JPS58100364A - Porous electrode plate for fuel cell - Google Patents

Porous electrode plate for fuel cell

Info

Publication number
JPS58100364A
JPS58100364A JP56197624A JP19762481A JPS58100364A JP S58100364 A JPS58100364 A JP S58100364A JP 56197624 A JP56197624 A JP 56197624A JP 19762481 A JP19762481 A JP 19762481A JP S58100364 A JPS58100364 A JP S58100364A
Authority
JP
Japan
Prior art keywords
carbon fibers
flat plate
length
electrode plate
mat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56197624A
Other languages
Japanese (ja)
Inventor
Kenji Enomoto
榎本 賢司
Matsunobu Wada
和田 松延
Shohei Uozumi
魚住 昇平
Shigeo Kikuchi
菊地 茂夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56197624A priority Critical patent/JPS58100364A/en
Publication of JPS58100364A publication Critical patent/JPS58100364A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)

Abstract

PURPOSE:To improve the mechanical strength and the gas-diffusing performance of the flat part of an electrode plate, and increase the moldaility of the protruding parts of the electrode plate by making the length of carbon fibers contained in the flat part large than that of carbon fibers contained in the protruding parts. CONSTITUTION:At first, an aqueous dispersion liquid prepared by properly dispersing long carbon fibers 6A, is drawn through a filter so as to form a mat of the carbon fibers 6A on the filter. Next, after blocks are placed on parts of the mat of the carbon fibers A which correspond to gas flow paths 4, an aqueous dispersion liquid of short carbon fibers 6B is poured into spaces which correspond to projections 5, and filtered through both the above filter and the mat of the carbon fibers A so as to form mats of the carbon fibers 6B on the above mat of the carbon fibers 6A. Then, thus obtained body, after being dried, is impregnated with a binder 2 such as a phenol resin, and pressed and heated by heat press or something similar until the thickness of a flat part 3 and the height of the projections 5 become given dimensions so as to harden the binder 2. After that, thus obtained body is sufficiently carbonized by being heated at high temperature in an atmosphere of an inactive gas or in vacuum, thereby making a porous electrode plate.

Description

【発明の詳細な説明】 本発明は燃料電池用多孔質電極板に係り、轡に縦素繊維
とバインダを員化処瑠し【なる燃料電池用多孔質電極板
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a porous electrode plate for a fuel cell, and more particularly, to a porous electrode plate for a fuel cell in which vertical fibers and a binder are applied to the lining.

燃料電池用多孔質電極板として、第1図と第2図に示す
如きものがそれぞれ知られている。
As porous electrode plates for fuel cells, those shown in FIGS. 1 and 2 are known.

前者は、炭素粉lを主材料とし、これにフェノール樹脂
などのバインダ2を混入し、ヒートプレスなどによりバ
インダ3を硬化結着させて、平板Ilsと、その片面に
ガス流路4を形成する複数の央条部Sを一体に成形した
後、これを高温で員化鉤成したものである。しかし、こ
の電極板は、炭素$1自身の**が低いため、非常に脆
いばかりでな(、また緻密になりすぎるため、ガス拡散
が不充分で電池効率も低いという欠点があった。
In the former, carbon powder I is used as the main material, a binder 2 such as a phenol resin is mixed therein, and the binder 3 is hardened and bonded using a heat press or the like to form a flat plate Ils and a gas passage 4 on one side thereof. After a plurality of central stripes S are integrally molded, this is then ferruled at a high temperature. However, this electrode plate had the disadvantage that it was not only very brittle because the carbon $1 itself had a low**, but also that it was too dense, resulting in insufficient gas diffusion and low battery efficiency.

一方後看は、主材料として炭素繊維6を用いるもので、
10−以上の炭素繊維6を使用すると、電fiI[とし
て充分な機械的強度が得られるが、長い炭素繊維が成形
の邪魔となるため、ヒートプレスなどkより直接、平板
部3と複数の突条ssからな4凹凸形状の電aWを成形
することは極め【−一である。したがって、この様な長
い炭素繊維を使用する場合には、まず厚さの厚い平板を
作り、その後ガス流路4を切削加工して、平板部3と複
数の夷*IIIからなる凹凸形状の電極板に形成しなけ
ればならない。しかし、この切削加工は極めて面倒で製
作工数が多くかかるとと−に、長い炭素繊維を主材料と
じズ平板を作ると、炭素繊維が板面に対して平行に並び
やすく、板INK対し【直角オ肉に延在する炭素繊維が
比較的少くなるため、真南llsがその両側面、つまり
切削加工によつ【形成されたガス流路4の壁面部分で欠
は易いという欠点があった。
On the other hand, the latter uses carbon fiber 6 as the main material,
If carbon fibers 6 of 10 or more are used, sufficient mechanical strength can be obtained as electric fiI[, but since the long carbon fibers become an obstacle to molding, the flat plate part 3 and the plurality of protrusions are directly pressed using a heat press or the like. It is extremely difficult to form an electric aW with four concavo-convex shapes made of strips ss. Therefore, when using such long carbon fibers, first make a thick flat plate, and then cut the gas flow path 4 to form an uneven electrode consisting of the flat plate part 3 and a plurality of layers *III. Must be formed into a board. However, this cutting process is extremely troublesome and requires a large number of manufacturing man-hours, and when a flat plate is made mainly of long carbon fibers, the carbon fibers tend to line up parallel to the plate surface, making it difficult to make a straight line at right angles to the plate INK. Since the number of carbon fibers extending in the gas passage is relatively small, there is a drawback that the due south lls is easily chipped on both sides thereof, that is, on the wall surface of the gas passage 4 formed by cutting.

主材料として炭素繊維6を用いる場合でも、l■以下の
短繊維にすれば、切削加工を要することなくヒートプレ
スなどKより直接、凹凸形状の電極板を成形することは
可能であるが、全体的に機械的強度が低くなるばかりで
なく、見掛密度が高くなって緻1tKなり、ガス拡散が
不貞となる。又、繊維畏が1〜10■の範囲では、ガス
拡散性は比較的良いが、機械的強度が不充分で、かつヒ
ートプレスなどKよる成形性も悪い。
Even when carbon fiber 6 is used as the main material, it is possible to form an uneven electrode plate directly using a heat press or other K without cutting if the short fibers are less than 1 cm in size, but the entire Not only does the mechanical strength become lower, but the apparent density becomes higher and becomes denser than 1tK, which impairs gas diffusion. Further, when the fiber size is in the range of 1 to 10 cm, the gas diffusivity is relatively good, but the mechanical strength is insufficient and the moldability by K such as heat press is also poor.

この様な炭素繊維の長さと成形性、ガス拡散性および機
械的強度の関係を示すと第3図の如くなる。第**にお
いて、特性線Xは威jI#性、Yはガス拡散性、2は機
械的強直をそれぞれ示す。
The relationship between the length of such carbon fibers, moldability, gas diffusivity, and mechanical strength is shown in FIG. 3. In No. **, characteristic line X indicates strength, Y indicates gas diffusivity, and 2 indicates mechanical stiffness.

本実−の目的は、ガス拡散性及び機械的強度に優れ、し
かも容易に成形し得る燃料電池用多孔質電極板を提供す
るととkある。
The purpose of this project is to provide a porous electrode plate for fuel cells that has excellent gas diffusivity and mechanical strength and can be easily molded.

この目的を達成するため、本発−は、炭素繊維とバイン
ダな炭化処理して平板部とそり片面にガス流路を構成す
る複数の突条部を一体に層成した燃料電池用多孔質電極
板において、前記平板部内に位置する炭素繊維の長さを
、前記突条部内に位置する炭素繊維の長さよりも長くす
るととにより、平板部における機械的強度及びガス拡散
性を良好にし、かつ突条部における成形性を容易にした
ことを特徴とする。
In order to achieve this objective, the present invention has developed a porous electrode for fuel cells, which is made by carbonizing carbon fibers and a binder and integrally layering a flat plate part and a plurality of protrusions forming gas flow paths on one side of the warp. In the plate, the length of the carbon fibers located within the flat plate portion is made longer than the length of the carbon fibers located within the protrusion, thereby improving mechanical strength and gas diffusivity in the flat plate portion, and improving the protrusion. It is characterized by easy moldability in the strips.

以下、本発明を図示の実施例に基づいて詳細に説期する
Hereinafter, the present invention will be explained in detail based on illustrated embodiments.

第411mは本発明の一実施例に係る電極板の断面図で
ある。
No. 411m is a sectional view of an electrode plate according to an embodiment of the present invention.

この実施例では、平板部3内に位置する炭素繊−として
、電極板が必要とする機械的強度とガス拡散性が得られ
る長繊m8Aを用い、ガス流路4を構成する突条部5内
に位置する炭素繊維として、成形性が良く、かつ電極の
起電力を外部へ取出し易い機に充分電気抵抗の低い短繊
維6Bを用いている。
In this embodiment, long fibers m8A are used as the carbon fibers located in the flat plate part 3, which can provide the mechanical strength and gas diffusivity required for the electrode plate, and the protrusion part 5 forming the gas flow path 4 is used. As the carbon fibers located inside, short fibers 6B are used, which have good moldability and have a sufficiently low electrical resistance for the machine to easily extract the electromotive force of the electrodes to the outside.

この様な電11[は、例えば濾過成形法によって次の如
く製作することができる。まず、長い炭素繊−6Aを適
当に分散させた分散水溶液をフィルタを介して濾過し、
フィルタ上に炭素繊維6Aのマットな形成する。次に炭
素繊維6人のマット上のガス流路4に相当する位置に雇
を載置した後、これら雇の間の空間、つまり突条部5に
相当する空間に前述と同様の方法で、短い炭素繊維6B
の分散水溶液を注入し、フィルタと既に形成されている
炭素繊Ji16Aのマットを介して濾過し、炭素繊維6
Aのマット上に炭素繊維6Bのマットを積層状態で形成
する。これにより、平板部3を構成する長い炭素繊維6
人のマットと、このマットの片面に積層された複数の突
条部Sを構成する短い炭素繊維6Bのマットが出来上る
。これを乾燥させた後、これに例えばフェノール樹脂な
どのバインダ2を含浸し、ヒートプレスなどKより平板
部3の厚さ及び突条部5の高さが所定の寸法となる様に
、加圧、加熱してバインダ2を硬化させ、さらに不活性
気体中あるいは真空中において高温で加熱して充分に炭
化し、多孔質電極板となる。
Such an electrode 11 can be manufactured as follows, for example, by a filtration molding method. First, a dispersion aqueous solution in which long carbon fibers-6A are appropriately dispersed is filtered through a filter.
A matte layer of carbon fiber 6A is formed on the filter. Next, after placing the wires at the positions corresponding to the gas flow paths 4 on the mat of six carbon fibers, in the space between these wires, that is, the space corresponding to the protrusions 5, in the same manner as described above, short carbon fiber 6B
An aqueous dispersion solution of carbon fiber Ji16A is injected and filtered through a filter and a mat of carbon fiber Ji16A that has already been formed.
A mat of carbon fibers 6B is formed in a laminated state on the mat of A. As a result, the long carbon fibers 6 constituting the flat plate portion 3
A human mat and a mat of short carbon fibers 6B forming the plurality of protrusions S laminated on one side of the mat are completed. After drying this, it is impregnated with a binder 2 such as phenol resin, and then pressurized using a heat press or the like so that the thickness of the flat plate part 3 and the height of the protruding part 5 become the predetermined dimensions. The binder 2 is heated to harden, and further heated at high temperature in an inert gas or vacuum to be sufficiently carbonized to form a porous electrode plate.

本発明者の実験によれば、長い炭素繊維6人の長さ寸法
としては2〜30m、短い炭素繊維6Bの長さ寸法とし
ては0.1〜1mが適当で、soo’c以上で充分に炭
化されているものが良好であった。
According to the inventor's experiments, the length of the six long carbon fibers is 2 to 30 m, and the length of the short carbon fiber 6B is 0.1 to 1 m, and soo'c or more is sufficient. Carbonized ones were good.

又、炭素繊維6A、6Bの直径としては、いずれも10
〜30μが良好で、この範囲を越えると前記濾過時にフ
ィルタの目詰りを起こしたり、繊維自体の弾性が強すぎ
″C製作時の厚さ寸法の調節が困−になる等の問題が生
じる。
Also, the diameters of carbon fibers 6A and 6B are both 10
A value of ~30μ is good; if this range is exceeded, problems such as clogging of the filter during filtration or the difficulty in adjusting the thickness during fabrication of the fibers occur because the elasticity of the fibers themselves is too strong.

一次に、本実施例の具体例について述べる。First, a specific example of this embodiment will be described.

成体例1:平板s3の炭素繊維6人として藁さlO■、
直径12#の炭素1illi繍、突条部5の炭素繊11
16Bとして長さ0.7■、直@12μの炭素繊織を用
いて、厚さ2■のマットを作り、これにフェノールlI
M120Xを加え、樹脂を硬化後soo’cで炭化焼成
した。この様にして得られた電極板は密度o、5p/c
d、曲げ強1[2(IP/d、電気抵抗0.10−一で
、主材料に炭素粉を用いた従来例に比べて曲げ強度が6
倍となり、電池効率が10!X向上し、さらに主材料と
して炭素繊維を用い切削加工でガス流路を形成する従来
例に比べて製作工数が著しく減少した。
Adult example 1: Straw as 6 carbon fibers of flat plate s3,
Carbon fiber embroidery with a diameter of 12#, carbon fiber 11 on the protrusion 5
A mat with a thickness of 2 cm was made using a carbon fiber fabric with a length of 0.7 cm and a straight @ 12 μ as 16B, and phenol lI was added to this mat.
M120X was added, the resin was cured, and then carbonized and fired in soo'c. The electrode plate obtained in this way has a density o, 5p/c
d, bending strength 1[2 (IP/d, electrical resistance 0.10-1, bending strength 6 compared to conventional example using carbon powder as main material)
The battery efficiency is doubled and the battery efficiency is 10! In addition, the number of manufacturing steps was significantly reduced compared to the conventional example in which carbon fiber was used as the main material and the gas flow path was formed by cutting.

具体例2;平板s3の炭素繊維6Aとして長さ20■、
直径20μの炭素繊維、突条部6Bの炭素11!m6B
として長さ0.4m、直径12AI)lR*繊維を用い
、具体例1と同様の方法で電極板を作った。この電極板
はその曲げ強度が30嗜/−と具体例1よりさらに50
%向上し、かつ電池効率も具体例1よりさらに5X向上
した。その他の特性及び製作工数は具体例1と同じであ
った。
Specific example 2: carbon fiber 6A of flat plate s3, length 20cm,
Carbon fiber with a diameter of 20μ, carbon 11 on the protrusion 6B! m6B
An electrode plate was made in the same manner as in Example 1 using 1R* fiber (length: 0.4 m, diameter: 12 AI). This electrode plate has a bending strength of 30 mm/-, which is further 50 mm than that of Example 1.
%, and the battery efficiency was further improved by 5X compared to Example 1. Other characteristics and manufacturing steps were the same as in Example 1.

第5図は本発明の他の実施例に係る電極板の断面図であ
る。
FIG. 5 is a sectional view of an electrode plate according to another embodiment of the present invention.

この実施例では、平板部3における炭素繊維が2層に構
成されており、突条部5の炭素繊維6Bと、平板部3に
おける反央条部儒の層の炭素繊維6Aとしてはそれぞれ
第4図の実施例と同様の炭素繊維を用い、平板部3にお
ける突条部側の層の炭素峨!*6Cとして、直径が炭素
繊維6’A、6Bより大で、長さが炭素繊維6人より短
く炭素繊維6Bより長いものを用いている。
In this embodiment, the carbon fibers in the flat plate part 3 are composed of two layers, and the carbon fibers 6B in the protruding strip part 5 and the carbon fibers 6A in the anti-central striation layer in the flat plate part 3 are each in the fourth layer. Using the same carbon fiber as in the embodiment shown in the figure, the carbon fiber of the layer on the protrusion side of the flat plate part 3 is used. * As 6C, the diameter is larger than the carbon fibers 6'A and 6B, and the length is shorter than the carbon fiber 6 and longer than the carbon fiber 6B.

具体例としては、炭素繊維6A、68に前記実施例の具
体例1と同じ炭素繊維を用い、炭素繊維6Cに長さ5■
、直径20μの炭素繊維を用いた。
As a specific example, the carbon fibers 6A and 68 are the same as those in Specific Example 1, and the carbon fiber 6C has a length of 5 cm.
, carbon fibers with a diameter of 20μ were used.

この様な電極板も、フィルタと既に形成されている炭素
繊維6Aのマット上に炭素繊維6Cの分敏水11II液
を注入濾過して炭素*繍6Cのマットを積層状態で形成
する玉揚を付加するだけで、前記したa4’ejAの電
maの製作方法と同様な方法で製作することができる。
Such an electrode plate is also made by doffing, in which a carbon fiber 6C 11II solution is injected and filtered onto a carbon fiber 6A mat that has already been formed with a filter to form a carbon*6C mat in a laminated state. By simply adding it, it can be manufactured in the same manner as the above-mentioned method for manufacturing the a4'ejA electric ma.

一二の実施例では、前記実施例と同様な効果が得られる
他、次の如き効果も得られる。即ち、千屓s30反突条
部側に配置された電解質中の電解液が電極板における各
炭素繊維間の毛細管現象によって吸上げられる際、平板
部3の突条部側部分には直径の大きな各炭素繊維60に
よってこれらの間にその他の部分よりも大きな空間が形
成されるため、この部分での毛細管現象による吸上げ力
が弱くなる。その結果、電解質から電極板に過度に電解
液が吸上げられるのを防ぎ、電解質の保液寿命、つまり
電池寿命を大幅に延ばすことができる。
In the twelfth embodiment, in addition to the effects similar to those of the previous embodiment, the following effects can also be obtained. That is, when the electrolytic solution in the electrolyte placed on the side opposite to the protruding part of Senbin S30 is sucked up by the capillary phenomenon between the carbon fibers in the electrode plate, the part of the flat plate part 3 on the protruding part side has a large diameter. Since a larger space is formed between each carbon fiber 60 than in other parts, the suction force due to capillary action in this part becomes weaker. As a result, it is possible to prevent the electrolyte from being excessively drawn up from the electrolyte to the electrode plate, and to significantly extend the liquid retention life of the electrolyte, that is, the life of the battery.

以上説明した様に、本発明によれば、平板部内に位置す
る炭素l/1.罐として長繊維を用い、突条部内に位置
する炭素繊維として短繊維を用いたので、電極板の機械
的強度及びガス拡散性を向上し得るとともに、突条部の
成形性が容易になり、切削加工を要することなく電極板
を少ない工数で製作することが可能となる。
As explained above, according to the present invention, carbon l/1. Since long fibers were used as the can and short fibers were used as the carbon fibers located in the protrusions, the mechanical strength and gas diffusivity of the electrode plate could be improved, and the protrusions could be easily formed. It becomes possible to manufacture an electrode plate with fewer man-hours without requiring cutting.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は従来の多孔質電極板の各側を示す断
面図、第3図は多孔質電極板における炭素繊維長と成形
性、ガス拡散性及び機械的強度の関係を示す特性図、第
4図及び第5図は本発明の各実施例に係る多孔質電極板
の断面図である。 2・・・・・・バインダ、3・・・・・・平板部、4・
・・・・・ガス流路、ト・・・・突条部、6A・・・・
・・長い炭素繊°維、6B・・・・・・短い炭素繊維、
6C・・・・・・太い炭素繊維。 1、″ ゛、゛ 1′1 図 722 73 困 小−m稚長−木 41ml ″75FjrX
Figures 1 and 2 are cross-sectional views showing each side of a conventional porous electrode plate, and Figure 3 is a characteristic showing the relationship between carbon fiber length, formability, gas diffusivity, and mechanical strength in a porous electrode plate. 4 and 5 are cross-sectional views of porous electrode plates according to embodiments of the present invention. 2... Binder, 3... Flat plate part, 4...
...Gas flow path, G... Protrusion, 6A...
...Long carbon fiber, 6B...Short carbon fiber,
6C...Thick carbon fiber. 1,''゛,゛1'1 Fig. 722 73 Difficult-m Young long-wood 41ml ``75FjrX

Claims (1)

【特許請求の範囲】 1、炭素繊維とバインダを炭化l&場して平板部と七〇
片丙にガス流路を構成する複数の央条郁を一体に形成し
た燃料電池用多孔質電極I[におい【、前−記千ag内
に位置する縦素繊維の長さを、前記突条部内に位置する
炭素繊維の長さよりも長くしたことを411像とする燃
料電池用多孔買電fiII[。 2、II許績求の118第1項において、前記平板部内
に位置する縦素繊維の通を、前記突条部内に位置する炭
素繊維の4よりも太(したことを4111とする燃料電
池用多孔買電1i1E。 3、炭素鐵−とバインダを真北J6@シて平板部とその
片面にガス流路41−構成する複数の央秦部を一体に形
成したms電池用多孔質電礪板において、―配子[部内
に位置する炭素繊維の長さを、前記′突条部内に位置す
る縦素繊維の長さよりも長くするとともk、前記千1[
のvI&粂部儒部分内に位置する縦素繊維の極を、前記
平板部の反央条郁儒部分内に位置する炭素繊維の掻より
も太くしたことを**とする燃料電池用多孔質電極板。 4、特許請求の範囲第3項において、前記平板部の突秦
部@部分内に位置する縦素繊維の長さを、−前記平板部
の反突条部側部分内に位置する#lts繊維の喪さより
も短くしたことを**とする燃料電池用多孔質電極板。
[Scope of Claims] 1. A porous electrode for fuel cells in which carbon fibers and a binder are carbonized to form a flat plate part and a plurality of central grooves that constitute gas flow paths in 70 pieces. Porous electricity purchase fiII for fuel cells [411 image] in which the length of the longitudinal fibers located within the 1,000 ag is longer than the length of the carbon fibers located within the protrusions. 2, II Permission Request No. 118, Paragraph 1, it is stated that the longitudinal fibers located in the flat plate portion are thicker than the carbon fibers located in the protrusion portion (4111). Electricity 1i1E. 3. In a porous electrical plate for ms batteries, in which a flat plate part and a plurality of central parts forming gas flow channels 41 are integrally formed on one side of the flat plate part by combining carbon iron and a binder, - If the length of the carbon fibers located in the ligating part is longer than the length of the longitudinal fibers located in the ridge part,
A porous material for fuel cells, characterized in that the poles of the vertical fibers located in the vI & komebe part of the plate part are made thicker than the carbon fiber poles located in the anti-central part of the flat plate part. Electrode plate. 4. In claim 3, the length of the longitudinal fibers located in the protruding part @ part of the flat plate part is - the #lts fiber located in the opposite part of the flat plate part on the side of the protruding part. A porous electrode plate for fuel cells that has a shorter length than the original length.
JP56197624A 1981-12-10 1981-12-10 Porous electrode plate for fuel cell Pending JPS58100364A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56197624A JPS58100364A (en) 1981-12-10 1981-12-10 Porous electrode plate for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56197624A JPS58100364A (en) 1981-12-10 1981-12-10 Porous electrode plate for fuel cell

Publications (1)

Publication Number Publication Date
JPS58100364A true JPS58100364A (en) 1983-06-15

Family

ID=16377573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56197624A Pending JPS58100364A (en) 1981-12-10 1981-12-10 Porous electrode plate for fuel cell

Country Status (1)

Country Link
JP (1) JPS58100364A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5927466A (en) * 1982-08-06 1984-02-13 Tokyo Electric Power Co Inc:The Fuel cell
FR2532477A1 (en) * 1982-08-24 1984-03-02 Kureha Chemical Ind Co Ltd SUBSTRATE STRIE FOR FUEL CELL ELECTRODE
JPS6059663A (en) * 1983-09-12 1985-04-06 Hitachi Ltd Electrode plate for fuel cell and its manufacture
EP0328135A2 (en) * 1988-02-12 1989-08-16 International Fuel Cells Corporation Corrosion Resistant Fuel Cell Substrates
EP0448719A1 (en) * 1989-10-17 1991-10-02 Kureha Kagaku Kogyo Kabushiki Kaisha Porous carbon material equipped with flat sheet-like ribs and production method thereof
EP1336999A1 (en) * 2000-10-31 2003-08-20 Matsushita Electric Industrial Co., Ltd. High polymer electrolyte fuel cell

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5927466A (en) * 1982-08-06 1984-02-13 Tokyo Electric Power Co Inc:The Fuel cell
FR2532477A1 (en) * 1982-08-24 1984-03-02 Kureha Chemical Ind Co Ltd SUBSTRATE STRIE FOR FUEL CELL ELECTRODE
JPS6059663A (en) * 1983-09-12 1985-04-06 Hitachi Ltd Electrode plate for fuel cell and its manufacture
EP0328135A2 (en) * 1988-02-12 1989-08-16 International Fuel Cells Corporation Corrosion Resistant Fuel Cell Substrates
EP0448719A1 (en) * 1989-10-17 1991-10-02 Kureha Kagaku Kogyo Kabushiki Kaisha Porous carbon material equipped with flat sheet-like ribs and production method thereof
US5236687A (en) * 1989-10-17 1993-08-17 Kureha Kagaku Kogyo Kabushiki Kaisha Flat plate-like ribbed porous carbon material
EP1336999A1 (en) * 2000-10-31 2003-08-20 Matsushita Electric Industrial Co., Ltd. High polymer electrolyte fuel cell
EP1336999A4 (en) * 2000-10-31 2006-08-16 Matsushita Electric Ind Co Ltd High polymer electrolyte fuel cell

Similar Documents

Publication Publication Date Title
DE69908386T2 (en) BIPOLAR ELECTRODE FOR ELECTROCHEMICAL REDOX REACTIONS
ITTO940099A1 (en) LEAD-ACID BIPOLAR BATTERY.
US4654242A (en) Self-supporting, dimensionally stable carbon composite member and a method of producing it
DE4205210C2 (en) Solid oxide fuel cell manifold and process for its manufacture
KR20010070030A (en) Separator for fuel cell
JP3356534B2 (en) Electrolyte holding plate and method for manufacturing the same
JPH0449747B2 (en)
JPS58100364A (en) Porous electrode plate for fuel cell
JPH0140128B2 (en)
JP2584574B2 (en) Storage battery separator and storage battery assembling method
CA1276063C (en) Self-supporting, dimensionally stable carbon composite member and a method of producing it
JPH01160867A (en) Production of electrically conductive material
JP3844101B2 (en) Grooved electrode material and manufacturing method thereof
JP3595207B2 (en) Fuel cell separator and method for producing the same
JPH01266223A (en) Production of anisotropic porous carbon formed product
JPH0218550B2 (en)
JPH0437545B2 (en)
JPS6319983B2 (en)
JP2001167785A (en) Electrolytic bath for redox flow cell and electrode material
JP3342707B2 (en) Gas diffusion electrode
JPH0815070B2 (en) Separator for lead acid battery
JPH0622137B2 (en) Fuel cell electrode substrate and manufacturing method thereof
JPS5946762A (en) Plate for fuel cell
JPH0576746B2 (en)
JPH0151026B2 (en)