JPS6363277B2 - - Google Patents

Info

Publication number
JPS6363277B2
JPS6363277B2 JP16133479A JP16133479A JPS6363277B2 JP S6363277 B2 JPS6363277 B2 JP S6363277B2 JP 16133479 A JP16133479 A JP 16133479A JP 16133479 A JP16133479 A JP 16133479A JP S6363277 B2 JPS6363277 B2 JP S6363277B2
Authority
JP
Japan
Prior art keywords
wastewater
ferrite
ferrous
precipitate
heavy metals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16133479A
Other languages
Japanese (ja)
Other versions
JPS5684686A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP16133479A priority Critical patent/JPS5684686A/en
Publication of JPS5684686A publication Critical patent/JPS5684686A/en
Publication of JPS6363277B2 publication Critical patent/JPS6363277B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は重金属含有廃水の処理方法に関するも
のである。 従来より重金属含有廃水の処理方法として廃液
にアルカリを加え、廃液中に重金属水酸化物を生
成してこれを除去する方法が最もよく知られてい
るがこの方法によつて生成した重金属水酸化物は
水に溶解しやすく、その投棄に伴なう二次公害の
危険性が非常に大きかつた。 この問題点を解消するため廃液中の重金属を強
磁性酸化物であるフエライトの結晶格子中に取り
込んで廃水より重金属を分離除去する方法が提案
され現在この方法が実用化に至つている。 この方法は重金属を含有する廃液に所定量の第
一鉄塩を加え、さらに該液をアルカリ性に保持し
空気等の酸化性ガスを吹き込んで第一鉄塩を酸化
して結晶構造中に重金属を取り込んだフエライト
を生成するものであり、この方法によつて生成し
た重金属水酸化物は水に溶解しにくく投棄に伴う
二次公害の危険性の少ない非常に好ましい処理方
法である。 しかしながらかかる方法においては液を加熱し
た状態で酸化反応を行なうことが好ましく従つて
この加熱のための工数及び経費が必要であつた。
なお反応温度が低くなるとフエライト生成が困難
になつたり生成するフエライト粒径が小さくなつ
て固液分離が難しくなつたり又酸化時間が長くな
つたりして実用上の問題点が多かつた。 そこでこれら弊害を改善し廃水中の重金属を低
温すなわちほぼ廃水そのままの温度で処理する方
法が提案された。即ち第1鉄塩とアルカリを添加
した廃水を空気中で静かに撹拌することによつて
常温で粒径の大きなフエライトを生成する方法で
ある。 しかしながら該方法では処理時間が非常に長く
なるという実用上の問題があつた。 本発明の目的はこの弊害を改善し、廃水中の重
金属を常温で短時間に処理する方法を提供するこ
とにある。 即ち本発明による方法は重金属含有廃水に少な
くとも0.002モル以上の第1鉄塩を加え、さらに
アルカリを添加して廃液のPHを8〜12に調整し該
液を酸素分圧が大気中の酸素分圧(すなわち0.2
気圧)より高い雰囲気中で静かに撹拌することに
よつて加熱しない常温で粒径の大きなフエライト
沈殿物を短時間で生成することを特徴とする。 なお上記常温とは地表近傍の温度程度をさし、
温度としては約40℃以下凝固点以上をさす。 本発明の方法によれば第一鉄イオンは撹拌によ
つて徐々に酸化されて第二鉄イオンとなり、生じ
た第二鉄イオンと残存している第一鉄イオンはア
ルカリ溶液中でフエライトを生成し、該反応を継
続するうちに新たに生成するフエライトは、先に
生成したフエライトを核として廃水中の重金属イ
オンを取り込みながら核フエライト上に析出し次
第に粒成長を図つて最終的に粒径の大きな強磁性
沈殿物を生成するものと考えられる。 なお、本発明の方法に於て、撹拌速度は生成物
の性状及び処理時間に影響し、フエライト生成の
ためには撹拌は酸化性ガスを巻き込まない程度の
速度であることが好ましく、撹拌速度を大きくす
るとFe2+イオンの酸化が早められて処理時間を
短くすることが可能であるが沈殿物の粒度が小さ
くなつて沈殿物の固液分離が困難になる。一方撹
拌速度を小さくすることは沈殿の粒成長を図り磁
性のつよい沈殿物を得るのに有利であるが、同時
に処理時間が長くなつて実用上の問題となる。 しかしながら撹拌酸化を行う雰囲気の酸素分圧
を高くすることによつて粒成長を図りながら処理
時間を著しく短縮することが可能になる。 なお酸素分圧を高めることは空気のかわりに酸
素を用いたり、加圧空気を用いることによつて容
易に実現可能である。 本発明の実施によつて生成される強磁性沈殿物
からの重金属の再溶出は極めて小さく、電波吸収
材料、磁性流体用原料などとしての再利用が可能
であり、廃棄物の有効利用には誠に好ましいクロ
ーズドサイクルをもたらす。 以下実施例により本発明についてさらに詳細に
説明する。 実施例 Cu2+、Zu2+、Ni2+をそれぞれ約200ppmづつ含
有する重金属溶液1に硫酸第一鉄を0.1モル溶
かしカセイソーダを加えてPH9.5に保持し、液温
20℃、約250r.p.mの回転数で大気中で9時間撹拌
を続け強磁性沈殿を得た。 又、3気圧の加圧空気下で同様の処理を行つて
4時間後に強磁性沈殿物を得た。 処理後の液の一部を採取し原子吸光光度法によ
つて残存金属濃度を調べたがいずれの液について
もCu、Zu、Ni、Fe濃度は排水基準値以下であつ
た。また分離後の沈殿物の性状は下表の通りであ
つた。
The present invention relates to a method for treating wastewater containing heavy metals. Conventionally, the most well-known method for treating wastewater containing heavy metals is to add alkali to the wastewater to generate and remove heavy metal hydroxides in the wastewater. is easily soluble in water, and the risk of secondary pollution associated with its dumping was extremely high. In order to solve this problem, a method has been proposed to separate and remove heavy metals from wastewater by incorporating them into the crystal lattice of ferrite, a ferromagnetic oxide, and this method has now been put into practical use. In this method, a predetermined amount of ferrous salt is added to the waste liquid containing heavy metals, the liquid is kept alkaline, and an oxidizing gas such as air is blown into the liquid to oxidize the ferrous salt and add heavy metals into the crystal structure. The heavy metal hydroxides produced by this method are difficult to dissolve in water, making it a highly preferred treatment method with little risk of secondary pollution associated with dumping. However, in such a method, it is preferable to carry out the oxidation reaction while the liquid is heated, and therefore, the number of man-hours and expense required for this heating is required.
Note that when the reaction temperature is lowered, it becomes difficult to produce ferrite, the particle size of the ferrite produced becomes small, making solid-liquid separation difficult, and the oxidation time becomes longer, resulting in many practical problems. Therefore, a method has been proposed to improve these disadvantages and treat heavy metals in wastewater at low temperatures, that is, at almost the same temperature as the wastewater. That is, this method produces ferrite with a large particle size at room temperature by gently stirring wastewater to which ferrous salt and alkali have been added in the air. However, this method had a practical problem in that the processing time was extremely long. The object of the present invention is to improve this problem and provide a method for treating heavy metals in wastewater at room temperature in a short time. That is, in the method according to the present invention, at least 0.002 mole of ferrous salt is added to heavy metal-containing wastewater, and an alkali is further added to adjust the pH of the wastewater to 8 to 12. pressure (i.e. 0.2
It is characterized by the ability to generate ferrite precipitates with large particle sizes in a short time at room temperature without heating by gently stirring in an atmosphere higher than atmospheric pressure). Note that the above normal temperature refers to the temperature near the earth's surface.
The temperature is about 40℃ or below and above the freezing point. According to the method of the present invention, ferrous ions are gradually oxidized to ferric ions by stirring, and the generated ferric ions and remaining ferrous ions form ferrite in an alkaline solution. As the reaction continues, newly generated ferrite takes in heavy metal ions from the wastewater using the previously generated ferrite as a core, precipitates on the core ferrite, and gradually grows, eventually increasing the particle size. It is thought that large ferromagnetic precipitates are generated. In addition, in the method of the present invention, the stirring speed affects the properties of the product and the processing time, and in order to produce ferrite, the stirring speed is preferably such that it does not involve oxidizing gas. If it is made larger, the oxidation of Fe 2+ ions is accelerated and the treatment time can be shortened, but the particle size of the precipitate becomes smaller and solid-liquid separation of the precipitate becomes difficult. On the other hand, reducing the stirring speed is advantageous in increasing the grain growth of the precipitate and obtaining a highly magnetic precipitate, but at the same time, the processing time becomes longer, which poses a practical problem. However, by increasing the oxygen partial pressure in the atmosphere in which the stirring oxidation is performed, it becomes possible to significantly shorten the processing time while promoting grain growth. Note that increasing the oxygen partial pressure can be easily achieved by using oxygen instead of air or by using pressurized air. The re-elution of heavy metals from the ferromagnetic precipitates produced by implementing the present invention is extremely small, and they can be reused as radio wave absorbing materials, raw materials for magnetic fluids, etc., and are a great way to effectively utilize waste. Provides a favorable closed cycle. The present invention will be explained in more detail with reference to Examples below. Example 0.1 mole of ferrous sulfate was dissolved in heavy metal solution 1 containing approximately 200 ppm each of Cu 2+ , Zu 2+ , and Ni 2+ , and caustic soda was added to maintain the pH at 9.5.
Stirring was continued for 9 hours in the air at 20°C and a rotational speed of approximately 250 rpm to obtain a ferromagnetic precipitate. Further, a similar treatment was performed under pressurized air at 3 atm, and a ferromagnetic precipitate was obtained after 4 hours. A portion of the treated solution was sampled and the remaining metal concentration was examined by atomic absorption spectrophotometry, and the concentrations of Cu, Zu, Ni, and Fe in each solution were below the wastewater standard values. The properties of the precipitate after separation were as shown in the table below.

【表】 以上に示したように処理時間は酸素分圧を大き
くすることにより著しく短縮されているが沈殿物
の粒径には顕著な差は見られない。 本発明において用いる第一鉄塩には実施例に示
した硫酸第一鉄以外の第一鉄を用いても本発明の
効果は変らず鉄板の酸洗い、酸化チタン製造の際
の副産物などとして大量に発生する塩化第一鉄や
硫酸第一鉄を用いるのが経済的にも又産業廃棄物
の有効利用の点からも望ましいと考えられる。
[Table] As shown above, the treatment time was significantly shortened by increasing the oxygen partial pressure, but no significant difference was observed in the particle size of the precipitate. Even if ferrous salts other than ferrous sulfate shown in the examples are used as the ferrous salts used in the present invention, the effects of the present invention will not change, and they will be used in large quantities as a by-product during pickling of iron plates and the production of titanium oxide. It is considered desirable to use ferrous chloride and ferrous sulfate, which are generated in the process, both economically and from the point of view of effective use of industrial waste.

Claims (1)

【特許請求の範囲】[Claims] 1 廃水中の重金属イオンをフエライト生成によ
り除去する方法において、酸素分圧が大気中の酸
素分圧より高い雰囲気中で、第一鉄塩を酸化する
ようにしたことを特徴とする重金属含有廃水の処
理方法。
1. A method for removing heavy metal ions in wastewater by producing ferrite, characterized in that ferrous salts are oxidized in an atmosphere where the partial pressure of oxygen is higher than that of the atmosphere. Processing method.
JP16133479A 1979-12-12 1979-12-12 Treatment of waste water containing heavy metal Granted JPS5684686A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16133479A JPS5684686A (en) 1979-12-12 1979-12-12 Treatment of waste water containing heavy metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16133479A JPS5684686A (en) 1979-12-12 1979-12-12 Treatment of waste water containing heavy metal

Publications (2)

Publication Number Publication Date
JPS5684686A JPS5684686A (en) 1981-07-10
JPS6363277B2 true JPS6363277B2 (en) 1988-12-06

Family

ID=15733101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16133479A Granted JPS5684686A (en) 1979-12-12 1979-12-12 Treatment of waste water containing heavy metal

Country Status (1)

Country Link
JP (1) JPS5684686A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105967379A (en) * 2016-05-03 2016-09-28 云南大地丰源环保有限公司 Nickel-containing waste liquid treatment method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5881310B2 (en) * 2011-04-27 2016-03-09 株式会社東芝 Filtration equipment and power plant
CN103468958B (en) * 2013-09-23 2014-12-10 陈启松 Tailings harmless treatment method for laterite nickel ore hydrometallurgical process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105967379A (en) * 2016-05-03 2016-09-28 云南大地丰源环保有限公司 Nickel-containing waste liquid treatment method

Also Published As

Publication number Publication date
JPS5684686A (en) 1981-07-10

Similar Documents

Publication Publication Date Title
CN108584901B (en) Method for recovering ceramic-grade iron phosphate from polymetallic hazardous wastes
WO2019077302A1 (en) Polyferric sulphate solution
JPS6363277B2 (en)
US2384009A (en) Process for recovering magnesium salts
JPS5834195B2 (en) Method for removing arsenic and silicic acid contained in industrial wastewater
JP4815082B2 (en) Treatment method of iron-containing sulfuric acid solution
JPS60235726A (en) Preparation of ferric oxide for ferrite
JP2010275188A (en) Treated manganese ore
JPS59118819A (en) Removal of iron from lixiviation
JPS6227874B2 (en)
JPS6227875B2 (en)
JPS62127485A (en) Method for recovering iron oxide from waste liquor produced by pickling of steel with hydrochloric acid
JP2004284833A (en) Iron oxide for ferrite raw material and its production method
Uzun Production of ferric complex compounds for wastewater treatment from hot rolled iron-steel solid waste
JPS5912732B2 (en) Method for leaching seabed nodule material
RU1790997C (en) Method of preparing ferromagnetic sorption reagent
TW201245054A (en) Resourcization treatment method for heavy metal-containing alkaline sludge
KR0136191B1 (en) Refining method of iron oxide
US4048283A (en) Removal of heavy metals from aqueous solutions
JPH07275609A (en) Production of ferrous inorganic coagulant
JP3282452B2 (en) How to remove selenium from wastewater
JPH0361513B2 (en)
KR900001489B1 (en) Method for production of fenoso-ferric oxide containing cobalt and mangane for magnetic recording
JPS58133886A (en) Treatment of waste water containing ferrous ion
SU1490086A1 (en) Method of processing spent etching solutions