JPS62278101A - Reactor for hydrogen-occlusion alloy - Google Patents

Reactor for hydrogen-occlusion alloy

Info

Publication number
JPS62278101A
JPS62278101A JP61119358A JP11935886A JPS62278101A JP S62278101 A JPS62278101 A JP S62278101A JP 61119358 A JP61119358 A JP 61119358A JP 11935886 A JP11935886 A JP 11935886A JP S62278101 A JPS62278101 A JP S62278101A
Authority
JP
Japan
Prior art keywords
hydrogen
hydrogen gas
reaction tube
storage alloy
hydrogen storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61119358A
Other languages
Japanese (ja)
Inventor
Yasuo Odai
尾台 保生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Filter Manufacturing Co Ltd
Original Assignee
Fuji Filter Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Filter Manufacturing Co Ltd filed Critical Fuji Filter Manufacturing Co Ltd
Priority to JP61119358A priority Critical patent/JPS62278101A/en
Publication of JPS62278101A publication Critical patent/JPS62278101A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Abstract

PURPOSE:To obtain the titled reactor utilizable as an efficient heat-exchanger, a fuel supplying tank, etc., by introducing hydrogen gas into a reaction tube, passing the gas through a filter and occluding in an occlusion alloy filled in a hydrogen supplying tube. CONSTITUTION:A reaction tube 1 is composed of end members 1a, a cylinder member 1b and a joint member 1c. A unit 2 contains a pair of filters 2a at both ends of the tube 1 and a hydrogen occlusion alloy 2b held between the filters 2a. Heat-conductive partition walls 2c are arranged in the hydrogen occlusion alloy 2b. In the case of occluding hydrogen gas in the hydrogen occlusion alloy 2b of the unit 2, hydrogen gas is introduced into the reaction tube 1 through a supplying and exhausting line 4. The introduced hydrogen gas is passed through the filter 2a and occluded in the hydrogen gas occlusion alloy 2b. The occluded hydrogen can be released from the hydrogen occlusion alloy 2b of the unit 2 by heating the outer circumference of the reaction tube 1 e.g. with water of a proper temperature. The temperature of the hydrogen occlusion alloy 2b is raised thereby to release the occluded hydrogen gas. The released hydrogen gas is passed through the filter 2a and discharged from the reaction tube 1 through the hydrogen gas supplying and exhausting line 4.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分野〕 本発明は、熱交換器、蓄熱器、水素ガス供給タンク等と
して用いられる水素吸蔵合金の反応装置に関する。
Detailed Description of the Invention 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a hydrogen storage alloy reaction device used as a heat exchanger, a heat storage device, a hydrogen gas supply tank, etc.

〔発明の背景〕[Background of the invention]

近年、水素貯蔵用金属水素化物すなわち水素吸蔵合金の
水素ガスを吸蔵、放出する際の発熱、吸熱反応を熱交換
器や蓄熱器に利用することや、比較的低圧、高温で多量
の水素ガスを吸蔵する性質を水素ガス燃料エンジン等の
燃料供給タンクに利用することが試みられている。
In recent years, metal hydrides for hydrogen storage, that is, hydrogen storage alloys, have been developed to utilize the exothermic and endothermic reactions that occur when storing and releasing hydrogen gas in heat exchangers and heat storage devices, and to store large amounts of hydrogen gas at relatively low pressures and high temperatures. Attempts have been made to utilize this occlusion property in fuel supply tanks for hydrogen gas fueled engines and the like.

水素吸蔵合金は、水素ガスを吸蔵した状態と放出した状
態で体積が10〜25%程度変化すること、水素ガスの
吸蔵、放出が迅速に行われるようにすること、単位重量
当たりの水素ガスの吸蔵量を大とすること等の理由から
、微粒子として用いられる。したがって、熱交換器に限
らず、蓄熱器や燃料供給タンクにおいても、水素吸蔵合
金の偏在や放出水素ガスへの混入の防止対策を必要とす
る。さらに、水素吸蔵合金は熱伝導率が比較的小さいと
言うこともあるから、水素吸蔵合金の発熱や吸熱を効率
よく反応容器壁に伝達する対策も必要とする。この対策
は、熱交換器において特に必要であるが、蓄熱器や燃料
供給タンクにおいても水素ガス吸蔵、放出の速度や効率
を高めるために利用される。
The hydrogen storage alloy must have a volume that changes by about 10 to 25% between the state in which hydrogen gas is stored and the state in which it is released, the hydrogen gas storage and release to occur quickly, and the hydrogen gas per unit weight. It is used as fine particles for reasons such as increasing storage capacity. Therefore, not only in heat exchangers but also in heat storage units and fuel supply tanks, measures are required to prevent the hydrogen storage alloy from being unevenly distributed and mixed into released hydrogen gas. Furthermore, since the hydrogen storage alloy has a relatively low thermal conductivity, measures are required to efficiently transfer heat generation and heat absorption from the hydrogen storage alloy to the walls of the reaction vessel. This measure is particularly necessary in heat exchangers, but is also used in heat storage units and fuel supply tanks to increase the speed and efficiency of hydrogen gas storage and release.

〔発明の目的〕[Purpose of the invention]

本発明は、上述の対策を備えた効率のよい熱交換器や燃
料供給タンク等として利用される水素吸蔵合金の反応装
置の提供を第1の目的とし、さらには、高い生産性で得
られる水素吸蔵合金の反応装置の提供を第2の目的とす
る。
The first object of the present invention is to provide a hydrogen storage alloy reaction device that is equipped with the above-mentioned measures and is used as an efficient heat exchanger, fuel supply tank, etc. A second object of the present invention is to provide a reaction device for storage alloys.

〔発明の構成〕[Structure of the invention]

本発明は、両端のフィルタと両フィルタの間に保持され
る水素吸蔵合金とを含むユニットが反応管内に軸方向に
並んで配設され、反応管の周壁にはユニット間位置及び
両端のユニットの外側のフィルタ位置乃至はそれよりも
外側位置に水素ガスを反応管内に導入してフィルタを通
し水素吸蔵合金に吸蔵させる水素ガス給排管路が設けら
れている反応管を用いたことを特徴とする水素吸蔵合金
の反応装置にあり、この構成によって前記第1の目的を
達成し、さらに反応管内に配設する各ユニットを一体化
することによって前記第2の目的を達成する。
In the present invention, units including filters at both ends and a hydrogen storage alloy held between both filters are arranged in line in the axial direction in a reaction tube, and the peripheral wall of the reaction tube is provided with a position between the units and a hydrogen storage alloy held between the filters at both ends. The reaction tube is characterized by using a reaction tube provided with a hydrogen gas supply/discharge pipe at the outer filter position or a position outside the filter for introducing hydrogen gas into the reaction tube, passing through the filter, and storing it in the hydrogen storage alloy. This structure achieves the first object, and further achieves the second object by integrating the units disposed in the reaction tube.

〔実施例〕〔Example〕

以下、本発明を図示例によって説明する。 The present invention will be explained below using illustrated examples.

第1図及び第2図はそれぞれ本発明反応装置の一例を示
し、第1図、第2図のAは縦断面図、BはAのX−X矢
視図、第3図は伝熱隔壁が異なる以外は第2図の反応装
置と変わらない本発明反応装置の例を示す部分縦断面図
、第4図は本発明反応装置の他の例を示す縦断面図、第
5図A及びBは第4図の反応装置に用いられる一体化ユ
ニットの一例を示す側面図及びAのX−X矢視図、第6
図A及びBはさらに本発明反応装置の他の例を示す縦断
面図及びAのX−X矢視図である。
1 and 2 each show an example of the reactor of the present invention, where A in FIGS. 1 and 2 is a longitudinal sectional view, B is a view taken along the line X-X of A, and FIG. 3 is a heat transfer partition wall. FIG. 4 is a partial vertical cross-sectional view showing an example of the reactor of the present invention which is the same as the reactor of FIG. 2 except for the difference in FIG. 6 is a side view showing an example of the integrated unit used in the reactor shown in FIG.
Figures A and B are a longitudinal cross-sectional view showing another example of the reactor of the present invention, and a view taken along the line X--X of A.

図において、lは端部材1a、筒部材1b、m平部材1
cから成る反応管、2は両端のフィルタ2aとフィルタ
2aの間に保持される水素吸蔵合金2bとを含んで成る
ユニットであり、ユニット2は反応管1の管内に軸方向
に並んで配設されている。そして、第1図、第2図、第
4図の反応装置においては、ユニット2は相隣るユニッ
ト2間及び両端のユニット2の外側に空間3を設けるよ
うに配設されているが、第6図の反応装置においては、
相隣るユニット2は隣接するフィルタ2aを共通にした
形で密接して並び両端のユニット2の外側にも空間を設
けることなく配設されている。
In the figure, l is an end member 1a, a cylindrical member 1b, and a flat member 1.
2 is a unit comprising filters 2a at both ends and a hydrogen storage alloy 2b held between the filters 2a, and the units 2 are arranged in line in the axial direction within the reaction tube 1. has been done. In the reactors shown in FIGS. 1, 2, and 4, the units 2 are arranged so that spaces 3 are provided between adjacent units 2 and outside the units 2 at both ends. In the reactor shown in Figure 6,
Adjacent units 2 are closely aligned with adjacent filters 2a in common, and are arranged without providing any space outside the units 2 at both ends.

4は相隣るユニット2間の位置及び両端のユニット2の
外側のフィルタ2aの位置乃至はそれよりも外側位置の
反応管1の周壁を貫通して設けられた水素ガス給排管路
である。
Reference numeral 4 denotes a hydrogen gas supply/discharge pipe provided through the circumferential wall of the reaction tube 1 at a position between adjacent units 2 and at a position outside the filter 2a of the units 2 at both ends, or at a position outside it. .

ユニット2の水素吸蔵合金2bに水素ガスを吸蔵させる
ときは、水素ガス給徘管路4を通して反応管1内に水素
ガスを導入し、導入された水素ガスがフィルタ2aを通
って水素ガス吸蔵合金2bに吸蔵される。この場合、吸
蔵が効率よく行われるように、反応管1の外側を吸蔵に
適当な温度の水等で冷却する。また、ユニット2の水素
吸蔵合金2bから吸蔵した水素ガスを放出させるときは
、反応管1の外側を放出に適当な温度の水等で加熱する
。それによって、水素吸蔵合金2bは温度が上昇して水
素ガスを放出し、放出された水素ガスはフィルタ2aを
通して水素ガス給徘管路4により反応管1外に排出され
る。
When hydrogen gas is to be stored in the hydrogen storage alloy 2b of the unit 2, hydrogen gas is introduced into the reaction tube 1 through the hydrogen gas supply pipe 4, and the introduced hydrogen gas passes through the filter 2a and passes through the hydrogen gas storage alloy. 2b is occluded. In this case, to ensure efficient occlusion, the outside of the reaction tube 1 is cooled with water or the like at a temperature suitable for occlusion. Further, when releasing the stored hydrogen gas from the hydrogen storage alloy 2b of the unit 2, the outside of the reaction tube 1 is heated with water or the like at an appropriate temperature for release. As a result, the temperature of the hydrogen storage alloy 2b rises and releases hydrogen gas, and the released hydrogen gas is discharged to the outside of the reaction tube 1 through the hydrogen gas supply pipe 4 through the filter 2a.

水素ガスの吸蔵、放出が迅速に効率よく行われ、また、
ユニット2内においても水素吸蔵合金2bの偏在が防止
されるように、第1図及び第6図の反応装置においては
、ユニット2の水素吸蔵合金2bは、反応管lの筒部材
1bの内部を軸方向に貫通した小部屋に仕切ると共に筒
部材1bの内壁に熱的に連結している伝熱隔壁2Cによ
って仕切られた各小部屋に収納保持されている。第1図
の伝熱隔壁2cは仕切られた各小部屋の断面が三角形の
ハネカム状のものであり、第6図の伝熱隔壁2cは十字
状壁であるが、軸方向に貫通する小部屋を形成する伝熱
隔壁2Cはこれらの例に限られるものでないことは言う
までもない。また、第2図乃至第4図の反応装置におい
ては、ユニ7ト2の水素吸蔵合金2bは、水素ガスの流
通孔が多数穿設されていて外周が筒部材1bの内壁に熱
的に連結された多数の伝熱隔壁2cで軸方向に並んで仕
切られた各部屋に収納保持されている。そして、第2図
及び第4図の伝熱隔壁2Cは、外周端面部分で筒部材1
bの内壁に熱的に連結し、第3図の伝熱隔壁2Cは、外
周に設けたフランジ部の外側面で筒部材1bの内壁に熱
的に連結している。さらに、第3図の伝熱隔壁2Cのフ
ランジ部は、各伝熱隔壁2C間の距雛を保つスペーサと
しての役割も兼ねている。
Hydrogen gas storage and release are performed quickly and efficiently, and
In order to prevent uneven distribution of the hydrogen storage alloy 2b in the unit 2, in the reactors shown in FIGS. It is stored and held in each small room partitioned by a heat transfer partition wall 2C which is partitioned into small rooms that penetrate in the axial direction and is thermally connected to the inner wall of the cylindrical member 1b. The heat transfer partition wall 2c in FIG. 1 has a honeycomb shape with a triangular cross section for each partitioned small room, and the heat transfer partition wall 2c in FIG. 6 has a cross-shaped wall, but the small rooms penetrate in the axial direction. It goes without saying that the heat transfer partition wall 2C forming the heat transfer partition wall 2C is not limited to these examples. In addition, in the reactor shown in FIGS. 2 to 4, the hydrogen storage alloy 2b of the unit 7 is provided with a large number of hydrogen gas communication holes, and the outer periphery is thermally connected to the inner wall of the cylindrical member 1b. They are housed and held in separate rooms that are lined up in the axial direction and partitioned by a large number of heat transfer partition walls 2c. The heat transfer partition wall 2C in FIGS. 2 and 4 has a cylindrical member 1
The heat transfer partition wall 2C in FIG. 3 is thermally connected to the inner wall of the cylindrical member 1b at the outer surface of the flange portion provided on the outer periphery. Furthermore, the flange portion of the heat transfer partition wall 2C in FIG. 3 also serves as a spacer that maintains the distance between each heat transfer partition wall 2C.

以上のような伝熱隔壁2Cを用いることによって、反応
管1の外側と水素吸蔵合金2bの間の熱伝達効率が向上
し、反応管1の外側を冷却、加熱することによって水素
ガスの吸蔵、放出反応を迅速且つ効率よく行うことがで
き、またユニット2内における水素吸蔵合金2bの偏在
を防止することができる。もっとも、反応管1が軸方向
にユニット2を並べて配設している構造は、各ユニット
2で水素吸蔵合金2bの偏在を防止している。したがっ
て、反応管1の直径が小さいものや長さの短いユニット
2を用いたものでは、伝熱隔壁2Cを省略してもよい。
By using the heat transfer partition wall 2C as described above, the heat transfer efficiency between the outside of the reaction tube 1 and the hydrogen storage alloy 2b is improved, and by cooling and heating the outside of the reaction tube 1, hydrogen gas storage and The release reaction can be performed quickly and efficiently, and uneven distribution of the hydrogen storage alloy 2b within the unit 2 can be prevented. However, the structure in which the units 2 are arranged in the axial direction of the reaction tube 1 prevents uneven distribution of the hydrogen storage alloy 2b in each unit 2. Therefore, when the reaction tube 1 has a small diameter or the unit 2 is short in length, the heat transfer partition wall 2C may be omitted.

第4図の反応装置は、第5図に示したような一体化ユニ
フト2を用いて能率よく生産し得るようにしたものであ
る。すなわち、ユニット2は、フィルタ2aと、焼結等
によって円板ケーキ状に成形された複数の水素吸蔵合金
2bと、ケーキ状の各水素吸蔵合金2bの間を仕切り、
必要に応じて外周縁部に外周縁部が反応管1の内径で曲
げられて内径と緊密に熱的連結するように切り込み2C
1が設けられる複数の伝熱隔壁2cとを、それぞれの中
心部に設けた孔を貫通するボルトとナツトから成る結合
部材5で一体に結合した構成からなり、このユニット2
は結合された状態で反応管1の筒部材lb内に挿入され
るから、反応装置4を能率よく生産することができる。
The reactor shown in FIG. 4 uses an integrated unit 2 as shown in FIG. 5 to enable efficient production. That is, the unit 2 partitions between a filter 2a, a plurality of hydrogen storage alloys 2b formed into a disc cake shape by sintering, etc., and each cake-shaped hydrogen storage alloy 2b,
If necessary, a cut 2C is made on the outer peripheral edge so that the outer peripheral edge is bent by the inner diameter of the reaction tube 1 and is tightly thermally connected to the inner diameter.
The unit 2 has a structure in which a plurality of heat transfer partition walls 2c in which the unit 2
are inserted into the cylindrical member lb of the reaction tube 1 in a connected state, so that the reaction apparatus 4 can be efficiently produced.

ケーキ状の水素吸蔵剤を適当量加えて成形したものでも
、鋳造によって得られた丸棒状の水素吸蔵合金をスライ
スして成形したようなものでもよく、成形が水素ガスの
吸蔵、放出時に容易に分解して微粒子状になるようなも
のであることが反応管1やフィルタ2aあるいは伝熱隔
壁2C等に過大な力を及ぼさないことから好ましい。ケ
ーキ状の水素吸蔵合金の外径は、水素ガス吸蔵時の膨張
を考慮して筒部材1bの内径よりも適当に小径に成形す
る。伝熱隔壁2Cは、第3図に示したようなフランジ部
を設けたものであってもよいことは勿論である。第4図
の反応装置の組み立ては、通常、フィルタ2aと筒部材
1bの間を溶接やロー付は等でシールするから、先に一
体化したユニット2を挿入してフィルタ2aとの間をシ
ールした筒部材1bを継手部材ICによって連結して、
両端に端部材1aを連結する方法によって行われる。こ
の点、例えば第2図に示したような反応装置では、フィ
ルタ2aを除いたケーキ状の水素吸蔵合金2bと伝熱隔
壁2Cを一体化して、予めフィルタ2aを反応管1の端
部材1a及び継手部材1cに装着し、一体化した水素吸
蔵合金2bと伝熱隔壁2Cを挿入した筒部材1bを継手
部材1cによって連結して両端に端部材1aを連結する
ようにしてもよい。なお、第4図の例では、ユニ・ノド
2間に水素ガス給排管路4による水素ガスの導入、排出
を妨げないための孔が周壁に配設されているスペーサリ
ング6を挿入するようにしているが、これは前述のよう
な組立て方法による場合は無くてもよい。
It may be formed by adding an appropriate amount of a cake-like hydrogen storage agent, or it may be formed by slicing and forming a round rod-shaped hydrogen storage alloy obtained by casting, and the forming process can easily absorb and release hydrogen gas. It is preferable to use a material that decomposes into fine particles because it does not exert excessive force on the reaction tube 1, filter 2a, heat transfer partition wall 2C, etc. The outer diameter of the cake-shaped hydrogen storage alloy is formed to be suitably smaller than the inner diameter of the cylindrical member 1b in consideration of expansion during storage of hydrogen gas. Of course, the heat transfer partition wall 2C may be provided with a flange portion as shown in FIG. 3. To assemble the reactor shown in Fig. 4, the filter 2a and the cylindrical member 1b are usually sealed by welding, brazing, etc., so first insert the integrated unit 2 and seal the gap with the filter 2a. The cylindrical members 1b are connected by a joint member IC,
This is done by connecting the end members 1a to both ends. In this respect, for example, in the reactor shown in FIG. 2, the cake-like hydrogen storage alloy 2b excluding the filter 2a and the heat transfer partition wall 2C are integrated, and the filter 2a is attached to the end member 1a of the reaction tube 1 and The cylindrical member 1b may be attached to the joint member 1c, and the integrated hydrogen storage alloy 2b and the heat transfer partition wall 2C inserted therein may be connected by the joint member 1c, and the end members 1a may be connected to both ends. In the example shown in FIG. 4, a spacer ring 6 is inserted between the uni-nods 2, which has holes in the peripheral wall so as not to obstruct the introduction and discharge of hydrogen gas through the hydrogen gas supply and discharge pipe 4. However, this may be omitted if the assembly method described above is used.

第4図の装置に限らず、他の装置においても、反応管1
の端部材1aと筒部材1bの連結や筒部材1bと継手部
材ICの連結は、溶接やロー付けによって行うのが好ま
しいがその他ねじ込みやフランジ継手等の手段によって
行ってもよい。
Not only in the apparatus shown in FIG. 4 but also in other apparatuses, the reaction tube 1
The connection between the end member 1a and the cylindrical member 1b and the connection between the cylindrical member 1b and the joint member IC are preferably performed by welding or brazing, but may be performed by other means such as screwing or flange joints.

また、適当に端部材と筒部材あるいは筒部材と継手部材
が一体に形成されたものを用いるようにしてもよい。第
1図、第2図、第4図の水素ガス給徘管路4に用いられ
るパイプも溶接、ロー付ケ。
Alternatively, an end member and a cylindrical member or a cylindrical member and a joint member formed integrally may be used. The pipes used for the hydrogen gas supply pipe 4 in Figures 1, 2, and 4 are also welded and brazed.

ねじ込み等によって連結される。Connected by screwing, etc.

第6図の反応装置は、複数の反応管1を水素ガス給徘管
路4が設けられている端部材1a及び継手部材1cの部
分で一体に連結して並列に用いるようにしたものであり
、各反応管1の水素ガス給排管路4はユニット2のフィ
ルタ2aの位置に設けられ、複数の反応管1の配列の中
心部を通して設けられた水素ガス給徘共通管路7に連絡
している。この反応装置の複数の反応管1を第1図乃至
第4図に示したようなものにすることもできる。
The reaction apparatus shown in FIG. 6 is configured such that a plurality of reaction tubes 1 are connected together at the end member 1a and the joint member 1c where the hydrogen gas supply pipe 4 is provided, and are used in parallel. The hydrogen gas supply/discharge pipe 4 of each reaction tube 1 is provided at the position of the filter 2a of the unit 2, and communicates with a common hydrogen gas supply pipe 7 provided through the center of the array of the plurality of reaction tubes 1. ing. The plurality of reaction tubes 1 of this reactor can also be as shown in FIGS. 1 to 4.

なお、第6図Bの継手部材1cに設5すられた孔lcl
は水等熱媒体の流通孔である。
Note that the hole lcl provided in the joint member 1c in FIG. 6B
is a flow hole for a heat medium such as water.

〔発明の効果〕〔Effect of the invention〕

本発明の水素吸蔵合金の反応装置は、反応管内での水素
吸蔵合金の偏在が防止され、管外の熱媒体と管内の水素
吸蔵合金との間の熱伝達が良好に行われて水素ガスの吸
蔵、放出を迅速に効率よく行うことができ、大型のもの
から小型のものまで効率が変わらないように構成するこ
とができて、また、高い生産性で製造することもできる
と言う優れた効果を奏する。
The hydrogen storage alloy reactor of the present invention prevents uneven distribution of the hydrogen storage alloy within the reaction tube, and improves heat transfer between the heat medium outside the tube and the hydrogen storage alloy inside the tube, so that hydrogen gas can be produced. It has the advantage of being able to perform occlusion and release quickly and efficiently, being able to configure products from large to small with the same efficiency, and being able to be manufactured with high productivity. play.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図はそれぞれ本発明反応装置の一例を示
し、第1図、第2図のAは縦断面図、BはAのX−X矢
視図、第3図は伝熱隔壁が異なる以外は第2図の反応装
置と変わらない本発明反応装置の例を示す部分縦断面図
、第4図は本発明反応装置の他の例を示す縦断面図、第
5図A及びBは第4図の反応装置に用いられる一体化ユ
ニットの一例を示す側面図及びAのX−X矢視図、第6
図A及びBはさらに本発明反応装置の他の例を示す縦断
面図及びAのX−X矢視図である。 l・・・反応管、      1a・・・端部材、1b
・−・筒部材、     1c・・・継手部材、2・・
・ユニット、     2a・・・フィルタ、2b・・
・水素吸蔵合金、 2c・・・伝熱隔壁、3・・・空間
、       4・・・水素ガス給徘管路、5・−・
結合部材、     6・・・スペーサリング、7・・
・水素ガス給徘共通管路。 特許出願人  冨士フィルター工業株式会社、#τ ′・−′−□ 代理人弁理士 保   高   春   ←7.−第Z
図 第4図 ! 第5図 B ? 第6図 cf
1 and 2 each show an example of the reactor of the present invention, where A in FIGS. 1 and 2 is a longitudinal sectional view, B is a view taken along the line X-X of A, and FIG. 3 is a heat transfer partition wall. FIG. 4 is a partial vertical cross-sectional view showing an example of the reactor of the present invention which is the same as the reactor of FIG. 2 except for the difference in FIG. 6 is a side view showing an example of the integrated unit used in the reactor shown in FIG.
Figures A and B are a longitudinal cross-sectional view showing another example of the reactor of the present invention, and a view taken along the line X--X of A. l...Reaction tube, 1a... End member, 1b
...Cylinder member, 1c...Joint member, 2...
・Unit, 2a...Filter, 2b...
・Hydrogen storage alloy, 2c... Heat transfer partition, 3... Space, 4... Hydrogen gas supply pipe, 5...
Connecting member, 6... Spacer ring, 7...
・Hydrogen gas supply common pipeline. Patent applicant: Fuji Filter Industry Co., Ltd., #τ ′・−′−□ Representative patent attorney: Haru Yasutaka ←7. -No. Z
Figure 4! Figure 5 B? Figure 6 cf

Claims (4)

【特許請求の範囲】[Claims] (1)両端のフィルタと両フィルタの間に保持される水
素吸蔵合金とを含むユニットが反応管内に軸方向に並ん
で配設され、反応管の周壁にはユニット間位置及び両端
のユニットの外側のフィルタ位置乃至はそれよりも外側
位置に水素ガスを反応管内に導入してフィルタを通し水
素吸蔵合金に吸蔵させる水素ガス給排管路が設けられて
いる反応管を用いたことを特徴とする水素吸蔵合金の反
応装置。
(1) Units including filters at both ends and a hydrogen storage alloy held between both filters are arranged in line in the axial direction in a reaction tube, and the peripheral wall of the reaction tube is provided with positions between the units and the outside of the units at both ends. A reaction tube is used, which is provided with a hydrogen gas supply/discharge pipe at the filter position or at a position outside of the filter for introducing hydrogen gas into the reaction tube and causing it to pass through the filter and be stored in the hydrogen storage alloy. Hydrogen storage alloy reactor.
(2)前記ユニットのフィルタ間に水素吸蔵合金がフィ
ルタ方向の水素ガスの流通を阻止しない伝熱隔壁で区分
されて保持されており、該伝熱隔壁が前記反応管の周壁
と熱的に連結されている特許請求の範囲第1項記載の水
素吸蔵合金の反応装置。
(2) A hydrogen storage alloy is held between the filters of the unit separated by a heat transfer partition that does not block the flow of hydrogen gas in the filter direction, and the heat transfer partition is thermally connected to the peripheral wall of the reaction tube. A reactor for a hydrogen storage alloy according to claim 1.
(3)前記ユニットのそれぞれが一体化されて前記反応
管内に配設されている特許請求の範囲第1項又は第2項
記載の水素吸蔵合金の反応装置。
(3) The hydrogen storage alloy reaction device according to claim 1 or 2, wherein each of the units is integrated and disposed within the reaction tube.
(4)前記反応管の複数が前記水素ガス給排管路を設け
た前記反応管の周壁部分で一体に連結されて並列に用い
られている特許請求の範囲第1項乃至第3項のいずれか
の項に記載の水素吸蔵合金の反応装置。
(4) Any of claims 1 to 3, wherein a plurality of the reaction tubes are connected together at a peripheral wall portion of the reaction tube provided with the hydrogen gas supply/discharge pipe line and are used in parallel. A reactor for the hydrogen storage alloy according to the above item.
JP61119358A 1986-05-26 1986-05-26 Reactor for hydrogen-occlusion alloy Pending JPS62278101A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61119358A JPS62278101A (en) 1986-05-26 1986-05-26 Reactor for hydrogen-occlusion alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61119358A JPS62278101A (en) 1986-05-26 1986-05-26 Reactor for hydrogen-occlusion alloy

Publications (1)

Publication Number Publication Date
JPS62278101A true JPS62278101A (en) 1987-12-03

Family

ID=14759514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61119358A Pending JPS62278101A (en) 1986-05-26 1986-05-26 Reactor for hydrogen-occlusion alloy

Country Status (1)

Country Link
JP (1) JPS62278101A (en)

Similar Documents

Publication Publication Date Title
EP0268939A1 (en) Heat exchanger using heat pipes
JPH0436081B2 (en)
US4532771A (en) Cooler made of aluminum for stirling engines
JPS62278101A (en) Reactor for hydrogen-occlusion alloy
JPH09242995A (en) Square heat transfer vessel filled with hydrogen storage alloy for storing hydrogen
JPS5925956B2 (en) metal hydride container
JPS63225799A (en) Manufacture of reactor for hydrogen absorption alloy
JPS6176887A (en) Vessel for accommodating metallic hydrides
JPS6116880B2 (en)
JPS6334487A (en) Hydrogenated metal heat exchanger
JPS591950B2 (en) Structure of heat exchanger using hydrogen storage metal
JPS62292601A (en) Reactor for hydrogen occluding alloy
JPH0412377Y2 (en)
JP2000249425A (en) Reaction vessel of alloy for hydrogen storage
JPS62119393A (en) Heat exchanger for metal hydride
JPH0121279Y2 (en)
JPS61244995A (en) Metal hydride container
CN217248805U (en) Reactor with a reactor shell
JP2009222200A (en) Hydrogen storage tank
JPH0231001B2 (en)
JPH0253362B2 (en)
JPH0236521B2 (en) KINZOKUSUISOKABUTSUYOKI
JPH047151Y2 (en)
JPH0228796B2 (en)
JPH0730878B2 (en) Container for hydrogen storage alloy