JPS6363277B2 - - Google Patents
Info
- Publication number
- JPS6363277B2 JPS6363277B2 JP16133479A JP16133479A JPS6363277B2 JP S6363277 B2 JPS6363277 B2 JP S6363277B2 JP 16133479 A JP16133479 A JP 16133479A JP 16133479 A JP16133479 A JP 16133479A JP S6363277 B2 JPS6363277 B2 JP S6363277B2
- Authority
- JP
- Japan
- Prior art keywords
- wastewater
- ferrite
- ferrous
- precipitate
- heavy metals
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000000034 method Methods 0.000 claims description 17
- 229910001385 heavy metal Inorganic materials 0.000 claims description 14
- 239000002351 wastewater Substances 0.000 claims description 14
- 229910000859 α-Fe Inorganic materials 0.000 claims description 11
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical class [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 claims description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 5
- 239000001301 oxygen Substances 0.000 claims description 5
- 229910052760 oxygen Inorganic materials 0.000 claims description 5
- 150000002500 ions Chemical class 0.000 claims description 3
- 238000003672 processing method Methods 0.000 claims 1
- 239000002244 precipitate Substances 0.000 description 12
- 238000003756 stirring Methods 0.000 description 8
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 7
- 239000007788 liquid Substances 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 230000005294 ferromagnetic effect Effects 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000003513 alkali Substances 0.000 description 3
- 235000003891 ferrous sulphate Nutrition 0.000 description 3
- 239000011790 ferrous sulphate Substances 0.000 description 3
- 229910000359 iron(II) sulfate Inorganic materials 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- VTLYFUHAOXGGBS-UHFFFAOYSA-N Fe3+ Chemical compound [Fe+3] VTLYFUHAOXGGBS-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 229910001447 ferric ion Inorganic materials 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 150000004692 metal hydroxides Chemical class 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 239000011358 absorbing material Substances 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 238000003321 atomic absorption spectrophotometry Methods 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 229960002089 ferrous chloride Drugs 0.000 description 1
- 229910001448 ferrous ion Inorganic materials 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 239000002440 industrial waste Substances 0.000 description 1
- NMCUIPGRVMDVDB-UHFFFAOYSA-L iron dichloride Chemical compound Cl[Fe]Cl NMCUIPGRVMDVDB-UHFFFAOYSA-L 0.000 description 1
- 230000005291 magnetic effect Effects 0.000 description 1
- 239000011553 magnetic fluid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 235000011121 sodium hydroxide Nutrition 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Removal Of Specific Substances (AREA)
Description
本発明は重金属含有廃水の処理方法に関するも
のである。
従来より重金属含有廃水の処理方法として廃液
にアルカリを加え、廃液中に重金属水酸化物を生
成してこれを除去する方法が最もよく知られてい
るがこの方法によつて生成した重金属水酸化物は
水に溶解しやすく、その投棄に伴なう二次公害の
危険性が非常に大きかつた。
この問題点を解消するため廃液中の重金属を強
磁性酸化物であるフエライトの結晶格子中に取り
込んで廃水より重金属を分離除去する方法が提案
され現在この方法が実用化に至つている。
この方法は重金属を含有する廃液に所定量の第
一鉄塩を加え、さらに該液をアルカリ性に保持し
空気等の酸化性ガスを吹き込んで第一鉄塩を酸化
して結晶構造中に重金属を取り込んだフエライト
を生成するものであり、この方法によつて生成し
た重金属水酸化物は水に溶解しにくく投棄に伴う
二次公害の危険性の少ない非常に好ましい処理方
法である。
しかしながらかかる方法においては液を加熱し
た状態で酸化反応を行なうことが好ましく従つて
この加熱のための工数及び経費が必要であつた。
なお反応温度が低くなるとフエライト生成が困難
になつたり生成するフエライト粒径が小さくなつ
て固液分離が難しくなつたり又酸化時間が長くな
つたりして実用上の問題点が多かつた。
そこでこれら弊害を改善し廃水中の重金属を低
温すなわちほぼ廃水そのままの温度で処理する方
法が提案された。即ち第1鉄塩とアルカリを添加
した廃水を空気中で静かに撹拌することによつて
常温で粒径の大きなフエライトを生成する方法で
ある。
しかしながら該方法では処理時間が非常に長く
なるという実用上の問題があつた。
本発明の目的はこの弊害を改善し、廃水中の重
金属を常温で短時間に処理する方法を提供するこ
とにある。
即ち本発明による方法は重金属含有廃水に少な
くとも0.002モル以上の第1鉄塩を加え、さらに
アルカリを添加して廃液のPHを8〜12に調整し該
液を酸素分圧が大気中の酸素分圧(すなわち0.2
気圧)より高い雰囲気中で静かに撹拌することに
よつて加熱しない常温で粒径の大きなフエライト
沈殿物を短時間で生成することを特徴とする。
なお上記常温とは地表近傍の温度程度をさし、
温度としては約40℃以下凝固点以上をさす。
本発明の方法によれば第一鉄イオンは撹拌によ
つて徐々に酸化されて第二鉄イオンとなり、生じ
た第二鉄イオンと残存している第一鉄イオンはア
ルカリ溶液中でフエライトを生成し、該反応を継
続するうちに新たに生成するフエライトは、先に
生成したフエライトを核として廃水中の重金属イ
オンを取り込みながら核フエライト上に析出し次
第に粒成長を図つて最終的に粒径の大きな強磁性
沈殿物を生成するものと考えられる。
なお、本発明の方法に於て、撹拌速度は生成物
の性状及び処理時間に影響し、フエライト生成の
ためには撹拌は酸化性ガスを巻き込まない程度の
速度であることが好ましく、撹拌速度を大きくす
るとFe2+イオンの酸化が早められて処理時間を
短くすることが可能であるが沈殿物の粒度が小さ
くなつて沈殿物の固液分離が困難になる。一方撹
拌速度を小さくすることは沈殿の粒成長を図り磁
性のつよい沈殿物を得るのに有利であるが、同時
に処理時間が長くなつて実用上の問題となる。
しかしながら撹拌酸化を行う雰囲気の酸素分圧
を高くすることによつて粒成長を図りながら処理
時間を著しく短縮することが可能になる。
なお酸素分圧を高めることは空気のかわりに酸
素を用いたり、加圧空気を用いることによつて容
易に実現可能である。
本発明の実施によつて生成される強磁性沈殿物
からの重金属の再溶出は極めて小さく、電波吸収
材料、磁性流体用原料などとしての再利用が可能
であり、廃棄物の有効利用には誠に好ましいクロ
ーズドサイクルをもたらす。
以下実施例により本発明についてさらに詳細に
説明する。
実施例
Cu2+、Zu2+、Ni2+をそれぞれ約200ppmづつ含
有する重金属溶液1に硫酸第一鉄を0.1モル溶
かしカセイソーダを加えてPH9.5に保持し、液温
20℃、約250r.p.mの回転数で大気中で9時間撹拌
を続け強磁性沈殿を得た。
又、3気圧の加圧空気下で同様の処理を行つて
4時間後に強磁性沈殿物を得た。
処理後の液の一部を採取し原子吸光光度法によ
つて残存金属濃度を調べたがいずれの液について
もCu、Zu、Ni、Fe濃度は排水基準値以下であつ
た。また分離後の沈殿物の性状は下表の通りであ
つた。
The present invention relates to a method for treating wastewater containing heavy metals. Conventionally, the most well-known method for treating wastewater containing heavy metals is to add alkali to the wastewater to generate and remove heavy metal hydroxides in the wastewater. is easily soluble in water, and the risk of secondary pollution associated with its dumping was extremely high. In order to solve this problem, a method has been proposed to separate and remove heavy metals from wastewater by incorporating them into the crystal lattice of ferrite, a ferromagnetic oxide, and this method has now been put into practical use. In this method, a predetermined amount of ferrous salt is added to the waste liquid containing heavy metals, the liquid is kept alkaline, and an oxidizing gas such as air is blown into the liquid to oxidize the ferrous salt and add heavy metals into the crystal structure. The heavy metal hydroxides produced by this method are difficult to dissolve in water, making it a highly preferred treatment method with little risk of secondary pollution associated with dumping. However, in such a method, it is preferable to carry out the oxidation reaction while the liquid is heated, and therefore, the number of man-hours and expense required for this heating is required.
Note that when the reaction temperature is lowered, it becomes difficult to produce ferrite, the particle size of the ferrite produced becomes small, making solid-liquid separation difficult, and the oxidation time becomes longer, resulting in many practical problems. Therefore, a method has been proposed to improve these disadvantages and treat heavy metals in wastewater at low temperatures, that is, at almost the same temperature as the wastewater. That is, this method produces ferrite with a large particle size at room temperature by gently stirring wastewater to which ferrous salt and alkali have been added in the air. However, this method had a practical problem in that the processing time was extremely long. The object of the present invention is to improve this problem and provide a method for treating heavy metals in wastewater at room temperature in a short time. That is, in the method according to the present invention, at least 0.002 mole of ferrous salt is added to heavy metal-containing wastewater, and an alkali is further added to adjust the pH of the wastewater to 8 to 12. pressure (i.e. 0.2
It is characterized by the ability to generate ferrite precipitates with large particle sizes in a short time at room temperature without heating by gently stirring in an atmosphere higher than atmospheric pressure). Note that the above normal temperature refers to the temperature near the earth's surface.
The temperature is about 40℃ or below and above the freezing point. According to the method of the present invention, ferrous ions are gradually oxidized to ferric ions by stirring, and the generated ferric ions and remaining ferrous ions form ferrite in an alkaline solution. As the reaction continues, newly generated ferrite takes in heavy metal ions from the wastewater using the previously generated ferrite as a core, precipitates on the core ferrite, and gradually grows, eventually increasing the particle size. It is thought that large ferromagnetic precipitates are generated. In addition, in the method of the present invention, the stirring speed affects the properties of the product and the processing time, and in order to produce ferrite, the stirring speed is preferably such that it does not involve oxidizing gas. If it is made larger, the oxidation of Fe 2+ ions is accelerated and the treatment time can be shortened, but the particle size of the precipitate becomes smaller and solid-liquid separation of the precipitate becomes difficult. On the other hand, reducing the stirring speed is advantageous in increasing the grain growth of the precipitate and obtaining a highly magnetic precipitate, but at the same time, the processing time becomes longer, which poses a practical problem. However, by increasing the oxygen partial pressure in the atmosphere in which the stirring oxidation is performed, it becomes possible to significantly shorten the processing time while promoting grain growth. Note that increasing the oxygen partial pressure can be easily achieved by using oxygen instead of air or by using pressurized air. The re-elution of heavy metals from the ferromagnetic precipitates produced by implementing the present invention is extremely small, and they can be reused as radio wave absorbing materials, raw materials for magnetic fluids, etc., and are a great way to effectively utilize waste. Provides a favorable closed cycle. The present invention will be explained in more detail with reference to Examples below. Example 0.1 mole of ferrous sulfate was dissolved in heavy metal solution 1 containing approximately 200 ppm each of Cu 2+ , Zu 2+ , and Ni 2+ , and caustic soda was added to maintain the pH at 9.5.
Stirring was continued for 9 hours in the air at 20°C and a rotational speed of approximately 250 rpm to obtain a ferromagnetic precipitate. Further, a similar treatment was performed under pressurized air at 3 atm, and a ferromagnetic precipitate was obtained after 4 hours. A portion of the treated solution was sampled and the remaining metal concentration was examined by atomic absorption spectrophotometry, and the concentrations of Cu, Zu, Ni, and Fe in each solution were below the wastewater standard values. The properties of the precipitate after separation were as shown in the table below.
【表】
以上に示したように処理時間は酸素分圧を大き
くすることにより著しく短縮されているが沈殿物
の粒径には顕著な差は見られない。
本発明において用いる第一鉄塩には実施例に示
した硫酸第一鉄以外の第一鉄を用いても本発明の
効果は変らず鉄板の酸洗い、酸化チタン製造の際
の副産物などとして大量に発生する塩化第一鉄や
硫酸第一鉄を用いるのが経済的にも又産業廃棄物
の有効利用の点からも望ましいと考えられる。[Table] As shown above, the treatment time was significantly shortened by increasing the oxygen partial pressure, but no significant difference was observed in the particle size of the precipitate. Even if ferrous salts other than ferrous sulfate shown in the examples are used as the ferrous salts used in the present invention, the effects of the present invention will not change, and they will be used in large quantities as a by-product during pickling of iron plates and the production of titanium oxide. It is considered desirable to use ferrous chloride and ferrous sulfate, which are generated in the process, both economically and from the point of view of effective use of industrial waste.
Claims (1)
り除去する方法において、酸素分圧が大気中の酸
素分圧より高い雰囲気中で、第一鉄塩を酸化する
ようにしたことを特徴とする重金属含有廃水の処
理方法。1. A method for removing heavy metal ions in wastewater by producing ferrite, characterized in that ferrous salts are oxidized in an atmosphere where the partial pressure of oxygen is higher than that of the atmosphere. Processing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16133479A JPS5684686A (en) | 1979-12-12 | 1979-12-12 | Treatment of waste water containing heavy metal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16133479A JPS5684686A (en) | 1979-12-12 | 1979-12-12 | Treatment of waste water containing heavy metal |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5684686A JPS5684686A (en) | 1981-07-10 |
JPS6363277B2 true JPS6363277B2 (en) | 1988-12-06 |
Family
ID=15733101
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16133479A Granted JPS5684686A (en) | 1979-12-12 | 1979-12-12 | Treatment of waste water containing heavy metal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5684686A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105967379A (en) * | 2016-05-03 | 2016-09-28 | 云南大地丰源环保有限公司 | Nickel-containing waste liquid treatment method |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5881310B2 (en) * | 2011-04-27 | 2016-03-09 | 株式会社東芝 | Filtration equipment and power plant |
CN103468958B (en) * | 2013-09-23 | 2014-12-10 | 陈启松 | Tailings harmless treatment method for laterite nickel ore hydrometallurgical process |
-
1979
- 1979-12-12 JP JP16133479A patent/JPS5684686A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105967379A (en) * | 2016-05-03 | 2016-09-28 | 云南大地丰源环保有限公司 | Nickel-containing waste liquid treatment method |
Also Published As
Publication number | Publication date |
---|---|
JPS5684686A (en) | 1981-07-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108584901B (en) | Method for recovering ceramic-grade iron phosphate from polymetallic hazardous wastes | |
WO2019077302A1 (en) | Polyferric sulphate solution | |
JPS6363277B2 (en) | ||
US2384009A (en) | Process for recovering magnesium salts | |
JPS5834195B2 (en) | Method for removing arsenic and silicic acid contained in industrial wastewater | |
JP4815082B2 (en) | Treatment method of iron-containing sulfuric acid solution | |
JPS60235726A (en) | Preparation of ferric oxide for ferrite | |
JP2010275188A (en) | Treated manganese ore | |
JPS59118819A (en) | Removal of iron from lixiviation | |
JPS6227874B2 (en) | ||
JPS6227875B2 (en) | ||
JPS62127485A (en) | Method for recovering iron oxide from waste liquor produced by pickling of steel with hydrochloric acid | |
JP2004284833A (en) | Iron oxide for ferrite raw material and its production method | |
Uzun | Production of ferric complex compounds for wastewater treatment from hot rolled iron-steel solid waste | |
JPS5912732B2 (en) | Method for leaching seabed nodule material | |
RU1790997C (en) | Method of preparing ferromagnetic sorption reagent | |
TW201245054A (en) | Resourcization treatment method for heavy metal-containing alkaline sludge | |
KR0136191B1 (en) | Refining method of iron oxide | |
US4048283A (en) | Removal of heavy metals from aqueous solutions | |
JPH07275609A (en) | Production of ferrous inorganic coagulant | |
JP3282452B2 (en) | How to remove selenium from wastewater | |
JPH0361513B2 (en) | ||
KR900001489B1 (en) | Method for production of fenoso-ferric oxide containing cobalt and mangane for magnetic recording | |
JPS58133886A (en) | Treatment of waste water containing ferrous ion | |
SU1490086A1 (en) | Method of processing spent etching solutions |