JPS62277824A - Block code decoding system - Google Patents

Block code decoding system

Info

Publication number
JPS62277824A
JPS62277824A JP12169886A JP12169886A JPS62277824A JP S62277824 A JPS62277824 A JP S62277824A JP 12169886 A JP12169886 A JP 12169886A JP 12169886 A JP12169886 A JP 12169886A JP S62277824 A JPS62277824 A JP S62277824A
Authority
JP
Japan
Prior art keywords
bit
decoding
code
word
high level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12169886A
Other languages
Japanese (ja)
Other versions
JPH07112161B2 (en
Inventor
Tadashi Matsumoto
正 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP61121698A priority Critical patent/JPH07112161B2/en
Priority to CA000524366A priority patent/CA1296065C/en
Priority to US06/937,176 priority patent/US4763331A/en
Priority to SE8605236A priority patent/SE463845B/en
Priority to GB8629347A priority patent/GB2185367B/en
Publication of JPS62277824A publication Critical patent/JPS62277824A/en
Publication of JPH07112161B2 publication Critical patent/JPH07112161B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Error Detection And Correction (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

PURPOSE:To attain the decoding with simple processing without using a complicated processing circuit by deciding it as a decode word that a difference of each time rate of a high level and a low level with respect to a regenerative one-bit is used as a reliability index and the total sum of the indexes is minimized thereby using no complicated processing circuit. CONSTITUTION:The difference of each time rate of a high level and a low level of an output of a voltage comparator 12 with respect to a regenerative bit is used as the reliability index of decoding in the unit of bits and a code word minimizing the total sum of the reliability indexes in a different bit of each code word from a received word is decided to be a decode word. For example, the output of the voltage comparator for a received waveform corresponding to each bit is divided into some points on a time axis, +1 is related to each divided output with a mark (high level) and -1 is related in case of a space (low level) and the value being the sum is used as information representing the reliability of decoding in the unit of bits. Thus, the error correction capability of an error correction code is kept and the decoding is applied with a simple processing without requiring complicated processing.

Description

【発明の詳細な説明】 3、発明の詳細な説明 「産業上の利用分野」 この発明はブロック誤り訂正符号化された信号の軟判定
を用いたブロック符号復号方式に関する。
Detailed Description of the Invention 3. Detailed Description of the Invention "Field of Industrial Application" The present invention relates to a block code decoding system using soft decision of a block error correction coded signal.

ブロック符号の軟判定復号方式は具体的には例えば陸上
移動無線における制御信号伝送のようなブロック誤り訂
正符号を用いる伝送方式において、硬判定を用いた復号
法に比べ信頼度の改善を図ることが可能な復号方式であ
る。
Specifically, soft-decision decoding methods for block codes can improve reliability compared to decoding methods using hard decisions in transmission methods that use block error correction codes, such as control signal transmission in land mobile radio. This is a possible decoding method.

「従来の技術」 まず、従来までの硬判定によるブロック符号復号法を以
下の例によって説明する。いま、0.1の2つの情報に
対応してΩ= fx+ 、X2 ) =+ (000)
  、 (111) lに符号化するブロック誤り訂正
符号を考える。この符号は、符号間距離が3であるから
lビット誤りが訂正可能である。このブロック符号を復
号する場合、従来までの硬判定によるブロック符号復号
法は受信語と符号とのi:Hの距離が最も小さくなるよ
うな符号語が送信されたものとみなす方法である。いま
送信側では1を1 (ボルト)、0を−1(ボルト)に
対応させてX、=(111)を送信し、受信側で第1図
に示すような波形r(t)を受信したとするこの受信波
形r (t)は各タイムスロットTごとに1.OV、−
0,2V、−0,2Vのレベル値をとったものとする。
"Prior Art" First, a conventional hard-decision block code decoding method will be explained using the following example. Now, corresponding to two pieces of information of 0.1, Ω= fx+ , X2 ) =+ (000)
, (111) Consider a block error correction code that is encoded into l. Since this code has an inter-code distance of 3, it is possible to correct l-bit errors. When decoding this block code, the conventional block code decoding method using hard decisions is a method in which it is assumed that a code word that has the smallest i:H distance between the received word and the code has been transmitted. Now, on the transmitting side, 1 corresponds to 1 (volt) and 0 corresponds to -1 (volt), and transmits X, = (111), and the receiving side receives a waveform r(t) as shown in Figure 1. This received waveform r (t) is 1.0 for each time slot T. OV, -
It is assumed that the level values are 0.2V and -0.2V.

硬判定復号ではビット単位の(各タイムスロット)の復
号を受信波形rQ)のレベルの正負によってそれぞれ1
.0に対応させることで行なう、従って第1図の例では
受信語YはY=(100)となり、符号語(000)と
の距離が1、符号語(111)との距離が2であるから
0が送信されたと見なし誤受信となる。
In hard-decision decoding, bit-by-bit (each time slot) decoding is performed by 1 depending on the sign of the level of the received waveform (rQ).
.. Therefore, in the example shown in Figure 1, the received word Y is Y = (100), and the distance from the code word (000) is 1 and the distance from the code word (111) is 2. It is assumed that 0 has been sent, resulting in erroneous reception.

これに対し、ブロック符号についてビット単位の復号時
におけるレベル情報を用いた軟判定による復号を行なう
方法が文献(D、Chase、 ” A C1asso
f Algorithms 「or Decoding
 Block Codes withChannel 
  Measurement  Informatto
n ”  、IEEETrans、 IT−1,8,k
 1. Jan、1972)によって示され、この方法
により、ブロック毎の誤り訂正能力を拡大できることが
示されている。この方法によるブロック符号の軟判定復
号法は、受信語Yに対し、 となる符号語Xjを復号出力とする。ここでΩ :符号
語の集合、XJ zj番目の符号語X4.:符号語X、
の第iディシフトでXj −(X、、、Xj□、・・・
、  XJ、l)Y、:受信語の第iディジットで Y ”” (Yz Yz、・・・Y、4)E、:受信語
の第iディジットの復号時のレベル値 ■ =排他的論理和、 M+n  :最小値、lx;l
:18の絶対値である。
On the other hand, a method of decoding a block code by soft decision using level information during bit-by-bit decoding is described in the literature (D, Chase, "A C1asso
f Algorithms “or Decoding”
Block Codes with Channel
Measurement Information
n”, IEEE Trans, IT-1,8,k
1. Jan, 1972), and it has been shown that this method can expand the error correction capability for each block. In the block code soft-decision decoding method using this method, for a received word Y, a code word Xj such that the following is given is a decoded output. where Ω: set of code words, XJ zz-th code word X4. : code word X,
At the i-th dishift of
. , M+n: minimum value, lx; l
: The absolute value is 18.

このアルゴリズムに従うと、第1図の例についてレベル
値は(n+1 = fl、O,−0,2、−0,21だ
から 符号語X、に対しΣllr:(’/+ΦXl+)=1.
0符号語Xtに対しΣ1ffil(Y、■Xz:)=0
.4となって、符号語XsO時最小となるから1が送信
されたと見なし、正しく受信される。ブロック符号の軟
判定復号法では、符号語と受信語との相異するビットに
対し、その判定の信幀度に応じた重みで(レベル値2、
を重み係数とする)重み付けした受信語からの距離を最
小化する符号語が送信されたと見なす。この方法によれ
ばブロック符号の誤り訂正能力は拡大される。しかし、
ビー/ ト単位の復号時のレベル値1.(i=l〜N)
はアナログ値であり、このようなアナログレベル値を含
めた複重処理を行なうためには、レベル値をアナログ−
ディジタル変換するような複雑な処理回路が必要となる
欠点がある。
According to this algorithm, the level value for the example of FIG. 1 is (n+1 = fl, O, -0, 2, -0, 21, so for code word X, Σllr: ('/+ΦXl+) = 1.
Σ1ffil(Y, ■Xz:)=0 for 0 code word Xt
.. 4, which is the minimum when the code word is XsO, so it is assumed that 1 has been transmitted and it is correctly received. In the soft-decision decoding method for block codes, different bits between the code word and the received word are weighted according to the reliability of the decision (level value 2,
The codeword that minimizes the weighted distance from the received word (with , as the weighting factor) is considered to be transmitted. According to this method, the error correction capability of the block code is expanded. but,
Beat/Level value when decoding in units of beats: 1. (i=l~N)
is an analog value, and in order to perform multiple processing including such an analog level value, the level value must be converted into an analog value.
There is a drawback that a complicated processing circuit for digital conversion is required.

「問題点を解決するための手段」 この発明によれば、各符号を複数ビットよりなる誤り訂
正可能な符号語として送信されたブロック符号を電圧比
較器によりピッ1位の復号を行い、かつそのピント単位
の復号に対し信HMKに応じた重み付けをして誤り訂正
復号を行なうブロック符号復号方式において、上記電圧
比較器出力の高レベルと低し−、ルとの再生ビットに対
する各時間率の差をピント単位の復号の信頼度指標とし
、各符号語と受信語との相異ビットにおける上記信頼度
指標の総和を最小化する符号語を復号語と判定する。
"Means for Solving the Problem" According to the present invention, a block code is transmitted as an error-correctable code word consisting of a plurality of bits, and a voltage comparator decodes the block code to the first place, and In a block code decoding method in which error correction decoding is performed by weighting decoding in units of focus according to the signal HMK, the difference in each time rate for reproduced bits between the high level and low level of the voltage comparator output is taken as a reliability index for decoding in units of focus, and a codeword that minimizes the sum of the reliability indexes for different bits between each codeword and the received word is determined to be a decoded word.

例えばビットに対応する受信波形の電圧比較器出力を時
間軸上でい(つかの点に分割し、その各分別出力がマー
ク(高レベル)の場合は+1を、スペース(低レベル)
の場合は−1を対応させてその和となる値すなわちマー
クとスペースとの再生ビット当りの各時間率の差の値、
又はそれに比例する値をビット単位の復号の信頬度を表
わす情報(以下、信頼度指標という)とし、従来の軟判
定復号におけるレベル値のかわりにこの信頼度指標を用
いて各受信語(フレーム)毎に軟判定復ぢを行なう。こ
のようにして従来の軟Ill定復号法と同程度に、誤り
訂正符号の誤り訂正能力を従来の硬判定復号法よりも拡
大し、しかも復号処理にアナログ−ディジタル変換のよ
うな複雑な処理を必要とせずに間車な処理で復号を行う
ことができる。
For example, if the voltage comparator output of the received waveform corresponding to a bit is divided into several points on the time axis, and each divided output is a mark (high level), +1 is given, and a space (low level) is given.
In the case of -1, the value is the sum of the corresponding values, that is, the value of the difference in each time rate per playback bit between the mark and the space,
or a value proportional thereto is information representing the reliability of decoding in bit units (hereinafter referred to as reliability index), and this reliability index is used instead of the level value in conventional soft decision decoding to determine each received word (frame). ) performs soft decision recovery. In this way, the error correction capability of the error correction code is expanded to the same extent as the conventional soft-decision decoding method, and moreover, the error correction ability of the error correction code is expanded compared to the conventional hard-decision decoding method. Decryption can be performed without the need for additional processing.

「実施例」 この発明では各ビット単位の復号に用いる電工比較器の
出力の高レベルと低レベルとの再生ビット当りの各時間
率の差を信頼度指標として求めるが、このことについて
第2図を参照して説明する。
``Example'' In this invention, the difference in the time rate per reproduced bit between the high level and low level of the output of the electrical comparator used for decoding each bit is determined as a reliability index. Explain with reference to.

いま第2図Aに示すような高レベル1ビットの送信波形
に対し、第2図Bに示すような受信波形1が得られたと
する。この受信波形1の電圧比較器出力は第2図Cに示
すようになる。この再生1ビット分の時間長を図のよう
に10とした場合、電圧比較器出力(第2図C)は長さ
4の高レベル(受信波形の正成分)、長さlの低レベル
(受信波形の負成分)、長さ5の高レベルよりなる。従
って高レベルと低レベルとの再生1ビア)当りの時間率
の差I!、はl  (4+5)−11冨8となる。
Now suppose that a received waveform 1 as shown in FIG. 2B is obtained for a high-level 1-bit transmission waveform as shown in FIG. 2A. The voltage comparator output of this received waveform 1 is as shown in FIG. 2C. If the time length for one reproduced bit is set to 10 as shown in the figure, the voltage comparator output (Figure 2C) will have a high level of length 4 (positive component of the received waveform) and a low level of length l (positive component of the received waveform). (negative component of the received waveform) and a high level of length 5. Therefore, the difference in the time rate per playback (via) between high level and low level is I! , becomes l(4+5)-11-8.

第2図りに示すような受信波形2として受信された場合
はその電圧比較器の出力は第2図Eに示すように長さ3
の高レベル−長さ3の低しベルー長さ4の高レベルとな
り、高レベルと低レベルとの再生1ビット当りの時間率
の差12は+  (3+4)−31−4となる。第2図
Fに示すような受信波形3として受信された場合はその
電圧比較器の出力は第2図Gに示すように長さ1の高レ
ベル−長さlの低レベル−長さ1の高レベル−長さ2の
低レベル−長さ1の高レベル−長さ3の低レベル−長さ
1の高レベルとなり、その高レベルと低レベルとの再生
1ビット当りの時間率の差l、は  ・1 (1+1+
1+1)−(1+2+3)l=2となる。
If the received waveform 2 is received as shown in Figure 2, the output of the voltage comparator will have a length of 3 as shown in Figure 2E.
The high level - the low level of length 3 becomes the high level of length 4, and the difference 12 in the time rate per reproduction bit between the high level and the low level is + (3 + 4) - 31 - 4. When the received waveform 3 is received as shown in FIG. 2F, the output of the voltage comparator is as shown in FIG. 2G: high level of length 1 - low level of length l - length 1 High level - Low level of length 2 - High level of length 1 - Low level of length 3 - High level of length 1, and the difference in the time rate per reproduction bit between the high level and the low level is l , is ・1 (1+1+
1+1)-(1+2+3)l=2.

これら時間率の差1+ =8. 1z=4.13=2は
それぞれそのまま受信波形1.2.3の信頼度の高低、
つまり信頼度指標を表わす。
Difference between these time rates 1+ = 8. 1z=4.13=2 is the level of reliability of the received waveform 1.2.3, respectively.
In other words, it represents a reliability index.

このような時間率の差は筒車な回路をもって測定するこ
とができ、その得られた時間率の差を信頼度指標として
前述した従来のブロック符号軟判定におけるレベル値l
、のかわりに用いれば、ビット単位には電圧比較器を用
いた硬判定を行ないつつ、フレーム単位には軟判定復号
を行なうことが可能となる。この時、ビット単位の復号
は従来までと同様にビットの識別時点における識別結果
、すなわちレベルの正負による判定を行なっても良いが
、1ビットの時間内における時間率の大きい方を復号結
果としても良い。一方ブロック符号の復号ではビット単
位の信頼度指標を用いた軟判定を行なっているので、誤
り訂正符号の誤り訂正能力が硬判定を行う場合より拡大
され、非受信率特性が改善されることが期待できる。
Such a difference in time rate can be measured using an hour wheel circuit, and the difference in time rate thus obtained is used as a reliability index to calculate the level value l in the conventional block code soft decision described above.
If used instead of , it becomes possible to perform hard decision decoding using a voltage comparator in bit units and soft decision decoding in frame units. At this time, bit-by-bit decoding may be performed by determining the identification result at the time of bit identification, that is, whether the level is positive or negative, as in the past, but the decoding result may be the one with the greater time rate within the time of one bit. good. On the other hand, in block code decoding, a soft decision is made using a reliability index in units of bits, so the error correction ability of the error correction code is expanded compared to when a hard decision is made, and the non-receiving rate characteristics are improved. You can expect it.

第3図はこの発明の実施例を示し、入力端子11よりの
入力信号は電圧比較器12へ入力され、その電圧比較器
12の出力はビット単位復号器13と時間率測定回路1
4とへ供給される。ビット単位復号器13の復号結果と
、時間率差測定回路14の測定結果とが軟判定誤り訂正
復号回路15に入力され、軟判定誤り訂正復号回路15
よりのフレーム復号出力は出力端子16へ出力される。
FIG. 3 shows an embodiment of the present invention, in which an input signal from an input terminal 11 is input to a voltage comparator 12, and the output of the voltage comparator 12 is sent to a bit unit decoder 13 and a time rate measuring circuit 1.
4. The decoding result of the bit unit decoder 13 and the measurement result of the time rate difference measuring circuit 14 are input to the soft decision error correction decoding circuit 15.
The frame decoded output from the output terminal 16 is outputted to the output terminal 16.

入力端子11から第4図中の波形21に示すような人力
信号21が入力されたとする。この入力信号21は電圧
比較器12で正成分は高レベル、負成分は低レベルに変
換され、第4図中の波形22で示すような電圧出力が得
られる。この波形22の電圧出力はビット単位復号器1
3において従来と同(工な手法により、マークかスペー
スかに各ビットごとに復号される。
Assume that a human input signal 21 as shown in a waveform 21 in FIG. 4 is input from the input terminal 11. This input signal 21 is converted by a voltage comparator 12 into a high level for positive components and a low level for negative components, so that a voltage output as shown by waveform 22 in FIG. 4 is obtained. The voltage output of this waveform 22 is applied to the bitwise decoder 1.
In step 3, each bit is decoded as a mark or a space using the same sophisticated technique as before.

波形22の電圧出力は時間率差測定回路14に入力され
てその高レベルと低レベルとの1ビット当りの時間率の
差が測定される。時間率差測定回路14としては第5図
に示すような市販のアップダウンカウンタ23を用いて
構成することができる。そのカウントモード選択端子2
4に電圧比較器12の出力電圧が印加され、この印加電
圧が高レベルの時、アップダウンカウンタ23はアップ
カウント状態になり、低レベルの時ダウンカウント状態
になる。クロック発生器25から、入力端子11の入力
信号のビットレートのN倍のクロ。
The voltage output of the waveform 22 is input to a time rate difference measuring circuit 14, and the difference in time rate per bit between its high level and low level is measured. The time rate difference measuring circuit 14 can be constructed using a commercially available up/down counter 23 as shown in FIG. The count mode selection terminal 2
4 is applied with the output voltage of the voltage comparator 12, and when this applied voltage is at a high level, the up/down counter 23 enters an up-counting state, and when it is at a low level, it enters a down-counting state. A clock signal from the clock generator 25 that is N times the bit rate of the input signal at the input terminal 11 is supplied.

りがアップダウンカウンタ23のクロック端子CKに人
力され、このクロックが計数される。アップダウンカウ
ンタ23のリセント端子26にビット単位復号器13か
ら得られる再生クロックが用いられる。人力信号の各l
ビットの終了時にはそのlビットにおける電圧比較器出
力の高レベルと低レベルとの時間差つまり再生1ビット
当りの時間率の差に比例した値がアップダウンカウンタ
23のカウント出力端子27に得られる。この値を軟判
定誤り訂正復号回路15へ出力すると共に1ビットのカ
ウント終了時にビット単位復号器13からの再生クロッ
クによってアップダウンカウンタ23をリセットして次
のビットに対して再び同様な動作を始める。
This clock is manually input to the clock terminal CK of the up/down counter 23, and this clock is counted. The recovered clock obtained from the bit unit decoder 13 is used at the recent terminal 26 of the up/down counter 23. Each l of human signal
At the end of a bit, a value proportional to the time difference between the high level and the low level of the output of the voltage comparator for that l bit, that is, the difference in time rate per reproduction bit, is obtained at the count output terminal 27 of the up/down counter 23. This value is output to the soft-decision error correction decoding circuit 15, and at the end of counting one bit, the up/down counter 23 is reset by the recovered clock from the bit unit decoder 13, and the same operation starts again for the next bit. .

次に(7,4)ハミング符号を用いて実施例の動作につ
いて説明する。<7.4)ハミング符号の符号語を第6
図に示す。今、送信側から第6図中の!!12に示した
(1000101)が送られたとし、受信側の受信波形
が伝送途中に付加された雑音により第7図に示すように
なり、受信語YがY=(1001111) となったとする。このとき、従来までの硬判定復号法で
は符号語x−(10001O1)と受信語Yとの符号間
距離は2であるが、ハミング(7゜4)符号の符号語の
1つであるX’=(1001110)と受信語Yとは符
号間距離が1であるため、符号語X′が送信されたとみ
なし、誤受信が起きる。
Next, the operation of the embodiment will be explained using the (7,4) Hamming code. <7.4) The code word of the Hamming code is
As shown in the figure. Now, from the sending side in Figure 6! ! Suppose that (1000101) shown in FIG. 12 is sent, and the received waveform on the receiving side becomes as shown in FIG. 7 due to noise added during transmission, and the received word Y becomes Y=(1001111). At this time, in the conventional hard-decision decoding method, the inter-code distance between the code word x-(10001O1) and the received word Y is 2, but Since the inter-code distance between =(1001110) and the received word Y is 1, it is assumed that the code word X' has been transmitted, and erroneous reception occurs.

これに対しこの発明による復号方式では正しく受信され
ることを説明する。なお、1ビット内を10ケ所のサン
プリングにより時間率差を測定する例について考える。
On the other hand, it will be explained that the decoding method according to the present invention allows correct reception. Note that an example will be considered in which the time rate difference is measured by sampling at 10 locations within one bit.

受信波形の電圧比較器出力より得られる各ビットごとの
信頼度指標!、は第7図に示すように与えられたとし、
この信頼度指標β、を用いて16個のハミング符号の符
号語に対して式fi+の計算を行った結果を第6図中右
端に示す。符号語X= (1000101)については
Σl 1i 1  (YiOXi ) =6  となる
が符号語X’−(1001110)については計算結果
が10となり、符号語Xについての計算結果が最小値を
与えるため、符号語Xが送信されたとみなされ、正しく
復号される。
Reliability index for each bit obtained from the voltage comparator output of the received waveform! , is given as shown in Figure 7,
The right end of FIG. 6 shows the result of calculating the formula fi+ for the code words of 16 Hamming codes using this reliability index β. For code word X = (1000101), Σl 1i 1 (YiOXi ) = 6, but for code word X'-(1001110), the calculation result is 10, and since the calculation result for code word X gives the minimum value, Codeword X is considered to have been transmitted and is correctly decoded.

「発明の効果」 以上説明したように、この発明によれば、従来の硬判定
復号方法では非受信、又は誤受信となる受信語について
も正しく復号できる。式(11の最小化の効率的なアル
ゴリズムは、前述の文献等にも詳しく述べられており、
この方法は誤り訂正符号の復号を行なうための演算袋W
(CPU)を用いたソフトウェアで容易に実現できる。
"Effects of the Invention" As described above, according to the present invention, even received words that are not received or received incorrectly using conventional hard decision decoding methods can be correctly decoded. An efficient algorithm for minimizing formula (11) is also described in detail in the above-mentioned literature, etc.
This method uses an arithmetic bag W for decoding error correction codes.
This can be easily realized with software using (CPU).

一方、ビット単位の復号は、従来までと何ら変わらない
方法で行なって良い。また信頼度指標を求めるための時
間率差測定回路は市販のICを用いて橿めて節単に構成
できるが、ソフトウェア処理で行ってもよい。
On the other hand, bit-by-bit decoding may be performed using the same method as before. Further, the time rate difference measuring circuit for determining the reliability index can be simply constructed using a commercially available IC, but it may also be performed by software processing.

以上述べたようにこの発明によれば、AD変換回路等の
複雑な処理回路を用いることなく、誤り訂正符号の訂正
能力が硬判定復号方法より拡大し得るという利点がある
As described above, the present invention has the advantage that the correction capability of an error correction code can be expanded compared to the hard decision decoding method without using a complicated processing circuit such as an AD conversion circuit.

次にこの発明による改善効果を定量的に述べる。Next, the improvement effect achieved by this invention will be described quantitatively.

前述の文献によれば、式(1)に示す軟判定復号法を行
なうと符号開路ffJ dが2to キ1の場合、最大
で2to個の誤まりまで訂正できる。なお従来の硬判定
復号による時は最大でt0個の誤りまでしか訂正できな
い。この発明の復号方式でも式(1)のレベル値11.
1のかわりに、電圧比較器出力の高レベルと低レベルと
の時間率の差の値を用いているので、1ビット内のサン
プル数が十分大きければ、時間率の差によりビットm別
を行なう場合、つまり高レベルと低レベルとでその時間
率の大きい方をビット単位の復号結果とする場合のビッ
ト誤り率特性を基準として、1フレーム(1符号語)内
に2to+1個以上の誤りが発生したときに非受信とな
るから、この確率が、この発明による復号方式の符号語
誤り率の下限となる。つまりこの発明によれば最良な場
合にこの符号誤り率まで得られる。
According to the above-mentioned literature, when the soft-decision decoding method shown in equation (1) is performed, up to 2to errors can be corrected when the code open circuit ffJ d is 2to ki1. Note that when using conventional hard decision decoding, only up to t0 errors can be corrected at maximum. In the decoding method of this invention, the level value of equation (1) is 11.
Since the value of the difference in time rate between the high level and low level of the voltage comparator output is used instead of 1, if the number of samples in one bit is large enough, bit m can be separated based on the difference in time rate. In other words, 2to+1 or more errors occur within one frame (one code word) based on the bit error rate characteristics when the bit-by-bit decoding result is the one with the larger time rate between the high level and the low level. This probability is the lower limit of the code word error rate of the decoding method according to the present invention. In other words, according to the present invention, this bit error rate can be obtained in the best case.

例えば、BCH(23,12)符号の場合、符号間距離
dは7であるから2to +1=2x3+1となり、L
0=3であるから、23ビ、ト中7ビノト以上誤まる確
率が、この発明による復号法の符号誤り率の下限を与え
、実際とは誤りが6ビット以内でも誤まるおそれがある
。一方、従来の硬判定復号法では、符号開路M2to+
1に対して、to個の誤まりまで訂正可能であるから、
符号語誤り率はl符号語(lフレーム)内にt。+1個
以上の誤まりが発生する確率に等しく 、BCII(2
3,12)の場合、23ビット中、4  (t。
For example, in the case of BCH (23, 12) code, the inter-symbol distance d is 7, so 2to +1=2x3+1, and L
Since 0=3, the probability of making an error of 7 bits or more out of 23 bits gives the lower limit of the code error rate of the decoding method according to the present invention, and there is a possibility that an error will occur even if the error is within 6 bits. On the other hand, in the conventional hard-decision decoding method, the code open circuit M2to+
Since it is possible to correct up to to errors for 1,
The codeword error rate is t within l codewords (l frames). Equal to the probability of +1 or more errors occurring, BCII(2
3, 12), 4 out of 23 bits (t.

+1=3+1’)ビット以上誤まる確率に等しい。+1=3+1') is equal to the probability of getting more than one bit wrong.

高レベルと低レベルとの時間率の差によりビットの識別
再生を行なう場合の例として、文献(2)〔運上、諏訪
2服部、“スプリントフェーズ信号の積分復号法と伝送
特性”、昭和58年度電子通信学会総合全国大会、 1
h2167)に、信号伝送速度(ビットレート)300
b/s、周波数偏移4.5 kflzIF帯域幅16k
llz 、フェージング周波数2011zの場合につい
て報告されている。この特性を第8図に曲線31として
示す。この曲131のビット誤り率特性をもとに、この
発明による復号方式の符号語誤り率の下限、及び従来の
硬判定復号法の符号語誤り率を、BCH(23,12)
符号を例にランダム誤りを仮定して求める。ランダム誤
りを仮定すれば、 により計算できる。但し、pは、ビット誤り率で、第8
図の曲線31より得られる。第8図にビット誤り率pと
、符号語誤り率P、、P’、の関係曲線32.33とし
て示す。例えば、受信入力電界−8d[lμの時、p=
2X10−2であり、この時 ・また、受信入力電界−
1dBμの時p=2X10−3であり、この時、 なって、この発明により、符号語誤り率特性は従来の硬
判定復号法と比較して大幅に改善される。
As an example of performing bit identification and reproduction based on the time rate difference between high level and low level, see Reference (2) [Unjo, Suwa 2 Hattori, "Integral decoding method and transmission characteristics of sprint phase signal", 1982] Annual National Conference of the Institute of Electronics and Communication Engineers, 1
h2167), signal transmission speed (bit rate) 300
b/s, frequency deviation 4.5 kflzIF bandwidth 16k
The case of fading frequency 2011z is reported. This characteristic is shown as curve 31 in FIG. Based on the bit error rate characteristics of this song 131, the lower limit of the codeword error rate of the decoding method according to the present invention and the codeword error rate of the conventional hard-decision decoding method are determined as BCH (23, 12).
Using the code as an example, find it assuming random errors. Assuming random errors, it can be calculated as follows. However, p is the bit error rate and the 8th
This is obtained from curve 31 in the figure. FIG. 8 shows relationship curves 32 and 33 between the bit error rate p and the code word error rates P, , P'. For example, when the received input electric field is −8d[lμ, p=
2X10-2, and at this time ・Also, the receiving input electric field -
When p is 1 dBμ, p=2×10 −3 , and then: According to the present invention, the code word error rate characteristics are significantly improved compared to the conventional hard decision decoding method.

上述においてはNRZ符号にこの発明を適用したが、そ
の他の符号にもこの発明を適用することができる。
Although the present invention has been applied to the NRZ code in the above description, the present invention can also be applied to other codes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は軟判定復号法を説明するための受信波形の例を
示す図、第2図は送信波形と、その各種受信波形と、そ
の各電圧比較器出力との例を示す図、第3図はこの発明
の実施例を示すブロック図、第4図は電圧比較器出力と
受信波形の例を示す図、第5図は時間率差測定回路の実
現例を示す図、第6図は(7,4)ハミング符号の全符
号語を示す図、第7図は受信波形と信頼度指標の例を示
す図、第8図は文献竜2)に示されたビット誤り率特性
及びその時にこの発明による復号方式を用いる場合と従
来の復号法を用いる場合との各符号語誤り率特性図であ
る。
FIG. 1 is a diagram showing an example of a received waveform to explain the soft-decision decoding method, FIG. 2 is a diagram showing an example of a transmitted waveform, its various received waveforms, and the output of each voltage comparator. Figure 4 is a block diagram showing an embodiment of the present invention, Figure 4 is a diagram showing an example of the voltage comparator output and received waveform, Figure 5 is a diagram showing an example of implementation of a time rate difference measuring circuit, and Figure 6 is ( 7,4) A diagram showing all code words of a Hamming code. Figure 7 is a diagram showing an example of the received waveform and reliability index. Figure 8 is a diagram showing the bit error rate characteristics shown in the literature 2) and the FIG. 6 is a diagram showing code word error rate characteristics when using the decoding method according to the invention and when using the conventional decoding method.

Claims (1)

【特許請求の範囲】 各符号を複数ビットよりなる誤り訂正可能な符号語とし
て送信されたブロック符号を電圧比較器によりビット単
位の復号を行い、かつそのビット単位の復号に対し信頼
度に応じた重み付けをして誤り訂正復号を行なうブロッ
ク符号復号方式において、 上記ビット単位の復号過程での上記電圧比較器出力の高
レベルと低レベルとの再生1ビットに対する各時間率の
差をビット単位の復号の信頼度を表わす信頼度指標とし
、 各符号語と受信語との相異ビットにおける上記信頼度指
標の総和を最小化する符号語を復号語と判定するブロッ
ク符号復号方式。
[Claims] A voltage comparator performs bit-by-bit decoding of a block code transmitted as an error-correctable code word consisting of a plurality of bits, and decodes the bit-by-bit decoding according to reliability. In a block code decoding method that performs error correction decoding by weighting, the difference in time rate for each reproduced bit between the high level and low level of the output of the voltage comparator in the bit-by-bit decoding process is decoded in bit units. A block code decoding method that determines a code word that minimizes the sum of the reliability indicators in different bits between each code word and a received word as a decoded word.
JP61121698A 1985-12-11 1986-05-26 Block code decoding method Expired - Fee Related JPH07112161B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP61121698A JPH07112161B2 (en) 1986-05-26 1986-05-26 Block code decoding method
CA000524366A CA1296065C (en) 1985-12-11 1986-12-02 Method for decoding error correcting block codes
US06/937,176 US4763331A (en) 1985-12-11 1986-12-02 Method for decoding error correcting block codes
SE8605236A SE463845B (en) 1985-12-11 1986-12-05 SET TO DECOD ERROR CORRECT BLOCK CODES
GB8629347A GB2185367B (en) 1985-12-11 1986-12-09 Method for decoding error correcting block codes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61121698A JPH07112161B2 (en) 1986-05-26 1986-05-26 Block code decoding method

Publications (2)

Publication Number Publication Date
JPS62277824A true JPS62277824A (en) 1987-12-02
JPH07112161B2 JPH07112161B2 (en) 1995-11-29

Family

ID=14817667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61121698A Expired - Fee Related JPH07112161B2 (en) 1985-12-11 1986-05-26 Block code decoding method

Country Status (1)

Country Link
JP (1) JPH07112161B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6134694A (en) * 1996-02-29 2000-10-17 Ntt Mobile Communications Network, Inc. Error control method and error control device for digital communication

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4950856A (en) * 1972-09-18 1974-05-17

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4950856A (en) * 1972-09-18 1974-05-17

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6134694A (en) * 1996-02-29 2000-10-17 Ntt Mobile Communications Network, Inc. Error control method and error control device for digital communication

Also Published As

Publication number Publication date
JPH07112161B2 (en) 1995-11-29

Similar Documents

Publication Publication Date Title
JP3496828B2 (en) Pulse position method, decoding method, data communication system, and data transmission system
US5341401A (en) Method of detecting the channel identity of a number of channels in a mobile radio system
US4605921A (en) Digital word-framing technique and system
JPH06216655A (en) Demodulation circuit
JPS6037834A (en) Error correction signal decoding method and decoder
JPS60180222A (en) Code error correcting device
JPH1032498A (en) Variable rate viterbi decoder
US4055832A (en) One-error correction convolutional coding system
JP2002525902A (en) Encoding and decoding technology for 24-bit sequence data
JPH1188447A (en) Demodulating device, clock reproducing device, demodulating method and clock reproducing method
JPS62258530A (en) Decoder for digital signal
JP3259725B2 (en) Viterbi decoding device
JP3237700B2 (en) Error detection method and error detection system
JPS62277824A (en) Block code decoding system
JP3658395B2 (en) Signal demodulating apparatus and method
JPH03154521A (en) Viterbi decoder with output function of soft decision decoding information
JP2573180B2 (en) Error correction decoding device
JP2759043B2 (en) Information bit sequence transmission system
JP2765931B2 (en) Decoding method of superposition code
KR100282070B1 (en) A method of encoding and decoding error detecting codes using convolutional codes
JP2944153B2 (en) Demodulation reference phase ambiguity removal method
JPS62136939A (en) Code reception system
JP3345698B2 (en) Error correction decoding circuit
JPH06244741A (en) Error correcting method
JPS5912646A (en) Error correcting decoder

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees