JPS6227874B2 - - Google Patents

Info

Publication number
JPS6227874B2
JPS6227874B2 JP7982579A JP7982579A JPS6227874B2 JP S6227874 B2 JPS6227874 B2 JP S6227874B2 JP 7982579 A JP7982579 A JP 7982579A JP 7982579 A JP7982579 A JP 7982579A JP S6227874 B2 JPS6227874 B2 JP S6227874B2
Authority
JP
Japan
Prior art keywords
ferrite
temperature
wastewater
atmosphere
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7982579A
Other languages
Japanese (ja)
Other versions
JPS565182A (en
Inventor
Masakatsu Sano
Harumi Nakama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP7982579A priority Critical patent/JPS565182A/en
Publication of JPS565182A publication Critical patent/JPS565182A/en
Publication of JPS6227874B2 publication Critical patent/JPS6227874B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)
  • Water Treatment By Sorption (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は重金属含有廃水の処理方法に関するも
のである。 従来より重金属含有廃水の処理方法として廃液
にアルカリを加え、廃液中に重金属水酸化物を生
成してこれを除去する方法が最もよく知られてい
るが、この方法によつて生成した重金属水酸化物
は水に溶解しやすく、その投棄に伴なう二次公害
の危険性が非常に大きかつた。 この問題点を解消するため、廃液中の重金属を
強磁性酸化物であるフエライトの結晶格子中に取
り込んで廃水より重金属を分離除去する方法が特
願昭47−127816号出願(特公昭52−22307)によ
り提案され、現在この方法が実用化に至つてい
る。この方法は重金属を含有する廃液に所定量の
第一鉄塩を加え、さらに該液をアルカリ性に保持
し、空気等の酸化性ガスを吹き込んで第一鉄塩を
酸化して結晶構造中に重金属を取り込んだフエラ
イトを生成するものである。この方法によつて生
成した重金属水酸化物は水に溶解しにくく、投棄
に伴う二次公害の危険性の少ない非常に好ましい
処理方法である。 しかしながらかかる方法を効率的に逐行するに
は液を加熱した状態で酸化反応を行なうことが好
ましく、従つてこの加熱のための工数及び経費が
必要であつた。なお反応温度が低くなるとフエラ
イト生成が困難になり、生成するフエライト粒径
が小さくなつて固液分離が難しくなつたり又酸化
時間が長くなつたりして実用上の問題点が多かつ
た。 本発明はこれらの弊害を改善し、廃水中の重金
属を低温すなわちほぼ廃水そのままの温度で処理
する方法を提供することを目的とする。 即ち本発明は有害重金属含有廃水に少なくとも
0.002モル以上の第一鉄塩を加え、液中の酸根に
対して約1当量のさらにアルカリを添加して廃液
のPHを8〜12に調整し、該液を酸素分圧0.1気圧
以下の雰囲気中で撹拌し、反応液を加熱しない常
温で粒径の大きなフエライト沈澱物を短時間で生
成することを特徴とする。 ここで本発明においては上記撹拌は高速で行な
うことが好ましく、例えば100r.p.m以上の撹拌
速度を用いることが有効である。また上記常温は
地表近傍の温度程度をさすが、温度としては約40
℃以下0℃以上(これ以下では固化)をさす。 通常空気中で常温フエライト反応によつて生成
する沈澱物はフエライトとゲータイトの混合物で
その粒径は著しく小さいと考えられている。 即ち反応温度の低下はフエライト生成速度が低
下することを意味し又酸化速度がフエライト生成
反応の律速条件であると考えられるので反応温度
の低下に対応して酸化速度を下げることがフエラ
イト生成には好ましいと考えられる。つまり常温
で100r.p.m.(回転/分)以上の速度で撹拌を行
つて酸化反応を行う本発明の方法では、酸素分圧
を0.1気圧以下に保持することが必要になる。 酸素分圧が0.1気圧を越えるとゲータイトの生
成量が著しく多くなる。又フエライトを生成する
としてもその粒径は300Åより著しく小さくなつ
て固液分離が困難になる。 以下本発明を実施例によりさらに詳細に説明す
る。 実施例 1 Cu2+,Cd2+,Pb2+をそれぞれ約100ppmづつ含
有する総濃度約300ppmの重金属溶液500mlに硫
酸第一鉄を0.05モル溶かし、該液を20℃、酸素分
圧0.02気圧の窒素−酸素混合ガス(1気圧)中に
置きカセイソーダを添加してPH10に保持しながら
ホモジナイザー(日本精機製作所型名AM−8)
を使つて10000r.p.m.の速度で撹拌した。 撹拌1時間後の沈殿は黒色、強磁性であり、溶
液中に着磁したバリウムフエライトを入れ沈殿物
を分離した。 分離後の液の一部を採取し原子吸光光度法によ
つて残存金属濃度を調べ、第一表の結果を得た。
The present invention relates to a method for treating wastewater containing heavy metals. Conventionally, the most well-known method for treating wastewater containing heavy metals is to add alkali to the wastewater to generate and remove heavy metal hydroxides in the wastewater. These materials easily dissolve in water, and the risk of secondary pollution associated with their dumping was extremely high. In order to solve this problem, a method of separating and removing heavy metals from wastewater by incorporating them into the crystal lattice of ferrite, which is a ferromagnetic oxide, has been proposed in Japanese Patent Application No. 127816/1984 (Japanese Patent Publication No. 22307/1983). ), and this method has now been put into practical use. In this method, a predetermined amount of ferrous salt is added to a waste liquid containing heavy metals, the liquid is kept alkaline, and an oxidizing gas such as air is blown in to oxidize the ferrous salt, so that heavy metals are added to the crystal structure. It produces ferrite that incorporates The heavy metal hydroxides produced by this method are difficult to dissolve in water, and this is a highly preferred treatment method with little risk of secondary pollution associated with dumping. However, in order to carry out such a method efficiently, it is preferable to carry out the oxidation reaction while the liquid is heated, and therefore, the number of steps and costs for this heating are required. Note that when the reaction temperature is lower, it becomes difficult to produce ferrite, and the particle size of the ferrite produced becomes smaller, making solid-liquid separation difficult and oxidation time becoming longer, resulting in many practical problems. An object of the present invention is to improve these disadvantages and provide a method for treating heavy metals in wastewater at a low temperature, that is, at almost the same temperature as the wastewater. That is, the present invention provides wastewater containing hazardous heavy metals with at least
Add 0.002 mol or more of ferrous salt, and further add about 1 equivalent of alkali to the acid radical in the solution to adjust the pH of the waste solution to 8 to 12, and store the solution in an atmosphere with an oxygen partial pressure of 0.1 atmosphere or less. It is characterized by producing large ferrite precipitates in a short time at room temperature without heating the reaction solution. Here, in the present invention, it is preferable to carry out the above-mentioned stirring at a high speed, for example, it is effective to use a stirring speed of 100 rpm or more. Also, the normal temperature mentioned above refers to the temperature near the earth's surface, but the temperature is approximately 40°C.
℃ or lower and 0℃ or higher (solidification occurs below this temperature). It is thought that the precipitate normally produced by the room-temperature ferrite reaction in air is a mixture of ferrite and goethite, and its particle size is extremely small. In other words, a decrease in the reaction temperature means a decrease in the ferrite production rate, and since the oxidation rate is considered to be the rate-determining condition for the ferrite production reaction, it is important to reduce the oxidation rate in response to a decrease in the reaction temperature for ferrite production. considered preferable. In other words, in the method of the present invention in which the oxidation reaction is carried out by stirring at room temperature at a speed of 100 rpm (revolutions per minute) or more, it is necessary to maintain the oxygen partial pressure at 0.1 atmosphere or less. When the oxygen partial pressure exceeds 0.1 atm, the amount of goethite produced increases significantly. Furthermore, even if ferrite is produced, its particle size will be significantly smaller than 300 Å, making solid-liquid separation difficult. The present invention will be explained in more detail below with reference to Examples. Example 1 0.05 mole of ferrous sulfate was dissolved in 500 ml of a heavy metal solution containing about 100 ppm each of Cu 2+ , Cd 2+ , and Pb 2+ with a total concentration of about 300 ppm, and the solution was heated to 20°C and an oxygen partial pressure of 0.02 atm. Place it in a nitrogen-oxygen mixed gas (1 atm) and add caustic soda to maintain the pH at 10 while using a homogenizer (Nippon Seiki Seisakusho Model AM-8).
The mixture was stirred at a speed of 10,000 rpm. After stirring for 1 hour, the precipitate was black and ferromagnetic, and magnetized barium ferrite was added to the solution to separate the precipitate. A portion of the liquid after separation was sampled and the remaining metal concentration was examined by atomic absorption spectrophotometry, and the results shown in Table 1 were obtained.

【表】 これらは排水規準を大巾に下まわつている。 実施例 2 Cu2+を50ppm,Ni2+,Zn2+をそれぞれ250ppm
づつ含有する総濃度約550ppmの重金属溶液500
mlに硫酸第一鉄を0.05モル溶かし、該液を20℃、
0.05気圧の減圧空気中に置き、カセイソーダを添
加してPH10に保持しながらホモジナイザー(日本
精機製作所 型名AM−8)を使つて10,000r.p.
m.の速度で撹拌した。撹拌1時間後の沈殿は黒
色、強磁性であり、溶液に着磁したバリウムフエ
ライトを入れて沈澱物を分離した。分離後の液の
一部を採取し原子吸光光度法によつて残存金属濃
度を調べ第二表の結果を得た。
[Table] These are far below the drainage standards. Example 2 Cu 2+ 50ppm, Ni 2+ and Zn 2+ 250ppm each
A heavy metal solution with a total concentration of approximately 550 ppm containing 500
Dissolve 0.05 mol of ferrous sulfate in 1 ml and stir the solution at 20°C.
Place it in reduced pressure air at 0.05 atm, add caustic soda to maintain the pH at 10, and use a homogenizer (Nippon Seiki Seisakusho Model AM-8) to heat it at 10,000 r.p.
The mixture was stirred at a speed of m. The precipitate after 1 hour of stirring was black and ferromagnetic, and magnetized barium ferrite was added to the solution to separate the precipitate. A portion of the liquid after separation was sampled and the remaining metal concentration was examined by atomic absorption spectrophotometry, and the results shown in Table 2 were obtained.

【表】 これらは排水規準を大巾に下まわつている。 なお0.1気圧以下の酸素分圧は実施例に示した
ように空気を窒素などの不活性ガスで希釈したり
減圧することによつて容易に得ることができる。 本発明において用いる第一鉄塩は実施例に示し
た硫酸第一鉄以外の第一鉄塩を用いても本発明の
効果は変らず、鉄板の酸洗い、酸化チタン製造の
際の副産物などとして大量に発生する塩化第一鉄
や硫酸第一鉄を用いるのが経済的にも又産業廃
棄、物の有効利用の点からも望ましいと考えられ
る。 なお本発明は上述した実施例に限定されるもの
ではなく、任意の濃度の重金属を含む任意の温度
の廃水処理に適用するものである。
[Table] These are far below the drainage standards. Note that an oxygen partial pressure of 0.1 atmosphere or less can be easily obtained by diluting air with an inert gas such as nitrogen or reducing the pressure as shown in the examples. The effect of the present invention does not change even if a ferrous salt other than ferrous sulfate shown in the examples is used as the ferrous salt used in the present invention, the effect of the present invention does not change, and it can be used as a by-product during pickling of iron plates, titanium oxide production, etc. It is considered desirable to use ferrous chloride and ferrous sulfate, which are generated in large quantities, economically and from the standpoint of industrial waste and effective use of materials. Note that the present invention is not limited to the above-mentioned embodiments, but is applicable to the treatment of wastewater containing any concentration of heavy metals and at any temperature.

Claims (1)

【特許請求の範囲】[Claims] 1 廃水中に含まれる有害重金属イオンを第1鉄
イオンの存在下でフエライトに結合して除去する
方法において、酸素分圧が0.1気圧以下の雰囲気
中で第一鉄塩を酸化して上記有害金属をフエライ
トに結合させることを特徴とする重金属含有廃水
の処理方法。
1 In a method for removing harmful heavy metal ions contained in wastewater by binding them to ferrite in the presence of ferrous ions, the above harmful metals are removed by oxidizing ferrous salts in an atmosphere with an oxygen partial pressure of 0.1 atmosphere or less. A method for treating wastewater containing heavy metals, the method comprising: combining ferrite with ferrite.
JP7982579A 1979-06-25 1979-06-25 Treatment of waste water containing heavy metal Granted JPS565182A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7982579A JPS565182A (en) 1979-06-25 1979-06-25 Treatment of waste water containing heavy metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7982579A JPS565182A (en) 1979-06-25 1979-06-25 Treatment of waste water containing heavy metal

Publications (2)

Publication Number Publication Date
JPS565182A JPS565182A (en) 1981-01-20
JPS6227874B2 true JPS6227874B2 (en) 1987-06-17

Family

ID=13700979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7982579A Granted JPS565182A (en) 1979-06-25 1979-06-25 Treatment of waste water containing heavy metal

Country Status (1)

Country Link
JP (1) JPS565182A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60206481A (en) * 1984-03-30 1985-10-18 Kawasaki Steel Corp Recovery treatment of waste stainless steel pickling solution
JPH0788069B2 (en) * 1985-03-14 1995-09-27 株式会社新潟鐵工所 Folding ball folding device

Also Published As

Publication number Publication date
JPS565182A (en) 1981-01-20

Similar Documents

Publication Publication Date Title
EP2017227A1 (en) Method of treating arsenic-containing solution
US4289746A (en) Process for preparation of micaceous iron oxide
US20040161374A1 (en) Treated manganese ore, process for producing the same, and use thereof
JPS6227874B2 (en)
JPH01261224A (en) Production of alkali iodide
JPS58174286A (en) Treatment of waste water containing heavy metal complex salt
CN106823235B (en) A kind of method that regulation and control growth method prepares the solid arsenic mineral of high stability
JPS6363277B2 (en)
JP3188573B2 (en) Purification method of iron chloride solution
JP3840656B2 (en) Purification method of aqueous solution and purified aqueous solution
JP2923757B2 (en) Reduction method of hexavalent selenium
JPH07215703A (en) Method for removing selenium from selenic acid containing solution
JPH0432716B2 (en)
US4200528A (en) Removing metal ions from aqueous effluents
JPH04341393A (en) Removal of iron-cyano complex ion in aqueous solution
JPH07241404A (en) Iron based inorganic flocculant and its production
JPS6227875B2 (en)
JPH07241405A (en) Production of iron-based inorganic flocculant
CN106823234A (en) A kind of method that hydro-thermal method prepares the solid arsenic mineral of high stability
CN106823233B (en) A method of distribution crystallisation preparation high stability consolidates arsenic mineral
JP2001348225A (en) Manganese ore treated matter and method for manufacturing the same
JPS58131190A (en) Treatment of ferrous ion-contg. mine water
JPS6020329B2 (en) Method for producing ferromagnetic oxide
JPH0340924A (en) Production of high-purity ferrous sulfate solution from sulfuric acid-based pickling waste acid
JPH0340922A (en) Purifying treatment of acidic metallic salt solution