding matrix molding for electrolyte holding at room temperature, as long as it can withstand handling such as assembling a battery. It will be good.

しかしながら、実際には電解質保持用マトリツクス成
形体と電解質保持用マトリツクス成形体との間に電解質
を充填しただけのものでは、電解質粉末粒子同士及び電
解質粉末と電解質保持用マトリツクス成形体とが一体化
(接着)されていないため、ハンドリング時に電解質粉
末がこぼれ落ち、所定量の電解質量より不足したり、電
池組込み時に電解質保持用マトリツクス成形体と電解質
充填層がずれたり、電解質保持用マトリツクス成形体に
電解質の含浸むらができたりする問題が残る。
However, in reality, in the case where only the electrolyte is filled between the electrolyte holding matrix molded body and the electrolyte holding matrix molded body, the electrolyte powder particles are integrated with each other and the electrolyte powder and the electrolyte holding matrix molded body ( Since it is not adhered), the electrolyte powder spills during handling, resulting in a shortage of the electrolytic mass of the specified amount, and when the battery is assembled, the matrix-holding matrix for electrolyte retention and the electrolyte filling layer are misaligned. The problem of uneven impregnation remains.

これらの問題は、電解質粉末の粒子同士及び電解質粉
末と電解質保持用マトリツクス成形体とが一体化(接
着)された構成のものであれば解決することができるも
のである。さらに、これらの構成は、電解質粉末の粒子
同士及び電解質粉末と電解質保持用マトリツクス成形体
とをバインダーで接着し、これらを一体化することによ
り実現できるものである。
These problems can be solved if the particles of the electrolyte powder and the electrolyte powder and the electrolyte-holding matrix molded body are integrated (bonded) together. Further, these constitutions can be realized by adhering the particles of the electrolyte powder and the electrolyte powder and the matrix-holding material for holding the electrolyte with a binder and integrating them.

上記構成の電解質板は次のような方法によつて製造さ
れる。
The electrolyte plate having the above structure is manufactured by the following method.

少なくとも二枚のシート状電解質保持用マトリツクス
成形体の間に、電解質とバインダー(熱可塑性樹脂)と
の混合物を充填し、バインダーの軟化点以上かつ分解が
開始する以前の温度範囲(70〜200℃)、かつ50kg/cm2
以下の圧力という条件で熱圧着する。
Between at least two sheet-shaped electrolyte-holding matrix moldings, a mixture of an electrolyte and a binder (thermoplastic resin) is filled, and the temperature range (70 to 200 ° C.) above the softening point of the binder and before decomposition starts. ), And 50 kg / cm 2
Thermocompression bonding is performed under the following pressure conditions.

これにより、バインダーを介して電解質の粒子同士及
び電解質の粒子とシート状電解質保持用マトリツクス成
形体とが接着しあうので、シート状電解質保持用マトリ
ツクス成形体と電解質粉末層が一体化され、低温,低
圧、かつ溶媒を使用せずに前記構成の電解質板が製造で
きる。
As a result, the particles of the electrolyte and the particles of the electrolyte and the sheet-shaped electrolyte-holding matrix molded article are bonded to each other through the binder, so that the sheet-shaped electrolyte holding matrix molded article and the electrolyte powder layer are integrated at a low temperature, The electrolyte plate having the above structure can be manufactured at low pressure and without using a solvent.

すなわち、上記電解質板は、電解質粉末とバインダー
の混合物を電解質保持用マトリツクス成形体と電解質保
持用マトリツクス成形体との間に充填し、それらを金属
性の金型に入れてその上下を金属性の板ではさみ、バイ
ンダーの軟化点以上かつ分解が開始する以前の温度範囲
(70〜200℃)かつ50kg/cm2以下の圧力で熱圧着するこ
とにより得られる。
That is, the electrolyte plate is filled with a mixture of an electrolyte powder and a binder between an electrolyte-holding matrix matrix and an electrolyte-holding matrix matrix, and put them in a metallic mold to form a metallic top and bottom. It can be obtained by sandwiching with a plate and thermocompression bonding at a temperature above the softening point of the binder and before the decomposition starts (70 to 200 ° C) and at a pressure of 50 kg / cm 2 or less.

〔作用〕[Action]

一体化された電解質板を直接電池に組み込み電池を昇
温してゆくと、まず250℃〜450℃の間で電解質保持用マ
トリツクス成形体中のバインダー及び電解質とバインダ
ーの混合物中のバインダーの分解が行われる。これによ
り電解質マトリツクス成形体中にはバインダーが分解し
てなくなつたところに微細孔が形成される。また電解質
とバインダーの混合物中のバインダーは分解され、電解
質だけになる。この状態で電解質の融点である491℃に
なると電解質が溶融状態となり、電解質保持用マトリツ
クス成形体中に形成された微細孔に自然に含浸する。溶
融して含浸した電解質は、微細孔の毛管力により微細孔
中に保有される。この時点で、従来例と同等のイオン伝
導体の電解質板が形成される。これをさらにそのまま電
池運転温度である650℃へ昇温して発電を開始する。
When the integrated electrolyte plate is directly installed in the battery and the temperature of the battery is raised, the decomposition of the binder in the matrix holding body for electrolyte retention and the binder in the mixture of the electrolyte and the binder are first decomposed between 250 ° C and 450 ° C. Done. As a result, fine pores are formed in the electrolyte matrix molded body where the binder decomposes and disappears. Further, the binder in the mixture of the electrolyte and the binder is decomposed to become only the electrolyte. In this state, when the temperature reaches 491 ° C., which is the melting point of the electrolyte, the electrolyte becomes in a molten state, and the fine pores formed in the electrolyte-holding matrix molded body are naturally impregnated. The molten and impregnated electrolyte is retained in the micropores by the capillary force of the micropores. At this point, an electrolyte plate of an ion conductor equivalent to that of the conventional example is formed. The temperature of the battery is further raised to 650 ° C., which is the battery operating temperature, and power generation is started.

従つて、電池に組み込まれるまで、電解質板は常温の
状態でハンドリングに耐えるだけのものでよいので、低
温(70〜200℃),低圧力(50kg/cm2以下)で成形する
ことができ、このため、電解質板の製造工程が短縮され
るので電池全体の製造時間が短縮される。
Therefore, since the electrolyte plate need only withstand handling at room temperature until it is incorporated into the battery, it can be molded at low temperature (70 to 200 ° C) and low pressure (50 kg / cm 2 or less). Therefore, the manufacturing process of the electrolyte plate is shortened, and the manufacturing time of the entire battery is shortened.

〔実施例〕〔Example〕

以下、本発明に係る電解質板を図面に基づいて説明す
る。
Hereinafter, the electrolyte plate according to the present invention will be described with reference to the drawings.

第1図は第1実施例を示す電解質板の概略を説明する
縦断面図である。
FIG. 1 is a vertical sectional view for explaining the outline of the electrolyte plate showing the first embodiment.

本例の電解質板は、それぞれ同じものを二枚重ねたシ
ート状電解質保持用マトリツクス成形体2a,2a,2b,2b
と、電解質とバインダーの混合粉末1とから成り、これ
らシート状電解質保持用マトリツクス成形体2aと2bの間
に、電解質とバインダーの混合粉末1を充填した構成と
している。
The electrolyte plate of this example is a sheet-shaped electrolyte holding matrix molded body 2a, 2a, 2b, 2b in which two identical sheets are stacked.
And the mixed powder 1 of the electrolyte and the binder, and the mixed powder 1 of the electrolyte and the binder is filled between the sheet-shaped electrolyte molded matrix moldings 2a and 2b.

なお、本例では上記シート状電解質保持用マトリツク
ス材2a,2bはそれぞれ平均厚み約0.4mmtのものを用い
た。また電解質としては、炭酸リチウム,炭酸カリウム
等の混合炭酸塩を用いた。
In this example, the sheet-shaped electrolyte holding matrix materials 2a and 2b each had an average thickness of about 0.4 mmt. A mixed carbonate such as lithium carbonate and potassium carbonate was used as the electrolyte.

本例で用いられた上記電解質とバインダーの混合物
は、混合比95:5wt%のものであり、電解質95wt%は、シ
ート状電解質保持用マトリツクス成形体2a,2bを焼成し
て脱バインダーを図つた後、該マトリツクス成形体2a,2
bの細孔容積の115vol%に相当する量にした。またバイ
ンダー5wt%は、ポリエチレンオキサイド(PEO)とし
た。なお、細孔容積が100%以上の電解質を添加してい
るのは電極ヘリザーブするための電解質量も含んでいる
結果であり、電極の電解質による濡れ性をこの余分に添
加した電解質により制御し、電池性能を向上させること
を目的としたためである。従つてこの量は115vol%に限
らず、100vol%を上回つていれば良く、例えば、120vol
%,130vol%でもよい。
The mixture of the electrolyte and the binder used in this example had a mixing ratio of 95: 5 wt%, and the electrolyte 95 wt% was debindered by firing the sheet-shaped electrolyte retaining matrix molded body 2a, 2b. After that, the matrix molded body 2a, 2
The amount was 115 vol% of the pore volume of b. The binder 5 wt% was polyethylene oxide (PEO). It should be noted that the addition of an electrolyte having a pore volume of 100% or more is a result of including the electrolytic mass for electrode helicitation, and the wettability by the electrolyte of the electrode is controlled by this extra added electrolyte, This is because the purpose is to improve the battery performance. Therefore, this amount is not limited to 115 vol% and may be 100 vol% or more, for example, 120 vol%.
%, 130vol% is also acceptable.

第2図は第2実施例を示す電解質板の概略を説明する
縦断面図である。なお本例では上記第1実施例と同一部
材,材料等には同一符号を付してその説明を省略する。
FIG. 2 is a vertical sectional view for explaining the outline of the electrolyte plate showing the second embodiment. In this example, the same members, materials and the like as those in the first embodiment are designated by the same reference numerals and the description thereof will be omitted.

本例では、四枚のシート状電解質保持用マトリツクス
成形体2a,2b,2c,2dの間に、電解質とバインダーの混合
粉末1を充填した構成としている。
In this example, the mixed powder 1 of the electrolyte and the binder is filled between the four sheet-shaped electrolyte-holding matrix molded bodies 2a, 2b, 2c and 2d.

次に上記で説明した溶融炭酸塩型燃料電池用電解質板
の製造方法を説明する。
Next, a method for manufacturing the electrolyte plate for a molten carbonate fuel cell described above will be described.

まず電解質とバインダーの混合粉末1を混合比95:5wt
%で調整する。95wt%の電解質量はシート状電解質保持
用マトリツクス成形体2a〜2eを焼成して脱バインダーを
図つた後の該マトリツクス成形体2の細孔容積の115vol
%に相当する量とし、5wt%添加したバインダーはポリ
エチレンオキサイド(PEO)とした。そして、該混合粉
末1の上下にシート状電解質保持用マトリツクス成形体
2a,2bを配設し該混合粉末1をはさむ状態の積層体とす
る。
First, mix powder 1 of electrolyte and binder at a mixing ratio of 95: 5 wt.
Adjust in%. The electrolytic mass of 95 wt% is 115 vol of the pore volume of the matrix molded body 2 after the sheet-shaped electrolyte molded matrix molded bodies 2a to 2e are fired to remove the binder.
%, And the binder added at 5 wt% was polyethylene oxide (PEO). A sheet-shaped electrolyte holding matrix molded body is formed above and below the mixed powder 1.
A laminated body in which 2a and 2b are arranged and the mixed powder 1 is sandwiched is formed.

このとき、シート状電解質保持用マトリツクス成形体
と、混合粉末とを交互に積層するように充填すれば、第
2図で示す第2実施例のように形成することができる。
At this time, if the sheet-shaped electrolyte-holding matrix molded body and the mixed powder are filled so as to be alternately laminated, it can be formed as in the second embodiment shown in FIG.

次にシート状電解質保持用マトリツクス成形体2a,2b
の外側に、第3図に示すようにポリエステルフイルム3
a,3bを配設する。
Next, the sheet-shaped electrolyte holding matrix moldings 2a, 2b
On the outside of the, as shown in Fig. 3, polyester film 3
Arrange a and 3b.

該ポリエステルフイルム3a,3bは片面にシリコンがコ
ーテイングされており、該シリコンコーテイング面を、
上記シート状電解質保持用マトリツクス成形体2a,2bに
当接させて熱圧着後のシート状電解質保持用マトリツク
ス成形体2a,2bと型板5a,5bとの剥離性を向上させてい
る。
Silicon is coated on one side of the polyester film 3a, 3b, and the silicon coating surface is
The sheet-shaped electrolyte holding matrix molded bodies 2a, 2b are brought into contact with each other to improve the peeling property between the sheet-shaped electrolyte holding matrix molded bodies 2a, 2b and the templates 5a, 5b.

次にこれらの積層体を金型4に収納し、その上下に型
板5a,5bを配設する。そしてロツドヒーター6により150
℃に保たれている押上げ板7に載置して、同様に150℃
に保たれた定板8近傍(定板8とのすき間:約1mm)ま
で油圧シリンダー9により押し上げる。
Next, these laminated bodies are housed in a mold 4, and mold plates 5a and 5b are arranged above and below the mold. And 150 by rod heater 6
Place on the push-up plate 7 kept at ℃,
The hydraulic cylinder 9 pushes up to the vicinity of the constant plate 8 (gap with the constant plate 8: about 1 mm) kept at.

まだ圧力がかかつていないこの状態で上記配設した系
の温度が150℃になるまで約30分間置いた。上記系が150
℃になつた後に50kg/cm2の圧力で熱圧着し、この状態で
15分間保持する。
In the unpressurized state, the system thus arranged was left for about 30 minutes until the temperature of the system reached 150 ° C. The above system is 150
After the temperature reaches ℃, thermocompression bonding with a pressure of 50 kg / cm 2
Hold for 15 minutes.

この時点で、シート状電解質保持用マトリツクス成形
体2a,2bにもバインダーが含有されているので、該成形
体2a,2a,2b,2b共に接着されて2枚ずつ一体化し、その
間に充填されている電解質粉末粒子同志及び電解質粉末
とシート状電解質保持用マトリツクス成形体2a,2bもバ
インダー(ポリエチレンオキサイド)により接着される
ので電解質板全体が一体化する。
At this point in time, since the sheet-shaped electrolyte holding matrix molded bodies 2a, 2b also contain a binder, the molded bodies 2a, 2a, 2b, 2b are bonded together and integrated into two sheets, and filled between them. The electrolyte powder particles and the electrolyte powder and the sheet-shaped electrolyte-holding matrix moldings 2a and 2b are also bonded by the binder (polyethylene oxide), so that the entire electrolyte plate is integrated.

その後熱圧着されて一体化された電解質板を金型から
取りはずし、8g/cm2の荷重をかけながら冷却して、前記
構成の電解質板を製造することができる。本例の製法に
よる電解質板は、そりが最大0.2mmと非常に小さく、平
坦で良好なものとなる。
After that, the electrolyte plate integrated by thermocompression bonding is removed from the mold and cooled while applying a load of 8 g / cm 2 , whereby the electrolyte plate having the above-mentioned configuration can be manufactured. The electrolyte plate produced by the manufacturing method of this example has a very small warpage of 0.2 mm at maximum, and is flat and good.

本実施例では、熱圧着を熱間加圧成形機により行つた
が、熱間ロール成形機により行つても同等の効果があ
り、良好な電解質板が成形できる。また本実施例によれ
ば、この時点ですでにシート状電解質保持用マトリツク
ス成形体2a,2bを合計4枚用いているので、電解質の保
持量を多くすることができ、その結果電池性能の寿命を
長くすることができる。さらに、混合粉末1及びシート
状電解質保持用マトリツクス成形体2a,2b等は金型4に
収納されているので、混合粉末1が外部へこぼれ落ちな
いでシート状電解質マトリツクス成形体2a,2bの端部ま
できれいに混合粉末1層が形成できる。その上、シート
状電解質保持用マトリツクス成形体2a,2b同志がずれな
いなどの特有の効果がある。
In this embodiment, the thermocompression bonding is performed by the hot press molding machine, but the hot roll molding machine has the same effect and a good electrolyte plate can be molded. Further, according to this example, since a total of four sheet-shaped electrolyte-holding matrix molded bodies 2a and 2b are already used at this point, the amount of electrolyte retained can be increased, and as a result, the life of battery performance can be increased. Can be lengthened. Further, since the mixed powder 1 and the sheet-shaped electrolyte holding matrix molded bodies 2a, 2b, etc. are housed in the mold 4, the mixed powder 1 does not spill to the outside and the end portions of the sheet-shaped electrolyte matrix molded bodies 2a, 2b are prevented. A layer of mixed powder can be formed neatly. In addition, there is a unique effect that the sheet-shaped electrolyte holding matrix molded bodies 2a and 2b are not displaced from each other.

さらにこの電解質板を直接電池に組み込み、電池昇温
の過程で電解質をシート状電解質マトリツクス成形体2
a,2bに含浸すれば、前述の理由により電解質板の製造工
程が短縮されるので、電池化までの時間を短縮すること
ができる。
Furthermore, this electrolyte plate was directly incorporated into the battery, and the electrolyte was formed into a sheet-shaped electrolyte matrix molded body during the process of heating the battery.
By impregnating a and 2b, the manufacturing process of the electrolyte plate can be shortened for the above-mentioned reason, so that the time required to form a battery can be shortened.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明の溶融炭酸塩型燃料電池用
電解質板は、電解質保持用マトリツクス成形体の間に電
解質とバインダーの混合物を充填するという構成を用い
ることで、平滑で電解質のこぼれ落ちや電解質保持用マ
トリツクス成形体のずれがない良好な電解質板ができ
る。つまり、上記構成の積層系を70〜200℃程度の低温
でかつ50kg/cm2以下の低圧力で熱圧着することにより、
低温度低圧力且つ溶媒を使用せずに、構成が簡単で良好
な電解質板を製造することができるものである。
As described above, the electrolyte plate for a molten carbonate fuel cell of the present invention uses a structure in which the mixture of the electrolyte and the binder is filled between the matrix-holding matrix for holding the electrolyte, so that the electrolyte is smooth and electrolyte spillage A good electrolyte plate without displacement of the matrix material for holding can be obtained. That is, by thermocompression bonding the laminated system having the above-mentioned configuration at a low temperature of about 70 to 200 ° C. and a low pressure of 50 kg / cm 2 or less,
It is possible to manufacture an excellent electrolyte plate having a simple structure without using a solvent at low temperature and low pressure.

また、この電解質板を直接電池に組み込んで電池を昇
温することにより、昇温の過程で電解質保持用マトリツ
クス成形体中へ自然に電解質が含浸されて、イオン伝導
体の電解質板が形成されるので、電池外部で加熱処理し
て電解質を含浸する必要がなく、その分の電解質板の製
造工程が短縮され、全体的に電池化までの時間を短縮す
ることができるという効果がある。
Further, by directly incorporating this electrolyte plate into a battery and raising the temperature of the battery, the electrolyte matrix is naturally impregnated into the electrolyte-holding matrix molded body in the process of raising the temperature, and the electrolyte plate of the ion conductor is formed. Therefore, there is no need to heat-treat the outside of the battery to impregnate it with the electrolyte, and the manufacturing process of the electrolyte plate can be shortened by that amount, and the time required to form the battery can be shortened overall.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例の構成を示す縦断面図であ
り、第2図は第1図の構成の他の実施例を示す縦断面図
であり、第3図は第1図及び第2図の構成のものを得る
ための装置及び材料の構成を示す概略図である。 1……電解質とバインダーの混合粉末、2a,2b,2c,2d…
…シート状電解質保持用マトリツクス成形体、3a,3b…
…ポリエステルフイルム、4……金型、5a,5b……型
板、6……ロツドヒーター、7……押上げ板、8……定
板、9……シリンダー。
FIG. 1 is a vertical sectional view showing the structure of an embodiment of the present invention, FIG. 2 is a vertical sectional view showing another embodiment of the structure of FIG. 1, and FIG. FIG. 3 is a schematic diagram showing a device and a material structure for obtaining the structure shown in FIG. 2. 1 ... Mixed powder of electrolyte and binder, 2a, 2b, 2c, 2d ...
… Sheet-like electrolyte matrix holding material, 3a, 3b…
… Polyester film, 4 …… Mold, 5a, 5b …… Mold plate, 6 …… Rod heater, 7 …… Push plate, 8 …… Regular plate, 9 …… Cylinder.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岩本 一男 日立市久慈町4026番地 株式会社日立製 作所日立研究所内 (72)発明者 岩瀬 嘉男 日立市久慈町4026番地 株式会社日立製 作所日立研究所内 (72)発明者 竹内 将人 日立市久慈町4026番地 株式会社日立製 作所日立研究所内 (72)発明者 加茂 友一 日立市久慈町4026番地 株式会社日立製 作所日立研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazuo Iwamoto 4026 Kujimachi, Hitachi City Hitachi Ltd.Hitachi Research Laboratory (72) Inventor Yoshio Iwase 4026 Kujimachi Hitachi City Hitachi Ltd. Hitachi Research Co., Ltd. (72) Inventor Masato Takeuchi 4026 Kujimachi, Hitachi City Hitachi Ltd., Hitachi Research Laboratory (72) Inventor Yuichi Kamo 4026 Kujicho, Hitachi City Hitachi Ltd. Hitachi Research Laboratory

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】電解質保持用マトリックス成形体の間に混
合炭酸塩からなる電解質を保持した溶融炭酸塩型燃料電
池用電解質板において、 前記電解質保持用マトリックス成形体が、リチウムアル
ミネートを主原料とし、バインダーを含んだ二層のシー
ト状に形成されるとともに、この二層のシート状電解質
保持用マトリックス成形体の間に電解質とバインダーと
の混合物が充填され、前記混合物と電解質保持用マトリ
ックス成形体とが熱圧着により一体化されていることを
特徴とする溶融炭酸塩型燃料電池用電解質板。
1. A molten carbonate fuel cell electrolyte plate in which an electrolyte composed of a mixed carbonate is held between electrolyte-holding matrix molded bodies, wherein the electrolyte-holding matrix molded body contains lithium aluminate as a main raw material. , A two-layer sheet containing a binder, and a mixture of an electrolyte and a binder is filled between the two-layer sheet-shaped electrolyte-holding matrix molded body, and the mixture and the electrolyte-holding matrix molded body An electrolyte plate for a molten carbonate fuel cell, characterized in that and are integrated by thermocompression bonding.
【請求項2】前記電解質は、電解質保持用マトリックス
成形体の使用時、すなわち脱バインダー状態で形成され
る細孔容積に対して100〜130%の量が充填されてなる特
許請求の範囲第1項記載の溶融炭酸塩型燃料電池用電解
質板。
2. The electrolyte is filled in an amount of 100 to 130% with respect to the volume of pores formed when the matrix holding body for electrolyte holding is used, that is, in the debindered state. An electrolyte plate for a molten carbonate fuel cell according to the item.
【請求項3】電解質保持用マトリックス成形体を、リチ
ウムアルミネートを主原料とし、バインダーを含んだ二
層のシート状に形成するとともに、この二層のシート状
電解質保持用マトリックス成形体の間に、電解質とバイ
ンダーとを混合した混合物を充填して金型に入れる工程
と、 該金型を前記バインダーの軟化点以上で、かつ分解が開
始する以前の温度範囲で上下から熱圧着して一体化する
工程と、 からなることを特徴とする溶融炭酸塩型燃料電池用電解
質板の製造方法。
3. An electrolyte-retaining matrix molded body is formed into a two-layer sheet shape containing lithium aluminate as a main raw material and containing a binder, and between the two-layer sheet-shaped electrolyte retaining matrix molded body. Filling a mixture containing a mixture of an electrolyte and a binder into a mold, and integrating the mold by thermocompression bonding from above and below within a temperature range not lower than the softening point of the binder and before the decomposition starts. The method for producing an electrolyte plate for a molten carbonate fuel cell, comprising:
【請求項4】前記温度範囲が、70℃から200℃である特
許請求の範囲第3項記載の溶融炭酸塩型燃料電池用電解
質板の製造方法。
4. The method for producing an electrolyte plate for a molten carbonate fuel cell according to claim 3, wherein the temperature range is 70 ° C. to 200 ° C.
【請求項5】前記熱圧着が熱間加圧成形機または熱間ロ
ール成形機によって行なわれる特許請求の範囲第3項記
載の溶融炭酸塩型燃料電池用電解質板の製造方法。
5. The method for producing an electrolyte plate for a molten carbonate fuel cell according to claim 3, wherein the thermocompression bonding is performed by a hot press molding machine or a hot roll molding machine.
JP62157750A 1987-06-26 1987-06-26 Molten carbonate fuel cell electrolyte plate and method for producing the same Expired - Fee Related JP2504467B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62157750A JP2504467B2 (en) 1987-06-26 1987-06-26 Molten carbonate fuel cell electrolyte plate and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62157750A JP2504467B2 (en) 1987-06-26 1987-06-26 Molten carbonate fuel cell electrolyte plate and method for producing the same

Publications (2)

Publication Number Publication Date
JPS643967A JPS643967A (en) 1989-01-09
JP2504467B2 true JP2504467B2 (en) 1996-06-05

Family

ID=15656528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62157750A Expired - Fee Related JP2504467B2 (en) 1987-06-26 1987-06-26 Molten carbonate fuel cell electrolyte plate and method for producing the same

Country Status (1)

Country Link
JP (1) JP2504467B2 (en)

Also Published As

Publication number Publication date
JPS643967A (en) 1989-01-09

Similar Documents

Publication Publication Date Title
EP0122150B1 (en) Integral gas seal for fuel cell gas distribution assemblies and method of fabrication
US4732637A (en) Method of fabricating an integral gas seal for fuel cell gas distribution assemblies
JPH0221100B2 (en)
JP2593036B2 (en) Stacked fuel cell components
US4165349A (en) Method for fabricating a ribbed electrode substrate
JP2846738B2 (en) Method for producing molten carbonate-fuel cell
EP0867902A2 (en) Electric double layer capacitor and manufacturing method for same
EP0085405A1 (en) Fuel cell
JP7183529B2 (en) LAMINATED GREEN SHEET, ALL-SOLID SECONDARY BATTERY AND MANUFACTURING METHOD THEREOF
US4581302A (en) Molten carbonate fuel cell matrix tape
JPH05198307A (en) Composite active electrolyte matrix for molten carbonate fuel cell and laminated component tape
US4526845A (en) Molten carbonate fuel cell integral matrix tape and bubble barrier
JPH0758626B2 (en) Method for producing flat envelope made of solid electrolyte for use as electrode holder of electrochemical cell and envelope produced by the method
JP2504467B2 (en) Molten carbonate fuel cell electrolyte plate and method for producing the same
US4538348A (en) Molten carbonate fuel cell matrix tape and assembly method
EP0465475A4 (en) Improved electrode plate structure
KR20020090117A (en) Methods for producing a separator/electrode assembly for electrochemical elements
JPS5812267A (en) Gas separator for fuel cell
CN111193060A (en) Solid electrolyte and preparation method thereof
JP3091280B2 (en) Manufacturing method of hollow ceramic plate
JP3104295B2 (en) Method for producing molten salt fuel cell
JPH0337265B2 (en)
JPWO2019004001A1 (en) Ion-conductive composite body, all-solid-state battery, and methods for producing the same
JPH0650643B2 (en) Method for manufacturing electrolyte plate for molten carbonate fuel cell
JPH0935730A (en) Molten carbonate fuel cell electrolyte matrix sheet and its manufacture

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees