JPS62278255A - Manufacture of aluminum alloy excellent in formability - Google Patents

Manufacture of aluminum alloy excellent in formability

Info

Publication number
JPS62278255A
JPS62278255A JP21256486A JP21256486A JPS62278255A JP S62278255 A JPS62278255 A JP S62278255A JP 21256486 A JP21256486 A JP 21256486A JP 21256486 A JP21256486 A JP 21256486A JP S62278255 A JPS62278255 A JP S62278255A
Authority
JP
Japan
Prior art keywords
aluminum alloy
treatment
alloy
heated
undergo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21256486A
Other languages
Japanese (ja)
Inventor
Shigenori Asami
浅見 重則
Takahiro Oguro
小黒 孝弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Aluminum Co Ltd
Original Assignee
Furukawa Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Aluminum Co Ltd filed Critical Furukawa Aluminum Co Ltd
Publication of JPS62278255A publication Critical patent/JPS62278255A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To develop an Al alloy excellent in formability, by subjecting an Al-Cu-Mg-Mn or Al-Cu-Mg-Mn-Si alloy having a specific composition to homogenizing treatment and then to rollings and solution heat treatment and further by applying cold working and softening treatment to the above. CONSTITUTION:An Al-alloy ingot containing, by weight, 1.4-5.5% Cu, 0.1-2.0% Mg, and 0.1-1.4% Mn or further containing <1.2% Si is heated to about 490 deg.C to undergo homogenizing treatment, which is hot-rolled at 460 deg.C to be formed into a plate and further cold-rolled to be worked into a 2mm sheet. After heated to 420-580 deg.C and held for about 1hr, the sheet is water-quenched at >=0.6 deg.C/min cooling rate and cooled down to room temp. to undergo solution heat treatment. Successively, the above sheet is cold-worked at 20-75% draft and then heated again up to 360-500 deg.C at >=40 deg.C/hr temp.-rise rate to undergo softening treatment. In this way, the Al alloy having fine grains and causing no rough surface at the time of subsequent forming can be obtained.

Description

【発明の詳細な説明】 3、発明の詳細な説明 (産業上の利用分野) 本発明は成形用高力アルミニウム合金に関するものであ
り、特に従来の2014.2024.2036合金等で
代表されるCu、 Mg、 MnまたけCu、 Mg、
 Mn、SLを含有するアルミニウム合金において、軟
化処理後成形加工を施すも肌荒れを生ずることのないア
ルミニウム合金の製造方法を開発したものである。
Detailed Description of the Invention 3. Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a high-strength aluminum alloy for forming, and in particular Cu , Mg, Mn over Cu, Mg,
The present invention has developed a method for producing an aluminum alloy containing Mn and SL that does not cause surface roughening even when subjected to molding after softening treatment.

(従来の技術) 一般に成形用高力アルミニウム合金例えば2014およ
び2024等の合金は航空機用材料又はその他の構造用
材料として大量に使用されており、2036合金は自動
車用がデー等各種の構造用材料に広く使用されている。
(Prior Art) In general, high-strength aluminum alloys for forming, such as 2014 and 2024, are used in large quantities as materials for aircraft or other structural materials, and 2036 alloy is used for various structural materials such as automobiles. widely used.

このアルミニウム合金は通常軟質材にて予備成形加工を
施し、次いで溶体化、焼入れを行い、焼入れ直後の強度
が低い短時間の間に最終成形加工を行った後時効処理を
施して高強度の製造工程によるものであり之。
This aluminum alloy is usually made of a soft material that is pre-formed, then solution-treated and quenched. Immediately after quenching, the strength is low, but the final forming process is performed for a short period of time, and then aging treatment is applied to produce high-strength products. It depends on the process.

然しなから上記の製造工程においては軟質材で1〜10
%程度の予備成形加工を受けた部分は、その後の溶体化
、焼入れ工程を行うことにより著しく粗大な再結晶組織
を形成し、最終成形加工において肌荒れ或は微小な割れ
を発生し、製品の性能を低下せしめる原因となるもので
あった。
However, in the above manufacturing process, 1 to 10
% of the preforming process will form a significantly coarse recrystallized structure during the subsequent solution treatment and quenching process, resulting in rough skin or minute cracks during the final forming process, which may impair the performance of the product. This caused a decrease in

(発明が解決しようとする問題点) 本発明はかかる現状に鑑み鋭意研究を行った結果、成形
用アルミニウム合金例えば2014.2024゜203
6合金にて代表されるCu 、 Mg 、 Mn又はC
u、Mg。
(Problems to be Solved by the Invention) As a result of intensive research in view of the current situation, the present invention has developed aluminum alloys for forming, such as 2014.2024°203.
Cu, Mg, Mn or C represented by 6 alloys
u, Mg.

Mn 、 S Iを含有するアルミニウム合金の製造法
において、軟質材の状態でも結晶粒が微細であり且っ板
材、管材或は棒材なとの軟質材に施される圧延、抽伸、
スウエジ、冷間鍛造において、その冷間加工後に溶体化
及び焼入れを行うも再結晶粒が粗大にならず、最終成形
加工後においても均一微細な結晶粒を有し、肌荒れを生
じない成形加工性に優れたアルミニウム合金を製造方法
を提供するものである。
In the manufacturing method of an aluminum alloy containing Mn and SI, the crystal grains are fine even in the soft material state, and rolling, drawing,
In swaging and cold forging, recrystallized grains do not become coarse even after solution treatment and quenching, and even after the final forming process, uniform and fine crystal grains are maintained, resulting in formability that does not cause surface roughness. The purpose of the present invention is to provide a method for manufacturing an aluminum alloy with excellent properties.

(問題点を解決する念めの手段) 本発明方法はCu、 Mg、 Mn、 Stを含有する
アルミニウム合金を均質化処理、圧延を施し、溶体化処
理により添加元素をマトリックスに固溶せしめ、急冷す
ることによりその状態を室温にもちきたすか又はその後
G、P相もしくはG、P、B相が析出した状態において
、次に適度の歪を加えることにより、軟化処理工程で微
細な再結晶粒のものがえられ、この状態で成形加工を施
し、更に溶体化処理及び最終成形加工を施すも肌荒れを
生じない製品をうろことである。
(A precautionary measure to solve the problem) The method of the present invention involves homogenizing and rolling an aluminum alloy containing Cu, Mg, Mn, and St, solid-dissolving the additive elements in the matrix through solution treatment, and then quenching. Then, in the state where the G, P phase or the G, P, B phase has precipitated, by applying appropriate strain, fine recrystallized grains can be formed in the softening process. The goal is to obtain a product that does not cause roughness even after being molded in this state, and then subjected to solution treatment and final molding.

即ち本発明方法はCu 、 Mg 、 MntたばCu
 + Mg r Mn rSIを含有するアルミニウム
合金を均質化処理後、圧延を施し、次いでこれを420
℃〜580℃の温度にて加熱保持後、室温まで冷却し、
次いで20〜75%の加工を施した後再度360℃〜5
00℃の温度で軟化せしめることを特徴とする成形加工
性に優れたアルミニウム合金の製造方法アルミニウム合
金の鋳塊を均質化処理後、熱間圧延或は更に冷間圧延を
行って板材とした後、まず420℃〜580℃の温度で
加熱保持し、好ましくけ0.6℃/min以上の冷却速
度にてより好ましくは水焼入れにより室温まで冷却を行
う。これは溶質原子が過飽和に固溶している状態ま念は
その後G−P相もしくはG−P−B相が析出し九状態に
することであるが上記加熱温度が420℃未満の場合に
は充分に固溶することが出来ず、又580℃を超える場
合には共晶溶融が起り好ましくない。また加熱保持時間
は数分間程度でよいが、なるべくならば十分な時間の保
持が好ましい。又加熱保持後の冷却速度は0.6℃/m
ln以下になるとθ安定相もしくはS安定相が析出して
再結晶粒微細化の効果が発揮出来ず好ましくない。なお
室温まで冷却する理由は溶質原子を十分に過飽和に固溶
せしめる念めである。
That is, the method of the present invention uses Cu, Mg, Mnt, Cu
+ After homogenizing the aluminum alloy containing Mg r Mn rSI, it was rolled, and then it was rolled at 420 mm.
After heating and holding at a temperature of ℃ to 580℃, cooling to room temperature,
Then, after processing 20~75%, it was heated again at 360℃~5
A method for manufacturing an aluminum alloy with excellent formability characterized by softening at a temperature of 0.000C. After homogenizing an aluminum alloy ingot, hot rolling or further cold rolling is performed to form a plate material. First, the material is heated and maintained at a temperature of 420 DEG C. to 580 DEG C., and then cooled to room temperature, preferably at a cooling rate of 0.6 DEG C./min or more, more preferably by water quenching. This is a state in which the solute atoms are in a supersaturated solid solution.Importantly, the G-P phase or G-P-B phase will precipitate and form a nine-state state, but if the above heating temperature is less than 420°C, A sufficient solid solution cannot be obtained, and if the temperature exceeds 580°C, eutectic melting occurs, which is not preferable. Further, the heating and holding time may be approximately several minutes, but it is preferable to hold the heating for a sufficient time if possible. Also, the cooling rate after heating and holding is 0.6℃/m
If it is less than ln, a θ stable phase or an S stable phase will precipitate, and the effect of recrystallized grain refinement cannot be exhibited, which is not preferable. The reason for cooling to room temperature is to ensure that the solute atoms are sufficiently supersaturated in solid solution.

次いで20〜75%の加工好ましくは室温にて冷間加工
を行うものであるが、これは微細再結晶粒をうるために
必要な適度の量の転位を導入させることにあるが、20
チ未満の加工では転位の量が少なく、又75%を超える
加工では転位の量が多くなり、何れも再結晶粒が大きく
なるので好ましくない。またこのときの加工温度がθ安
定相もしくはS安定相の析出或は転位の消滅がおこる高
温(約250℃以上)では好ましくない。従って室温に
て冷間加工が好ましい。
Next, cold working is carried out by 20 to 75%, preferably at room temperature.
Machining of less than 75% results in a small amount of dislocations, while machining of more than 75% results in a large amount of dislocations, both of which are undesirable because recrystallized grains become large. Further, it is not preferable that the processing temperature at this time be a high temperature (approximately 250° C. or higher) at which precipitation of the θ stable phase or S stable phase or disappearance of dislocations occurs. Therefore, cold working at room temperature is preferred.

次いで急速加熱(約40 ’C/h r以上)により3
60℃〜500℃の温度で軟化処理を行う。これは急速
加熱により、加工で導入された転位を微細均一なセル組
織として分布せしめ、それを核として再結晶を生じて微
細な再結晶組織のものをうる念めである。この工程で加
熱速度時間が長い場合には軟化温度への加熱中に不均一
析出がおこると共に転位も十分に消滅するか或は粗大な
不均一サイズのセル組織が残留し、結晶粒が粗大化する
ため好ましくない。
Then, by rapid heating (about 40'C/hr or more)
The softening treatment is carried out at a temperature of 60°C to 500°C. This is to distribute the dislocations introduced during processing into a fine, uniform cell structure through rapid heating, and recrystallize using the dislocations as nuclei to form a fine recrystallized structure. If the heating rate is long in this process, non-uniform precipitation will occur during heating to the softening temperature, and dislocations will either disappear completely or a coarse cell structure of non-uniform size will remain, resulting in coarse crystal grains. It is not desirable because

また加熱温度が360℃未満の場合には十分に軟化され
ず、500℃を超える場合には結晶粒が著しく成長する
か或は共晶溶融がおこり好ましくない。
Further, if the heating temperature is less than 360° C., it will not be softened sufficiently, and if it exceeds 500° C., crystal grains will grow significantly or eutectic melting will occur, which is not preferable.

その加熱保持時間は再結晶に必要な時間でよく高温にお
いては数分〜数時間でよく、低温ではより長い保持時間
が必要であるが6時間程度までの保持時間で十分である
。なお軟化後の冷却は徐冷が好ましい。
The heating and holding time is the time necessary for recrystallization, and at high temperatures it may be several minutes to several hours, and at low temperatures a longer holding time is required, but a holding time of up to about 6 hours is sufficient. Note that cooling after softening is preferably slow cooling.

本発明方法を適用するアルミニウム合金としては、Cu
 1.4〜5.5 wt%、Mg 0.1〜2. Ow
t%、Mn011〜l、 4 wt%、を含有するアル
ミニウム合金又はこの合金に1.2 wt4以下のSt
を含有する合金である。
As the aluminum alloy to which the method of the present invention is applied, Cu
1.4-5.5 wt%, Mg 0.1-2. Ow
t%, Mn011~l, 4 wt%, or this alloy containing 1.2 wt4 or less St
It is an alloy containing

(実施例) 第1表に示すA〜Fの6秤類のkl−Cu−Mg−Mn
系合金およびAl−Cu −Mg −Mn −S l系
合金を通常の溶製法により鋳造し、Cu、 Mg、 M
n、 Siを含有するアルミニウム合金とした。なお表
中B、C,EはSiが不純物程度に含有されているもの
である。
(Example) kl-Cu-Mg-Mn of 6 scales A to F shown in Table 1
Cu, Mg, M
An aluminum alloy containing n and Si was used. Note that B, C, and E in the table contain Si to an impurity level.

この6種類のアルミニウム合金を490℃にて24時間
均質化処理後、460℃において熱間圧延を行い厚さ5
mの板材となし、次いで冷間圧延を行って厚さ2wmの
板材をえた。
These six types of aluminum alloys were homogenized at 490°C for 24 hours, then hot rolled at 460°C to a thickness of 5.
A plate material having a thickness of 2 wm was obtained by cold rolling.

この板材を第2表に示す条件によって溶体化処理、加工
及び軟化処理を行って本発明方法によるアルミニウム合
金、比較例方法によるアルミニウム合金及び従来方法に
よるアルミニウム合金をえ念。
This plate material was subjected to solution treatment, processing and softening treatment under the conditions shown in Table 2 to produce an aluminum alloy according to the method of the present invention, an aluminum alloy according to the comparative example method, and an aluminum alloy according to the conventional method.

なお何れの方法においても溶体化処理後、常温まで冷却
した。
In both methods, the solution treatment was followed by cooling to room temperature.

また軟化処理は第2表に示す条件に80℃/hrで加熱
後、250℃まで25℃/hrの冷却速度で徐冷して行
った。
The softening treatment was carried out under the conditions shown in Table 2 by heating at 80°C/hr and then slowly cooling to 250°C at a cooling rate of 25°C/hr.

斯くして得九本発明アルミニウム合金、比較例アルミニ
ウム合金及び従来アルミニウム合金についてその性能を
試みるために第3表に示す如く予備成形加工を行い、次
いで溶体化、焼入れ処理しく518℃x/hr、水焼入
れ)直ちに最終成形加工(2〜10%L方向、引張)を
行い、最終成形加工後の肌荒れの有無及び結晶粒径を測
定した。その結果は第3表に併記した通りである。
In order to test the performance of the nine aluminum alloys of the present invention, comparative aluminum alloys, and conventional aluminum alloys, preforming was performed as shown in Table 3, followed by solution treatment and quenching at 518°C x/hr. (Water quenching) Immediately, the final molding process (2 to 10% L direction, tension) was performed, and the presence or absence of surface roughness after the final molding process and the crystal grain size were measured. The results are shown in Table 3.

第2表(1) 第2表(2) 第  2  表  (3) 第  3  表 (4) 結晶粒径(μm) A :≦20.8:>20〜≦30
゜r・\す^−どノへ n−\A^−/二八 口・へC
八へ3表よ−り明らかな如く本発明方法によれば軟化処
理後の予備成形加工率が興るとしても最終成形加工後に
肌荒れを発生せず且つ結晶粒径も微細であった。
Table 2 (1) Table 2 (2) Table 2 (3) Table 3 (4) Crystal grain size (μm) A: ≦20.8: >20 to ≦30
゜r・\す^− どのえ n−\A^−/28 口・へ C
As is clear from Table 8-3, according to the method of the present invention, even if the preform processing rate after the softening treatment increased, no roughening of the surface occurred after the final forming process, and the crystal grain size was fine.

なお比較例方法による場合には最終成形加工後に肌荒れ
1次は割れが発生し結晶粒径も粗大化していることが認
められた。
In addition, in the case of the comparative example method, it was observed that after the final molding process, primary cracking occurred and the crystal grain size became coarse.

(効果) 以上詳述した如く本発明方法によれば軟化処理材で予備
成形加工をうけた部分は、溶体化、焼入れ処理を行うも
微細均一な再結晶組織を有し、最終成形加工後、肌荒れ
を発生しないアルミニウム合金即ち成形加工後の優れた
高力アルミニウム合金をうろことが出来る工業上極めて
有用なものである。
(Effects) As detailed above, according to the method of the present invention, the part that has undergone preforming with the softened material has a fine and uniform recrystallized structure even after solution treatment and quenching, and after the final forming process, It is extremely useful industrially because it can produce aluminum alloys that do not cause roughness, that is, excellent high-strength aluminum alloys after forming.

Claims (1)

【特許請求の範囲】 1)Cu、Mg、Mnを含有するアルミニウム合金を均
質化処理後、圧延を施し、次いで420℃〜580℃に
加熱保持後室温まで冷却し、次いで20〜75%の加工
を施した後、再度360℃〜500℃にて軟化せしめる
ことを特徴とする成形加工性に優れたアルミニウム合金
の製造方法。 2)Cu、Mg、Mn、Siを含有するアルミニウム合
金を均質化処理後、圧延を施し、次いで420℃〜58
0℃に加熱保持後室温まで冷却し、次いで20〜75%
の加工を施した後、再度360℃〜500℃にて軟化せ
しめることを特徴とする成形加工性に優れたアルミニウ
ム合金の製造方法。
[Claims] 1) After homogenizing an aluminum alloy containing Cu, Mg, and Mn, it is rolled, then heated and maintained at 420°C to 580°C, cooled to room temperature, and then processed by 20 to 75%. A method for producing an aluminum alloy with excellent formability, which comprises softening the aluminum alloy again at 360°C to 500°C. 2) After homogenizing an aluminum alloy containing Cu, Mg, Mn, and Si, it is rolled and then heated at 420°C to 58°C.
After heating and holding at 0°C, cool to room temperature, then 20-75%
A method for producing an aluminum alloy with excellent formability, which comprises softening the aluminum alloy again at 360°C to 500°C.
JP21256486A 1986-02-07 1986-09-11 Manufacture of aluminum alloy excellent in formability Pending JPS62278255A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2401286 1986-02-07
JP61-24012 1986-02-07

Publications (1)

Publication Number Publication Date
JPS62278255A true JPS62278255A (en) 1987-12-03

Family

ID=12126634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21256486A Pending JPS62278255A (en) 1986-02-07 1986-09-11 Manufacture of aluminum alloy excellent in formability

Country Status (1)

Country Link
JP (1) JPS62278255A (en)

Similar Documents

Publication Publication Date Title
EP0097319A2 (en) A cold-rolled aluminium-alloy sheet for forming and process for producing the same
US4699673A (en) Method of manufacturing aluminum alloy sheets excellent in hot formability
US7048816B2 (en) Continuously cast magnesium containing, aluminum alloy sheet with copper addition
US5662750A (en) Method of manufacturing aluminum articles having improved bake hardenability
JPS6119705B2 (en)
JPS60258454A (en) Manufacture of aluminum alloy rigid plate for molding
US4528042A (en) Method for producing superplastic aluminum alloys
JPS5953347B2 (en) Manufacturing method of aircraft stringer material
JPS6058299B2 (en) Method for producing Al-Zn-Mg-Cu alloy material with excellent formability
JPH05132745A (en) Production of aluminum alloy excellent in formability
JPS63125645A (en) Production of aluminum alloy material having fine crystal grain
JPS62278255A (en) Manufacture of aluminum alloy excellent in formability
JPH0588302B2 (en)
JPS62182256A (en) Manufacture of aluminum alloy superior in formability
JPS6157385B2 (en)
JP2003328095A (en) Production method for aluminum alloy plate for forming
JPH0663076B2 (en) Method for producing titanium alloy material having equiaxed fine grain (α + β) two-phase structure
JPS62199755A (en) Manufacture of aluminum alloy material for forming
JPH0517858A (en) Manufacture of aluminum alloy excellent in formability
JPS62202062A (en) Manufacture of aluminum alloy superior in forming workability
JPS624856A (en) Production of aluminum alloy sheet
JPH0586468B2 (en)
JPS62202059A (en) Manufacture of aluminum alloy having superior formability
JPH0586467B2 (en)
JPS6157383B2 (en)